Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=instrument<.>)
Общее количество найденных документов : 7
Показаны документы с 1 по 7
1.


   
    The levels of organization of the photosynthetic apparatus and the control of production processes in phytocenoses under artificial-light culture / A. A. Tikhomirov, G. M. Lisovskii // Russian Journal of Plant Physiology. - 2001. - Vol. 48, Is. 3. - P395-399, DOI 10.1023/A:1016682904411 . - ISSN 1021-4437
Кл.слова (ненормированные):
Artificial-light culture -- Photosynthetic apparatus -- Phytocenosis -- Productivity -- Embryophyta
Аннотация: The processes limiting the production in higher plant phytocenoses under an artificial-light culture are analyzed in relation to the multilevel organization of the photosynthetic apparatus (PA). The authors consider the feasibility of overcoming these limitations by optimizing the physical parameters of irradiation (the structure of the light spectrum, the rate, and the ratio of radiation fluxes in photosynthetically active radiation (PAR) and infrared (IR) regions) at the molecular, leaf, plant, and cenotic levels of PA organization. To illustrate this approach, the authors used a complex experiment in an artificial ecosystem to evaluate the efficiency of the light control of production processes in multispecies phytocenoses by alleviating or removing the factors that limit plant production at the various levels of PA organization. An artificial-light culture is seen as an instrument for solving several problems of theoretical and applied plant physiology and related disciplines in the future.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Lisovskii, G.M.

Найти похожие
2.


   
    Rapid assay of fatty acid composition using a portable high-performance liquid chromatograph for monitoring aquatic ecosystems / N. N. Sushchik [et al.] // Journal of Chromatography A. - 1995. - Vol. 695, Is. 2. - P223-228, DOI 10.1016/0021-9673(94)01090-2 . - ISSN 0021-9673
Кл.слова (ненормированные):
fatty acid -- alga -- article -- culture medium -- ecology -- high performance liquid chromatography -- instrument -- methodology -- priority journal -- ultraviolet spectrophotometry -- water analysis
Аннотация: The chromatographic conditions presented allowed the separation of the nitrophenacyl derivatives of standards of eleven free fatty acids (FFA) using a portable high-performance chromatograph, suitable for use aboard a research vessel. A statistically significant linear correlation between UV absorbance and amount of the analytes injected was obtained. The method was tested on FFA from algae cultural media. The method can be used for the ecological monitoring of natural waters.

Scopus
Держатели документа:
Institute Biophysics, Akademgorodok, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Sushchik, N.N.; Gladyshev, M.I.; Kalachova, G.S.; Guseynova, V.E.

Найти похожие
3.


   
    Ca2+-Regulated Photoproteins: Effective Immunoassay Reporters [Text] / L. A. Frank // Sensors. - 2010. - Vol. 10, Is. 12. - P11287-11300, DOI 10.3390/s101211287. - Cited References: 70. - This work was supported by the grant No. 76 of the Russian Academy of Sciences, Siberian Branch. . - ISSN 1424-8220
РУБ Chemistry, Analytical + Electrochemistry + Instruments & Instrumentation
Рубрики:
POLYMERASE-CHAIN-REACTION
   CYTOKINE MESSENGER-RNA

   BIOLUMINESCENT IMMUNOASSAY

   MYCOBACTERIUM-TUBERCULOSIS

   BIOTINYLATED AEQUORIN

   RECOMBINANT AEQUORIN

   ANGSTROM RESOLUTION

   FUSION PROTEIN

   PCR ASSAY

   OBELIN

Кл.слова (ненормированные):
bioluminescence -- Ca2+-regulated photoprotein -- immunoassay -- PCR-ELISA -- multiplex assay -- re-engineered photoproteins
Аннотация: Ca2+-regulated photoproteins of luminous marine coelenterates are of interest and a challenge for researchers as a unique bioluminescent system and as a promising analytical instrument for both in vivo and in vitro applications. The proteins are comprehensively studied as to biochemical properties, tertiary structures, bioluminescence mechanism, etc. This knowledge, along with available recombinant proteins serves the basis for development of unique bioluminescent detection systems that are "self-contained", triggerable, fast, highly sensitive, and non-hazardous. In the paper, we focus on the use of photoproteins as reporters in binding assays based on immunological recognition element-bioluminescent immunoassay and hybridization immunoassay, their advantages and prospects.

Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Frank, L.A.

Найти похожие
4.


