Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=herbicides<.>)
Общее количество найденных документов : 17
Показаны документы с 1 по 17
1.


   
    Constructing herbicide metribuzin sustained-release formulations based on the natural polymer poly-3-hydroxybutyrate as a degradable matrix / T. G. Volova [et al.] // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2016. - Vol. 51, Is. 2. - P113-125, DOI 10.1080/03601234.2015.1092833 . - ISSN 0360-1234
Кл.слова (ненормированные):
controlled release -- embedding -- metribuzin -- Poly(3-hydroxybutyrate) -- slow-release formulations -- Granulation -- Pelletizing -- Weed control -- Controlled release -- embedding -- Metribuzin -- Poly-3-hydroxybutyrate -- Slow release -- Herbicides
Аннотация: Polymer poly(3-hydroxybutyrate) [P(3HB)] has been used as a matrix in slow-release formulations of the herbicide metribuzin (MET). Physical P(3HB)/MET mixtures in the form of solutions, powders, and emulsions were used to construct different metribuzin formulations (films, granules, pellets, and microparticles). SEM, X-Ray, and DSC proved the stability of these formulations incubated in sterile water in vitro for long periods of time (up to 49 days). Metribuzin release from the polymer matrix has been also studied. By varying the shape of formulations (microparticles, granules, films, and pellets), we were able to control the release time of metribuzin, increasing or decreasing it. © 2016 Taylor & Francis Group, LLC.

Scopus,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Zhila, N. O.; Vinogradova, O. N.; Nikolaeva, E. D.; Kiselev, E. G.; Shumilova, A. A.; Shershneva, A. M.; Shishatskaya, E. I.
Свободных экз. нет
Найти похожие
2.


   
    Constructing Slow-Release Formulations of Metribuzin Based on Degradable Poly(3-hydroxybutyrate) / A. N. Boyandin [et al.] // J. Agric. Food Chem. - 2016. - Vol. 64, Is. 28. - P5625-5632, DOI 10.1021/acs.jafc.5b05896 . - ISSN 0021-8561
Кл.слова (ненормированные):
controlled release -- degradable poly(3-hydroxybutyrate) -- herbicide -- metribuzin -- release kinetics -- Polyethylene glycols -- Weed control -- Controlled release -- Environmental release -- Herbicide release -- Laboratory system -- Matrix formulation -- Metribuzin -- Poly-3-hydroxybutyrate -- Release kinetics -- Herbicides
Аннотация: Experimental formulations of herbicide metribuzin embedded in matrices of degradable natural polymer poly(3-hydroxybutyrate) (P3HB) and its composites with poly(ethylene glycol) (PEG), poly-?-caprolactone (PCL), and wood powder have been prepared in the form of pressed pellets containing 75% polymeric basis (pure P3HB or its composite with a second component at a ratio of 7:3) and 25% metribuzin. Incubation of formulations in soil laboratory systems led to the degradation of the matrix and herbicide release. The most active release of metribuzin (about 60% of the embedded herbicide over 35 days) was detected for the P3HB/PEG carrier compared to the P3HB, P3HB/wood, and P3HB/PCL forms (30-40%). Thus, the study shows that herbicide release can be controlled by the matrix formulation. Metribuzin formulations exerted a significant herbicidal effect on the plant Agrostis stolonifera, used as a weed plant model. Application of these long-term formulations will make it possible to reduce environmental release of chemicals, which will restrict the rate of their accumulation in trophic chains of ecosystems and abate their adverse effects on the biosphere. © 2016 American Chemical Society.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Zhila, N. O.; Kiselev, E. G.; Volova, T. G.

Найти похожие
3.


