Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=groundwater<.>)
Общее количество найденных документов : 6
Показаны документы с 1 по 6
1.


   
    Tritium in surface waters of the Yenisei River basin / A. Y. Bolsunovsky, L. G. Bondareva // Journal of Environmental Radioactivity. - 2003. - Vol. 66, Is. 3. - P285-294, DOI 10.1016/S0265-931X(02)00132-7 . - ISSN 0265-931X
Кл.слова (ненормированные):
Deep-well injection of radionuclides -- Nuclear reactor -- Surface and ground waters -- Tritium -- Yenisei River basin -- Cooling water -- Nuclear reactors -- Sediments -- Surface waters -- River basins -- Tritium -- carbon 14 -- surface water -- tritium -- groundwater -- nuclear power plant -- radioactive pollution -- surface water -- tritium -- article -- catchment -- measurement -- radioactive contamination -- river -- sediment -- Environmental Monitoring -- Geologic Sediments -- Mining -- Power Plants -- Reference Values -- Russia -- Tritium -- Water Pollutants, Radioactive -- Russian Federation -- Tritium
Аннотация: This paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining and Chemical Combine (MCC). In 2001 the maximum tritium concentration in the Yenisei River did not exceed 4 В± 1 Bq l-1, which is consistent with the data of 1998-99. However, it has been found that there are surface waters containing enhanced tritium as compared with the background values for the Yenisei River. For instance, in the Ploskii Stream and the Shumikha River the maximum tritium concentrations amount to 168 and 81 Bq l-1, respectively. The source of tritium in these surface waters is the last operating reactor at the MCC, which still uses the Yenisei water as coolant. In water and sediment samples of the Bolshaya Tel River (a tributary of the Yenisei River) the tritium content turned out to be at least 10 times higher than the background values for the Yenisei River. The measurements conducted at the RPA RADON (Moscow) revealed not only tritium but also the artificial radionuclide 14C in the Bolshaya Tel samples. The data obtained suggest that the Bolshaya Tel River receives the major part of tritium from sediments rather than from the water catchment area. This allows the conclusion that there is water exchange between the surface waters and the radioactively contaminated underground horizons of the "Severny" testing site. В© 2002 Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bolsunovsky, A.Y.; Bondareva, L.G.

Найти похожие
2.


   
    Green Tides: New Consequences of the Eutrophication of Natural Waters (Invited Review) / M. I. Gladyshev, Y. I. Gubelit // Contemp. Probl. Ecol. - 2019. - Vol. 12, Is. 2. - P109-125, DOI 10.1134/S1995425519020057. - Cited References:134. - This study was supported by a state task as part of fundamental research program of the Russian Federation no. VI. 51.1.9, no. 6.1504.2017/PCh, and no. AAAA-A19-119020690091-0. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
CLADOPHORA-GLOMERATA CHLOROPHYTA
   BENTHIC ALGAL COMMUNITY

   MACROALGAL

Кл.слова (ненормированные):
nuisance algal blooms -- Ulva -- Cladophora -- Spirogyra -- metaphyton -- benthification
Аннотация: In recent decades, alongside the comparatively well-studied bloom caused by phytoplankton, a bloom of marine and fresh waters caused by littoral benthic macroalgae of three generaUlva, Cladophora, and Spirogyrahave become a global phenomenon. In the present review, an attempt is made to gain an understanding of why it is these taxa of green filamentous algae that start to grow rapidly in the spring in many water bodies and streams, including oligotrophic waters, and then float up from the bottom, forming floating mats (metaphyton); then their decaying masses are washed ashore and cause substantial ecological and economical losses. Peculiar and common ecological and physiological features of Ulva, Cladophora, and Spirogyra favorable for the formation of green tides are considered. Although eutrophication (the supply of nitrogen and phosphorus from agricultural lands, industrial and domestic wastewaters, and aquaculture) is the evident cause of the increase in algal biomass, it is suggested that the location of external fluxes of inorganic nutrients (surface runoff or groundwater discharge), as well as the biogenic redirection of internal fluxes of nitrogen and phosphorus from pelagial to littoral (benthification), play a key role in the formation of green tides. Measures for controlling green tides are discussed. The necessity for detailed studies of the metaphytonic form of vegetation of benthic macroalgae is emphasized. Obviously, a revision of the present concept of oligotrophic/eutrophic waters which considers only the pelagic compartments of aquatic ecosystems is required.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Zool Inst, St Petersburg 199034, Russia.