   
    Constructing sustained-release herbicide formulations based on poly-3-hydroxybutyrate and natural materials as a degradable matrix / E. G. Kiselev, A. N. Boyandin, N. O. Zhila [et al.] // Pest Manag. Sci., DOI 10.1002/ps.5702. - Cited References:83. - This study was financially supported by the project 'Agropreparations of the new generation: a strategy of construction and realization' (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, 'On measures designed to attract leading scientists to the Russian institutions of higher learning'. . - ISSN 1526-498X. - ISSN 1526-4998
РУБ Agronomy + Entomology
Рубрики:
SOIL MICROBIAL COMMUNITY
   FENOXAPROP-P-ETHYL

   SLOW-RELEASE

   METRIBUZIN

Кл.слова (ненормированные):
degradation in soil -- fenoxaprop-P-ethyl -- herbicide release -- metribuzin -- physicochemical properties -- tribenuron-methyl
Аннотация: BACKGROUND The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5-7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and >= 3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION The experimental herbicide formulations enabled slow release of the active ingredients to soil. (c) 2019 Society of Chemical Industry

WOS
Держатели документа:
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Inst Biophys SB RAS, Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Krasnoyarsk, Russia.
Mahatma Gandhi Univ, Int & Interuniv Ctr Nano Sci & Nano Technol, Kottayam, Kerala, India.

Доп.точки доступа:
Kiselev, Evgeniy G.; Boyandin, Anatoly N.; Zhila, Natalia O.; Prudnikova, Svetlana, V; Shumilova, Anna A.; Baranovskiy, Sergey, V; Shishatskaya, Ekaterina, I; Thomas, Sabu; Volova, Tatiana G.; Kiselev, Evgeniy; Boyandin, Anatoly; Government of the Russian Federation [074-02-2018-328, 220]

Найти похожие
4.


   
    Constructing sustained-release herbicide formulations based on poly-3-hydroxybutyrate and natural materials as a degradable matrix / E. G. Kiselev, A. N. Boyandin, N. O. Zhila [et al.] // Pest Manage. Sci. - 2019, DOI 10.1002/ps.5702 . - Article in press. - ISSN 1526-498X
Кл.слова (ненормированные):
degradation in soil -- fenoxaprop-P-ethyl -- herbicide release -- metribuzin -- physicochemical properties -- tribenuron-methyl
Аннотация: BACKGROUND: The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS: Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5–7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and ?3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION: The experimental herbicide formulations enabled slow release of the active ingredients to soil. © 2019 Society of Chemical Industry. © 2019 Society of Chemical Industry

Scopus
Держатели документа:
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation
International and Interuniversity Centre for Nano Science and Nano Technology, Mahatma Gandhi University, Kottayam, Kerala, India

Доп.точки доступа:
Kiselev, E. G.; Boyandin, A. N.; Zhila, N. O.; Prudnikova, S. V.; Shumilova, A. A.; Baranovskiy, S. V.; Shishatskaya, E. I.; Thomas, S.; Volova, T. G.

Найти похожие
5.


   
    Biological effects of the free and embedded metribuzin and tribenuron-methyl herbicides on various cultivated weed species / T. Volova, S. Baranovsky, O. Petrovskaya [et al.] // J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes. - 2020, DOI 10.1080/03601234.2020.1807835. - Cited References:42. - This work was supported by Project "Agropreparations of the new generation: a strategy of construction and realization" [Agreement No 074-02-2018-328] in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - ISSN 0360-1234. - ISSN 1532-4109
РУБ Environmental Sciences + Public, Environmental & Occupational Health
Рубрики:
SYNTHASE-INHIBITING HERBICIDES
   CHLOROPHYLL FLUORESCENCE