Доп.точки доступа:
Gladyshev, M. I.; Gubelit, Y. I.; state task as part of fundamental research program of the Russian Federation [51.1.9, 6.1504.2017/PCh, AAAA-A19-119020690091-0]

Найти похожие
3.


   
    Isotope Composition of Nitrogen and Stoichiometric Ratios of Elements in Biomass of Spirogyra in Lake Baikal / M. I. Gladyshev, L. A. Glushchenko, E. S. Kravchuk [et al.] // Doklad. Biochem. Biophys. - 2020. - Vol. 491, Is. 1. - P70-72, DOI 10.1134/S1607672920020088 . - ISSN 1607-6729
Кл.слова (ненормированные):
C:N:P stoichiometry -- inorganic nutrients -- “green tide,” green filamentous algae
Аннотация: Abstract: Using stable isotope analysis of nitrogen, for the first time the hypothesis on different sources of inorganic nutrients for two groups of littoral algae in Lake Baikal was confirmed. Strongly attached filamentous algae of genus Ulothrix, which developed in the wave-braking zone at depth 0.5 m, and loosely attached filamentous algae of genus Spirogyra, which developed in deeper layers 3.0–5.0 m in a low-turbulence zone, get inorganic nutrients presumably from surface discharge and groundwater inputs, respectively. Besides, stoichiometric ratios C:N and N:P in biomass of the algae indicated that growth of Spirogyra in Lake Baikal was likely limited by nitrogen, while growth of Ulothrix was limited by phosphorus. © 2020, Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Krasnoyarsk Scientific Center of the Russian Academy of Sciences, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Moscow State University, Moscow, 119991, Russian Federation

Доп.точки доступа:
Gladyshev, M. I.; Glushchenko, L. A.; Kravchuk, E. S.; Anishchenko, O. V.; Kolmakova, A. A.; Kolobov, M. Y.; Razgoniaeva, V. A.; Sushchik, N. N.

Найти похожие
4.


   
    Isotope Composition of Nitrogen and Stoichiometric Ratios of Elements in Biomass ofSpirogyrain Lake Baikal / M. I. Gladyshev, L. A. Glushchenko, E. S. Kravchuk [et al.] // Dokl. Biochem. Biophys. - 2020. - Vol. 491, Is. 1. - P70-72, DOI 10.1134/S1607672920020088. - Cited References:9. - The expedition was supported by the group of companies En+ Group and the Ecological Foundation of the Siberian Federal University. The study was performed under the State Assignment within the framework of the basic research program of the Russian Federation (topic no. 51.1.1). . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
GREEN
   ALGAE

   TIDES

Кл.слова (ненормированные):
"green tide -- " green filamentous algae -- inorganic nutrients -- C -- N -- P -- stoichiometry
Аннотация: Using stable isotope analysis of nitrogen, for the first time the hypothesis on different sources of inorganic nutrients for two groups of littoral algae in Lake Baikal was confirmed. Strongly attached filamentous algae of genusUlothrix, which developed in the wave-braking zone at depth 0.5 m, and loosely attached filamentous algae of genusSpirogyra, which developed in deeper layers 3.0-5.0 m in a low-turbulence zone, get inorganic nutrients presumably from surface discharge and groundwater inputs, respectively. Besides, stoichiometric ratios C:N and N:P in biomass of the algae indicated that growth ofSpirogyrain Lake Baikal was likely limited by nitrogen, while growth ofUlothrixwas limited by phosphorus.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Krasnoyarsk Sci Ctr, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Moscow MV Lomonosov State Univ, Moscow 119991, Russia.

Доп.точки доступа:
Gladyshev, M. I.; Glushchenko, L. A.; Kravchuk, E. S.; Anishchenko, O. V.; Kolmakova, A. A.; Kolobov, M. Y.; Razgoniaeva, V. A.; Sushchik, N. N.; En+ Group; Ecological Foundation of the Siberian Federal University; Russian FederationRussian Federation [51.1.1]

Найти похожие
5.