   RELEASE

Кл.слова (ненормированные):
Metribuzin -- tribenuron-methyl -- degradable P(3HB) -- weed growth -- inhibition -- photosynthetic activity
Аннотация: The present study addresses the herbicidal activity and biological effects of the metribuzin (MET) and tribenuron-methyl (TBM) herbicides used to control various weed species (Amaranthus retroflexus, Sinapis arvensis,andLeucanthemum maximum). The effects of the free herbicides and the herbicides embedded in granules of degradable polymer poly-3-hydroxybutyrate [P(3HB)] blended with birch wood flour were compared. Metribuzin, regardless of the form, caused 100% mortality of the three weeds by day 21. The herbicidal activity of tribenuron-methyl was lower than that of metribuzin, but the embedded TBM was superior to the free herbicide in the length and strength of its action on the weeds. Both metribuzin forms dramatically decreased the main parameters of fluorescence: maximum quantum yield of photosystem-II [Y(II)(max)], maximum quantum yield of non-photochemical quenching [Y(NPQ)(max)], and maximum rate of non-cyclic electron transport [ETRmax] and concentrations of chlorophyllaandb. The effect of the embedded TBM on the photosynthetic activity of the weeds was lower in the first two weeks of the growth of herbicide-treated plants but lasted longer than the effect of the free TBM and increased over time. Embedding of metribuzin in the matrix of degradable blend did not decrease its herbicidal activity.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys SB RAS, Krasnoyarsk, Russia.

Доп.точки доступа:
Volova, Tatiana; Baranovsky, Sergey; Petrovskaya, Olga; Shumilova, Anna; Sukovatyi, Alexey; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning" [220]

Найти похожие
6.


   
    Efficacy of embedded metribuzin and tribenuron-methyl herbicides in field-grown vegetable crops infested by weeds / T. Volova, A. Demidenko, N. Kurachenko [et al.] // Environ. Sci. Pollut. Res. - 2020, DOI 10.1007/s11356-020-10359-1. - Cited References:35. - This work was supported by Project "Agropreparations of the new generation: a strategy of construction and realization" [Agreement No 074-02-2018-328] in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - Article in press. - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
DEFICIT IRRIGATION
   CONTROLLED-RELEASE

   YIELD

   TOMATO

   FORMULATIONS

Кл.слова (ненормированные):
Metribuzin -- Tribenuron-methyl -- Embedding -- Degradable P(3HB) -- Weed growth -- inhibition -- Quality of tomato fruits and beet roots
Аннотация: The purpose of the present study was to investigate the efficacy of the experimental formulations of the metribuzin (MET) and tribenuron-methyl (TBM) herbicides embedded in the matrix of degradable poly-3-hydroxybutyrate blended with wood flour in field-grown tomato and beet crops infested by weeds. There is a necessity to develop environmentally friendly and effective means to protect plants because of the shortcomings of the free herbicide forms such as the environmentally unsafe spray application of solutions and suspensions of the widespread metribuzin and tribenuron-methyl herbicides, removal from soil during watering events and rains, and transport to natural aquatic environments, where the herbicides accumulate in the trophic chains of biota. Free TBM is also rapidly inactivated in soil and metabolized to nontoxic products in plants. The efficacy of experimental formulations of metribuzin and tribenuron-methyl embedded in the matrix of degradable poly-3-hydroxybutyrate blended with wood flour was tested in field-grown tomato and beet crops infested with weeds. Application of metribuzin resulted in the highest productivity of tomatoes (2.3 kg/m(2)) and table beet (3.4 kg/m(2)), improved biometric parameters of tomato fruits and beet roots, and caused reduction in nitrate nitrogen concentrations in them. The mode of herbicide delivery did not affect sugar contents, but application of both metribuzin and tribenuron-methyl induced a 1.7-fold and 1.4-fold, respectively, increase in vitamin C concentrations in tomato fruits and beet roots relative to the vegetables grown on the subplots treated with free herbicides and the intact plants. Embedded herbicides can be used as preemergence herbicides in the field.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia.
SB RAS, Inst Biophys, Fed Res Ctr, Krasnoyarsk Sci Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Krasnoyarsk State Agr Univ, 90 Mir Av, Krasnoyarsk 660049, Russia.

Доп.точки доступа:
Volova, Tatyana; Demidenko, Alexey; Kurachenko, Natalia; Baranovsky, Sergey; Petrovskaya, Olga; Shumilova, Anna; Project "Agropreparations of the new generation: a strategy of construction and realization" of the Government of the Russian Federation [074-02-2018-328]

Найти похожие
7.