   
    The effect of deicing salt solutes on Moina macrocopa and Allium cepa in a toxicity test experiment / T. S. Lopatina, Y. V. Aleksandrova, O. V. Anishchenko [и др.] // Vestn. Tomsk. Gos. Univ. Biol. - 2020. - Is. 51. - С. 162-178, DOI 10.17223/19988591/51/9 . - ISSN 1998-8591
Кл.слова (ненормированные):
Aquatic ecosystems -- Cladocera, Allium-test -- Salinity -- Toxicity test
Аннотация: Chloride salts are the most commonly used deicing materials for winter maintenance of roads. Numerous studies indicate a significant increase in the salinity of aquatic ecosystems associated with the long-term use of deicing materials in countries located in cold climates. The functioning of ecosystems largely depends on salinity, since salinity is one of the key factors determining the species composition, the structure of food webs and the productivity of aquatic communities. Given the growing threat of salinization of groundwater and surface waters, it is extremely important to study the effect of deicing materials on the biota and functioning of aquatic ecosystems. The aim of this research is to determine the threshold concentrations of solutions of the deicing salt mixture “Bionord” containing sodium and calcium chlorides, at which negative effects on the development of animal and plant test objects are observed. In this study, we used the salt-containing mixture “Bionord” as a model deicer. Similarly, with the most commonly used ice melting chemicals, the «Bionord» salt mixture contains a large amount of sodium and calcium chlorides (about 85% of the total weight). To evaluate the toxicity of the deicer solutions, we used acute and chronic toxicity tests with cladoceran Moina macrocopa (Straus, 1820) (Cladocera: Moinidae) and standard onion-based test with Allium cepa L. (Liliopsida: Amaryllidaceae) (Allium-test). In acute and chronic toxicity tests with Cladocera, the females on the first day of their life (body size 0.5-0.6 mm) were placed individually in jars with aged (not less than for 72 h) tap water with a volume of 20 ml with the addition of a deicer at a certain concentration. A group of animals that was placed in the medium without the deicer was used as a control. In the acute toxicity tests, we used the following concentration of the deicer: 1.3; 2.5; 4.0, 5.0; 6.0; 8.0; 10.0 g/l. The mortality of animals was recorded 24 and 48 hours after the start of the experiment. The concentration of the deicer (LC50) at which 50% of animals was observed to die, compared to the control, was determined in the acute toxicity test. In a chronic toxicity test, animals were tested in the following range of concentrations of the deicer: 0.3; 0.6; 1.3; 2.5; 5.0; 6.0 and 8.0 g/l. The chronic toxicity test was conducted until the death of all test animals. Based on the data obtained in the chronic toxicity test, the specific growth rate of juvenile females, average fecundity, and average life span of M. macrocopa were calculated for each concentration of the deicer. Bulbs of onions of the Stuttgartenrisen variety with a diameter of 1.8 ± 0.1 cm and a weight of 2.27 ± 0.17 g were used in the onion test. Bulbs with their bottoms were placed in test tubes containing 20 ml of a solute of the deicer or tap water for 48 hours. Three bulbs were tested for each concentration and for the control. The following concentrations of the deicer were used in the onion test: 1.0; 2.5; 5.0; 7.0; 10.0; 15.0; 20.0; 50.0 g/l. The general toxic and cytotoxic effects were evaluated in the onion test. The average root length and the total root length on each bulb were used as indicators of the total toxicity of the solutions of deicer. To evaluate proliferative activity, we calculated the mitotic index as the fraction of dividing cells in the apical root meristem to the total number of cells. Based on the results of the experiments, we determined median effective mixture concentrations (EC50) at which there is a 50% decrease, compared to the control, in the values of root growth indicators: average root length, sum of root lengths on each bulb and mitotic index. Median lethal concentration (LC50) of the deicing salt determined in the 48-hour acute toxicity test with females of M. macrocopa was equal to 5.1 g/l. In the chronic test, we showed that the exposure to the solutions of the deicing salt in the range of concentrations from 0.3 to 5.0 g/l does not affect the life span, specific growth rate of juveniles and fecundity of females of M. macrocopa. The median effective concentration (EC50) of the deicing salt determined in the Allium-tests were 6.3, 5.2 and 10.4 g/l for the sum of root lengths, average root length on each bulb and proliferative activity at the tips of roots (mitotic index), respectively (See Table 1 and 2). Complete inhibition of onion root growth was observed at the concentration of the decider equal to 20 g/l, while the death of all test animals in the acute toxicity test occurred at the concentration of the deicer equal to 8,0 g/l (See Fig. 1). Thus, we demonstrated that similar concentrations of the deicer induced 50% inhibition of the growth of onion roots and 50% mortality of cladocerans. These values, in general, corresponded to a critical salinity of 5-8 % above which qualitative changes occur both in the external and internal condition of aquatic animals. The electrical conductivity of the deicer solutions, which had a negative effect on the selected test species, coincides with the previously obtained values of the electrical conductivity of sodium chloride solutions harmful to cladocerans. We can assume that the main mechanism of the effect of the deicing material that we study is associated with the biological effect of its chlorine and sodium salts. Taking this into account, the value of electrical conductivity measured for solutions of deicing salt can be used to assess its negative potential effects. We estimated that in the absence of timely cleaning, regulated by the rules for using the material, the runoff from each square meter of the treated surface can lead to the pollution of 8-13 liters of fresh water. Thus, the basic requirement for the use of deicing salts on roads is the need to comply with the cleaning regime of the treated surfaces. Otherwise, the gradual accumulation of sodium and calcium chlorides in water bodies can cause an increase in salinity which will affect the survival of freshwater aquatic organisms and lead to serious disturbances in the functioning of aquatic ecosystems. © 2020 Tomsk State University. All rights reserved.