   
    Biological effects of the free and embedded metribuzin and tribenuron-methyl herbicides on various cultivated weed species / T. Volova, S. Baranovsky, O. Petrovskaya [et al.] // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2020, DOI 10.1080/03601234.2020.1807835 . - Article in press. - ISSN 0360-1234
Кл.слова (ненормированные):
degradable P(3HB) -- Metribuzin -- photosynthetic activity -- tribenuron-methyl -- weed growth inhibition -- Electron transport properties -- Photosynthesis -- Plants (botany) -- Quantum chemistry -- Quantum yield -- Weed control -- Biological effects -- Cyclic electron transport -- Degradable polymers -- Herbicidal activity -- Main parameters -- Non-photochemical quenching -- Photosynthetic activity -- Poly-3-hydroxybutyrate -- Herbicides
Аннотация: The present study addresses the herbicidal activity and biological effects of the metribuzin (MET) and tribenuron-methyl (TBM) herbicides used to control various weed species (Amaranthus retroflexus, Sinapis arvensis, and Leucanthemum maximum). The effects of the free herbicides and the herbicides embedded in granules of degradable polymer poly-3-hydroxybutyrate [P(3HB)] blended with birch wood flour were compared. Metribuzin, regardless of the form, caused 100% mortality of the three weeds by day 21. The herbicidal activity of tribenuron-methyl was lower than that of metribuzin, but the embedded TBM was superior to the free herbicide in the length and strength of its action on the weeds. Both metribuzin forms dramatically decreased the main parameters of fluorescence: maximum quantum yield of photosystem-II [Y(II)max], maximum quantum yield of non-photochemical quenching [Y(NPQ)max], and maximum rate of non-cyclic electron transport [ETRmax] and concentrations of chlorophyll a and b. The effect of the embedded TBM on the photosynthetic activity of the weeds was lower in the first two weeks of the growth of herbicide-treated plants but lasted longer than the effect of the free TBM and increased over time. Embedding of metribuzin in the matrix of degradable blend did not decrease its herbicidal activity. © 2020 Taylor & Francis Group, LLC.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS,”, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T.; Baranovsky, S.; Petrovskaya, O.; Shumilova, A.; Sukovatyi, A.

Найти похожие
8.


   
    The effect of the pesticide delivery method on the microbial community of field soil / S. Prudnikova, N. Streltsova, T. Volova // Environ. Sci. Pollut. Res. - 2020, DOI 10.1007/s11356-020-11228-7 . - Article in press. - ISSN 0944-1344
Кл.слова (ненормированные):
Biodegradable polymer -- P(3HB)-degrading microorganisms -- Pesticides -- Poly-3-hydroxybutyrate -- Slow release formulations -- Soil microorganisms
Аннотация: The study deals with the effects of herbicides (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl) and fungicides (tebuconazole, epoxiconazole, azoxystrobin) applied to soil as free pesticides or as slow release formulations embedded in a biodegradable composite matrix on the structure of the soil microbial community. The matrix consisted of a natural biopolymer poly-3-hydroxybutyrate [P(3HB)] and a filler—one of the natural materials (peat, clay, and wood flour). The soil microbial community was characterized, including the major eco-trophic groups of bacteria, dominant taxa of bacteria and fungi, and primary P(3HB)-degrading microorganisms, such as Pseudomonas, Bacillus, Pseudarthrobacter, Streptomyces, Penicillium, and Talaromyces. The addition of free pesticides adversely affected the abundance of soil microorganisms; the decrease varied from 1.4 to 56.0 times for different types of pesticides. The slow release pesticide formulations, in contrast to the free pesticides, exerted a much weaker effect on soil microorganisms, no significant inhibition in the abundance of saprotrophic bacteria was observed, partly due to the positive effects of the composite matrix (polymer/natural material), which was a supplementary substrate for microorganisms. The slow release fungicide formulations, like the free fungicides, reduced the total abundance of fungi and inhibited the development of the phytopathogens Fusarium and Alternaria. Thus, slow release formulations of pesticides preserve the bioremediation potential of soil microorganisms, which are the main factor of removing xenobiotics from the biosphere. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodny pr, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Prudnikova, S.; Streltsova, N.; Volova, T.

Найти похожие
9.


   
    Efficacy of Slow-Release Formulations of Metribuzin and Tribenuron Methyl Herbicides for Controlling Weeds of Various Species in Wheat and Barley Stands / T. Volova, A. Shumilova, N. Zhila [et al.] // ACS Omega. - 2020, DOI 10.1021/acsomega.0c02492 . - Article in press. - ISSN 2470-1343
Аннотация: The herbicidal activity of long-acting formulations of metribuzin and tribenuron methyl herbicides embedded in granules prepared from a mixture of degradable poly(3-hydroxybutyrate) and birch wood flour was studied in laboratory-grown weeds of various species and in wheat Triticum aestivum and barley Hordeum vulgare stands infested by weeds. The constructed formulations effectively suppressed all species of weeds studied. The biological effectiveness of herbicide formulations toward intact plants in wheat and barley stands infested with weeds was close to 100%, which was significantly higher than the effect of their free forms. The more effective suppression of weeds by embedded herbicides was beneficial for the growth of crops whose aboveground biomass was 8-13 to 20% greater than that of the crops in the treatments with free herbicides. Embedded metribuzin and tribenuron methyl exhibit sustained and pronounced herbicidal activity and are effective for pre-emergence soil application for crops infested with weeds of various species. © Copyright © 2020 American Chemical Society.

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India

Доп.точки доступа:
Volova, T.; Shumilova, A.; Zhila, N.; Sukovatyi, A.; Shishatskaya, E.; Thomas, S.

Найти похожие
10.


   
    The effect of the pesticide delivery method on the microbial community of field soil / S. Prudnikova, N. Streltsova, T. Volova // Environ. Sci. Pollut. Res. - 2020, DOI 10.1007/s11356-020-11228-7. - Cited References:119. - This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation, project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328). . - Article in press. - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
CONTROLLED-RELEASE
   2,4-DICHLOROPHENOXYACETIC ACID

   DEGRADATION

Кл.слова (ненормированные):
Soil microorganisms -- Pesticides -- Slow release formulations -- Biodegradable polymer -- Poly-3-hydroxybutyrate -- P(3HB)-degrading -- microorganisms
Аннотация: The study deals with the effects of herbicides (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl) and fungicides (tebuconazole, epoxiconazole, azoxystrobin) applied to soil as free pesticides or as slow release formulations embedded in a biodegradable composite matrix on the structure of the soil microbial community. The matrix consisted of a natural biopolymer poly-3-hydroxybutyrate [P(3HB)] and a filler-one of the natural materials (peat, clay, and wood flour). The soil microbial community was characterized, including the major eco-trophic groups of bacteria, dominant taxa of bacteria and fungi, and primary P(3HB)-degrading microorganisms, such asPseudomonas,Bacillus,Pseudarthrobacter,Streptomyces,Penicillium, andTalaromyces. The addition of free pesticides adversely affected the abundance of soil microorganisms; the decrease varied from 1.4 to 56.0 times for different types of pesticides. The slow release pesticide formulations, in contrast to the free pesticides, exerted a much weaker effect on soil microorganisms, no significant inhibition in the abundance of saprotrophic bacteria was observed, partly due to the positive effects of the composite matrix (polymer/natural material), which was a supplementary substrate for microorganisms. The slow release fungicide formulations, like the free fungicides, reduced the total abundance of fungi and inhibited the development of the phytopathogensFusariumandAlternaria. Thus, slow release formulations of pesticides preserve the bioremediation potential of soil microorganisms, which are the main factor of removing xenobiotics from the biosphere.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Prudnikova, Svetlana; Streltsova, Nadezhda; Volova, Tatiana; Ministry of Science and Higher Education of the Russian Federation, project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]

Найти похожие
11.