Scopus
Держатели документа:
Laboratory of Ecosystem Biophysics, Institute of Biophysics, Federal Research Centre Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Laboratory of Bioluminescent and Environmental Technologies, Institute of Biophysics, Federal Research Centre Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Analytical Laboratory, Institute of Biophysics, Federal Research Centre Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Department of Biophysics, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodniy Ave, Krasnoyarsk, 660041, Russian Federation
Laboratory of Ecosystem Biophysics, Institute of Biophysics, Federal Research Centre Krasnoyarsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Lopatina, T. S.; Aleksandrova, Y. V.; Anishchenko, O. V.; Gribovskaya, I. V.; Oskina, N. A.; Zotina, T. A.; Zadereev, E. S.

Найти похожие
6.


   
    The effect of deicing salt solutes on Moina macrocopa and Allium cepa in a toxicity test experiment / T. S. Lopatina, Y. V. Aleksandrova, O. V. Anishchenko [и др.] // Vestn. Tomsk. Gos. Univ. Biol. - 2020. - Is. 51. - С. 162-178, DOI 10.17223/19988591/51/9. - Cited References:29. - This work was supported by the joint grant from the Russian Foundation for Basic Research, the Government of Krasnoyarsk Krai, and the Krasnoyarsk Krai Fund for Supporting Scientific and Scientific-Technical Activities (Grant No 19-44-240014). . - ISSN 1998-8591. - ISSN 2311-2077
РУБ Biology + Ecology
Рубрики:
DAPHNIA-MAGNA
   NACL SALINITY