   
    Efficacy of Slow-Release Formulations of Metribuzin and Tribenuron Methyl Herbicides for Controlling Weeds of Various Species in Wheat and Barley Stands / T. Volova, A. Shumilova, N. Zhila [et al.] // ACS Omega. - 2020. - Vol. 5, Is. 39. - P25135-25147, DOI 10.1021/acsomega.0c02492. - Cited References:34. - This study was financially supported by Project "Agro-preparations of the New Generation: A Strategy of Construction and Realization" (agreement no. 074-02-2018-328) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010 "on measures designed to attract leading scientists to the Russian institutions of higher learning" . - ISSN 2470-1343
РУБ Chemistry, Multidisciplinary
Рубрики:
SYNTHASE-INHIBITING HERBICIDES
Аннотация: The herbicidal activity of long-acting formulations of metribuzin and tribenuron methyl herbicides embedded in granules prepared from a mixture of degradable poly(3-hydroxybutyrate) and birch wood flour was studied in laboratory-grown weeds of various species and in wheat Triticum aestivum and barley Hordeum vulgare stands infested by weeds. The constructed formulations effectively suppressed all species of weeds studied. The biological effectiveness of herbicide formulations toward intact plants in wheat and barley stands infested with weeds was close to 100%, which was significantly higher than the effect of their free forms. The more effective suppression of weeds by embedded herbicides was beneficial for the growth of crops whose aboveground biomass was 8-13 to 20% greater than that of the crops in the treatments with free herbicides. Embedded metribuzin and tribenuron methyl exhibit sustained and pronounced herbicidal activity and are effective for pre-emergence soil application for crops infested with weeds of various species.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, Krasnoyarsk 660036, Russia.
Mahatma Gandhi Univ, Int & Inter Univ Ctr Nanosci & Nanotechnol, Kottayam 686560, Kerala, India.

Доп.точки доступа:
Volova, Tatiana; Shumilova, Anna; Zhila, Natalia; Sukovatyi, Aleksey; Shishatskaya, Ekaterina; Thomas, Sabu; Project "Agro-preparations of the New Generation: A Strategy of Construction and Realization" [074-02-2018-328]; Government of the Russian Federation [220]

Найти похожие
12.


   
    Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-?-Caprolactone / A. N. Boyandin, E. A. Kazantseva // Macromol. Sympos. - 2021. - Vol. 395, Is. 1. - Ст. 2000283, DOI 10.1002/masy.202000283 . - ISSN 1022-1360
Кл.слова (ненормированные):
extrusion -- herbicides -- long-term -- pesticides -- polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Soils -- Weed control -- Biodegradable polyesters -- Caprolactone -- Degradation rate -- Long-term release -- Low cost methods -- Pesticide formulations -- Soil applications -- Soil degradation -- Herbicides
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-?-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10–20% and 40% loadings reached 37–38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23–25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application. © 2021 Wiley-VCH GmbH

Scopus
Держатели документа:
Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
13.


   
    Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-epsilon-Caprolactone / A. N. Boyandin, E. A. Kazantseva // Macromol. Symp. - 2021. - Vol. 395: 4th International Conference on Progress on Polymers and Composites (NOV 26-28, 2020, ELECTR NETWORK), Is. 1. - Ст. 2000283, DOI 10.1002/masy.202000283. - Cited References:6. - This study was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - ISSN 1022-1360. - ISSN 1521-3900
РУБ Polymer Science

Кл.слова (ненормированные):
extrusion -- herbicides -- long‐ -- term -- pesticides -- polycaprolactone
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-epsilon-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10-20% and 40% loadings reached 37-38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23-25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application.

WOS
Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr, Inst Biophys, Siberian Branch,Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Boyandin, Anatoly Nikolayevich; Kazantseva, Eugenia Andreevna; Government of the Russian Federation [220, 074-02-2018-328]

Найти похожие
14.


   
    Constructing slow-release formulations of herbicide metribuzin using its co-extrusion with biodegradable polyester poly-ε-caprolactone / A. N. Boyandin, E. A. Kazantseva // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2021, DOI 10.1080/03601234.2021.1911206 . - Article in press. - ISSN 0360-1234
Кл.слова (ненормированные):
extrusion -- herbicide -- long-term -- pesticide -- Polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Plastic coatings -- Polyesters -- Soils -- Weed control -- Biodegradable polyesters -- Degradation rate -- First-order models -- Long-term release -- Low cost methods -- Partial degradation -- Release kinetics -- Soil applications -- Herbicides
Аннотация: Different technologies to prepare long term pesticide forms include polymer coating, preparing composites and encapsulating pesticides in nanoparticles. A simple and low-cost method was proposed to obtain slow-release formulations by co-extrusion of a pesticide with a biodegradable polymer at a temperature above the melting points of both components. A herbicide metribuzin and low-melting polyester poly-?-caprolactone were chosen for this work. Formulations containing 10%, 20%, and 40% herbicide were prepared. During 7 days of their exposition in water, it was released from 81% to 96% of initially loaded metribuzin; the highest release was detected for 40%-loaded forms. Biodegradation of the constructs and pesticide release were further studied in the model soil. Degradation rates of the specimens increased with an increase in pesticide content, from 9% to 20% over 14 weeks for the 10%/20%-loaded and the 40%-loaded specimens, respectively. The release of metribuzin reached, respectively, 37–38% and 55%. The herbicide content in soil was lower due to its partial degradation in soil; it reached 23–25% and 33%, respectively, from initially loaded into the polymer matrix. Release kinetics of metribuzin in water as in soil best fitted the First-order model. The used approach is promising for obtaining long-term release formulations for soil applications. © 2021 Taylor & Francis Group, LLC.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
15.


   
    Pesticides: formulants, distribution pathways and effects on human health-a review / V. P. Kalyabina, E. N. Esimbekova, K. V. Kopylova, V. A. Kratasyuk // Toxicol. Rep. - 2021. - Vol. 8. - P1179-1192, DOI 10.1016/j.toxrep.2021.06.004. - Cited References:211. - The research was funding by the Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science and Russian Foundation for Basic Research (project No 20-44-242001). . - ISSN 2214-7500
РУБ Toxicology
Рубрики:
GLYPHOSATE-BASED HERBICIDES
   ENDOCRINE-DISRUPTING CHEMICALS

   IN-VITRO

Кл.слова (ненормированные):
Pesticides -- Agricultural crops -- Health consequences -- Formulants -- Risk -- assessment
Аннотация: Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia.
RAS, SB, Inst Biophys, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kalyabina, Valeriya P.; Esimbekova, Elena N.; Kopylova, Kseniya, V; Kratasyuk, Valentina A.; Esimbekova, Elena; Kalyabina, Valeriya; Kopylova, Kseniya; Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [20-44-242001]

Найти похожие
16.


   
    A study of the properties and efficacy of microparticles based on P(3HB) and P(3HB/3HV) loaded with herbicides / R. Vijayamma, H. J. Maria, S. Thomas [et al.] // J. Appl. Polym. Sci. - 2021, DOI 10.1002/app.51756 . - Article in press. - ISSN 0021-8995
Кл.слова (ненормированные):
biodegradable -- drug delivery systems -- microparticles -- Agricultural robots -- Controlled drug delivery -- Solubility -- Targeted drug delivery -- Weed control -- 3-Hydroxybutyrate -- Average diameter -- Biodegradable -- Drug-delivery systems -- Human impact -- Metribuzin -- Micro particles -- Poly-3-hydroxybutyrate -- Polyhydroxyalkanoates -- Property -- Herbicides
Аннотация: The wide use of pesticides in agriculture has caused uncontrolled distribution of these chemicals in the environment, calling for the development and investigation of new environmentally friendly formulations, which would reduce human impact on nature. In the present study, the metribuzin (MET), tribenuron-methyl (TBM), and fenoxaprop-P-ethyl (FPE) herbicides were encapsulated in microparticles of degradable microbial polymers – polyhydroxyalkanoates (PHAs) – of two types – poly-3-hydroxybutyrate [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB/3HV)]. The use of P(3HB) resulted in higher yields of microparticles (63% to 79%) and larger sizes of the particles, whose average diameter was 0.60 ± 0.06–0.75 ± 0.11 ?m, while the average diameter of copolymer particles varied between 0.43 ± 0.12 and 0.55 ± 0.05 ?m. Encapsulation efficiency was rather determined by the type of herbicide and its solubility, varying from 24.7% to 48.2%. In vitro herbicide release from microparticles to water was affected by herbicide solubility and PHA chemical composition. The readily soluble MET showed the highest release rate, and over 30 days, 64% and 78% of the encapsulated amounts were released from P(3HB) and P(3HB/3HV) microparticles, respectively. High herbicidal activity of microparticles loaded with metribuzin and tribenuron-methyl was demonstrated in the laboratory stands of the Elsholtzia ciliata weed plant. © 2021 Wiley Periodicals LLC.