   ROAD SALTS

   WATER

   FRESH

   CHLORIDE

Кл.слова (ненормированные):
salinity -- toxicity test -- Cladocera -- Allium-test -- aquatic ecosystems
Аннотация: Chloride salts are the most commonly used deicing materials for winter maintenance of roads. Numerous studies indicate a significant increase in the salinity of aquatic ecosystems associated with the long-term use of deicing materials in countries located in cold climates. The functioning of ecosystems largely depends on salinity, since salinity is one of the key factors determining the species composition, the structure of food webs and the productivity of aquatic communities. Given the growing threat of salinization of groundwater and surface waters, it is extremely important to study the effect of deicing materials on the biota and functioning of aquatic ecosystems. The aim of this research is to determine the threshold concentrations of solutions of the deicing salt mixture "Bionord" containing sodium and calcium chlorides, at which negative effects on the development of animal and plant test objects are observed. In this study, we used the salt-containing mixture "Bionord" as a model deicer. Similarly, with the most commonly used ice melting chemicals, the "Bionord" salt mixture contains a large amount of sodium and calcium chlorides (about 85% of the total weight). To evaluate the toxicity of the deicer solutions, we used acute and chronic toxicity tests with cladoceran Moina macrocopa (Straus, 1820) (Cladocera: Moinidae) and standard onion-based test with Allium cepa L. (Liliopsida: Amaryllidaceae) (Allium-test). In acute and chronic toxicity tests with Cladocera, the females on the first day of their life (body size 0.5-0.6 mm) were placed individually in jars with aged (not less than for 72 h) tap water with a volume of 20 ml with the addition of a deicer at a certain concentration. A group of animals that was placed in the medium without the deicer was used as a control. In the acute toxicity tests, we used the following concentration of the deicer: 1.3; 2.5; 4.0, 5.0; 6.0; 8.0; 10.0 g/l. The mortality of animals was recorded 24 and 48 hours after the start of the experiment. The concentration of the deicer (LC50) at which 50% of animals was observed to die, compared to the control, was determined in the acute toxicity test. In a chronic toxicity test, animals were tested in the following range of concentrations of the deicer: 0.3; 0.6; 1.3; 2.5; 5.0; 6.0 and 8.0 g/l. The chronic toxicity test was conducted until the death of all test animals. Based on the data obtained in the chronic toxicity test, the specific growth rate of juvenile females, average fecundity, and average life span of M. macrocopa were calculated for each concentration of the deicer. Bulbs of onions of the Stuttgartenrisen variety with a diameter of 1.8 +/- 0.1 cm and a weight of 2.27 +/- 0.17 g were used in the onion test. Bulbs with their bottoms were placed in test tubes containing 20 ml of a solute of the deicer or tap water for 48 hours. Three bulbs were tested for each concentration and for the control. The following concentrations of the deicer were used in the onion test: 1.0; 2.5; 5.0; 7.0; 10.0; 15.0; 20.0; 50.0 g/l. The general toxic and cytotoxic effects were evaluated in the onion test. The average root length and the total root length on each bulb were used as indicators of the total toxicity of the solutions of deicer. To evaluate proliferative activity, we calculated the mitotic index as the fraction of dividing cells in the apical root meristem to the total number of cells. Based on the results of the experiments, we determined median effective mixture concentrations (EC50) at which there is a 50% decrease, compared to the control, in the values of root growth indicators: average root length, sum of root lengths on each bulb and mitotic index. Median lethal concentration (LC50) of the deicing salt determined in the 48-hour acute toxicity test with females of Al. macrocopa was equal to 5.1 g/l. In the chronic test, we showed that the exposure to the solutions of the deicing salt in the range of concentrations from 0.3 to 5.0 g/l does not affect the life span, specific growth rate of juveniles and fecundity of females of M. macrocopa. The median effective concentration (EC50) of the deicing salt determined in the Allium-tests were 6.3, 5.2 and 10.4 g/l for the sum of root lengths, average root length on each bulb and proliferative activity at the tips of roots (mitotic index), respectively (See Table 1 and 2). Complete inhibition of onion root growth was observed at the concentration of the decider equal to 20 g/l, while the death of all test animals in the acute toxicity test occurred at the concentration of the deicer equal to 8,0 g/l (See Fig. 1). Thus, we demonstrated that similar concentrations of the deicer induced 50% inhibition of the growth of onion roots and 50% mortality of cladocerans. These values, in general, corresponded to a critical salinity of 5-8 %o above which qualitative changes occur both in the external and internal condition of aquatic animals. The electrical conductivity of the deicer solutions, which had a negative effect on the selected test species, coincides with the previously obtained values of the electrical conductivity of sodium chloride solutions harmful to cladocerans. We can assume that the main mechanism of the effect of the deicing material that we study is associated with the biological effect of its chlorine and sodium salts Taking this into account, the value of electrical conductivity measured for solutions of deicing salt can be used to assess its negative potential effects. We estimated that in the absence of timely cleaning, regulated by the rules for using the material, the runoff from each square meter of the treated surface can lead to the pollution of 8-13 liters of fresh water. Thus, the basic requirement for the use of deicing salts on roads is the need to comply with the cleaning regime of the treated surfaces. Otherwise, the gradual accumulation of sodium and calcium chlorides in water bodies can cause an increase in salinity which will affect the survival of freshwater aquatic organisms and lead to serious disturbances in the functioning of aquatic ecosystems.

WOS
Держатели документа:
Russian Acad Sci, Fed Res Ctr, Inst Biophys, Siberian Branch,Krasnoyarsk Sci Ctr,Lab Ecosyst B, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Fed Res Ctr, Inst Biophys, Siberian Branch,Krasnoyarsk Sci Ctr,Lab Biolumine, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Fed Res Ctr, Inst Biophys, Siberian Branch,Krasnoyarsk Sci Ctr,Analyt Lab, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Dept Biophys, 79 Svobodniy Ave, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Lopatina, Tatiana S.; Aleksandrova, Yuliyana, V; Anishchenko, Olesya, V; Gribovskaya, Iliada, V; Oskina, Nataliya A.; Zotina, Tatiana A.; Zadereev, Egor S.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR); Government of Krasnoyarsk Krai; Krasnoyarsk Krai Fund for Supporting Scientific and Scientific-Technical Activities [19-44-240014]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)