Scopus
Держатели документа:
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, India
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Scientific Laboratory, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Vijayamma, R.; Maria, H. J.; Thomas, S.; Shishatskaya, E. I.; Kiselev, E. G.; Nemtsev, I. V.; Sukhanova, A. A.; Volova, T. G.

Найти похожие
17.


   
    A study of the properties and efficacy of microparticles based on P(3HB) and P(3HB/3HV) loaded with herbicides / R. Vijayamma, H. J. Maria, S. Thomas [et al.] // J. Appl. Polym. Sci. - 2021. - Ст. e51756, DOI 10.1002/app.51756. - Cited References:57. - This work was supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". Instruments of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center Krasnoyarsk Science Center SB RAS were used. . - Article in press. - ISSN 0021-8995. - ISSN 1097-4628
РУБ Polymer Science
Рубрики:
FENOXAPROP-P-ETHYL
   CONTROLLED-RELEASE

   BIODEGRADABLE

Кл.слова (ненормированные):
biodegradable -- drug delivery systems -- microparticles
Аннотация: The wide use of pesticides in agriculture has caused uncontrolled distribution of these chemicals in the environment, calling for the development and investigation of new environmentally friendly formulations, which would reduce human impact on nature. In the present study, the metribuzin (MET), tribenuron-methyl (TBM), and fenoxaprop-P-ethyl (FPE) herbicides were encapsulated in microparticles of degradable microbial polymers - polyhydroxyalkanoates (PHAs) - of two types - poly-3-hydroxybutyrate [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB/3HV)]. The use of P(3HB) resulted in higher yields of microparticles (63% to 79%) and larger sizes of the particles, whose average diameter was 0.60 +/- 0.06-0.75 +/- 0.11 mu m, while the average diameter of copolymer particles varied between 0.43 +/- 0.12 and 0.55 +/- 0.05 mu m. Encapsulation efficiency was rather determined by the type of herbicide and its solubility, varying from 24.7% to 48.2%. In vitro herbicide release from microparticles to water was affected by herbicide solubility and PHA chemical composition. The readily soluble MET showed the highest release rate, and over 30 days, 64% and 78% of the encapsulated amounts were released from P(3HB) and P(3HB/3HV) microparticles, respectively. High herbicidal activity of microparticles loaded with metribuzin and tribenuron-methyl was demonstrated in the laboratory stands of the Elsholtzia ciliata weed plant.

WOS
Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Mahatma Gandhi Univ, Int & Inter Univ Ctr Nanosci & Nanotechnol, Kottayam, Kerala, India.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys SB, Krasnoyarsk, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Res Equipment Fed Res Ctr, Krasnoyarsk Reg Ctr, Krasnoyarsk, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, LV Kirensky Inst Phys, Krasnoyarsk, Russia.
Reshetnev Siberian State Univ Sci & Technol, Sci Lab, Krasnoyarsk, Russia.

Доп.точки доступа:
Vijayamma, Raji; Maria, Hanna J.; Thomas, Sabu; Shishatskaya, Ekaterina I.; Kiselev, Evgeniy G.; Nemtsev, Ivan V.; Sukhanova, Anna A.; Volova, Tatiana G.; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)