   
    The levels of organization of the photosynthetic apparatus and the control of production processes in phytocenoses under artificial-light culture [Text] / A. A. Tikhomirov, G. M. Lisovskii // Russ. J. Plant Physiol. - 2001. - Vol. 48, Is. 3. - P. 395-399, DOI 10.1023/A:1016682904411. - Cited References: 21 . - ISSN 1021-4437
РУБ Plant Sciences

Кл.слова (ненормированные):
photosynthetic apparatus -- phytocenosis -- productivity -- artificial-light culture
Аннотация: The processes limiting the production in higher plant phytocenoses under an artificial-light culture are analyzed in relation to the multilevel organization of the photosynthetic apparatus (PA). The authors consider the feasibility of overcoming these limitations by optimizing the physical parameters of irradiation (the structure of the light spectrum, the rate, and the ratio of radiation fluxes in photosynthetically active radiation (PAR) and infrared (IR) regions) at the molecular, leaf, plant, and cenotic levels of PA organization. To illustrate this approach, the authors used a complex experiment in an artificial ecosystem to evaluate the efficiency of the light control of production processes in multispecies phytocenoses by alleviating or removing the factors that limit plant production at the various levels of PA organization. An artificial-light culture is seen as an instrument for solving several problems of theoretical and applied plant physiology and related disciplines in the future.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Lisovskii, G.M.

Найти похожие
5.


   
    Evolution and present status of experimental manned ecological systems for long-term human life support - Bios, developed by the institute of biophysics of Russian academy of sciences in Krasnoyarsk (Siberia) / J. I. Gitelson, A. G. Degermendzhy // Proceedings of the International Astronautical Congress, IAC : International Astronautical Federation, IAF, 2015. - Vol. 1: 66th International Astronautical Congress 2015: Space - The Gateway for Mankind's Future, IAC 2015 (12 October 2015 through 16 October 2015, ) Conference code: 122921. - P243-250
Кл.слова (ненормированные):
Arid regions -- Biochemistry -- Biospherics -- Plant shutdowns -- Proteins -- Reconfigurable hardware -- Closed ecological systems -- Corrective actions -- Essential proteins -- Extreme conditions -- Human intelligence -- Long-term experiments -- Physiological effects -- Russian Academy of Sciences -- Ecology
Аннотация: Closed ecological systems are of two-fold interest - as models of the Earth's biosphere explorable in experiments and as a facility for long-term autonomous human life support beyond the Earth. Theoretical analysis and experimental implementation of highly closed manned systems has been the subject of studies at the Institute of Biophysics (Russian Academy of Sciences, Siberian Branch) for many years. BIOS systems of increasing complexity with complete regeneration of atmosphere, water and partially food have been realized. In BIOS-3 experiments the system inhabited by 2-3 researchers for 4-6 months maintained its metabolic equilibrium without any negative physiological effect on the crew, which proves its sustainable condition. Specific for BIOS-3 is internal control by the people inhabiting the system. So, BIOS-3 is the first experimental implementation of V.l. Vernadsky's idea about the noosphere - habitable Biosphere controlled by human intelligence. Contrary to predictions of many environmentalists the closedness of the ecosystem is a factor that does not reduce, but increases its sustainability and makes its use for reliable life support outside the Earth realistic. The system is sustainable owing to permanent feedback between the monitoring of few key parameters of the system and automatic corrective actions on them. Main object of control is photo-biosynthesis regenerating parameters of human habitat disturbed by his vital activities. This principle has been realized in BIOS system and proved its reliability in long-term experiments. A new challenge is specified-optimal increase of trophic closedness of the system by reproduction within it essential proteins (peptides and amino acids), lipids, vitamins and other essential compounds. Alternative lines of attack on this problem by state-of-the-art biotechnological methods, GMO including, are under analysis. Reduced BIOS version - without complete closure - can be a breakthrough instrument to improve the quality of life of people living under extreme conditions on the Earth - in polar latitudes (Arctic, Antarctic), in deserts, in high mountains.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Gitelson, J. I.; Degermendzhy, A. G.

Найти похожие
6.


   
    Concentrations of metals in water of the Yenisei River between Krasnoyarsk and the Angara River outfall in 2010-2015 / D. V. Dementyev [и др.] // Bull. Tomsk Polytech. Univ. Geo Assets Eng. - 2017. - Vol. 328, Is. 3. - С. 54-63 . - ISSN 2500-1019
Кл.слова (ненормированные):
Heavy metals -- Microelements -- Screening -- The Yenisei River -- Water -- Water quality
Аннотация: The relevance of the study is determined by the necessity to obtain the data on concentrations of chemical elements in water of the Yenisei River, which is continuously affected by human activities. The aim of the study is to determine concentrations of such chemical elements as Na, K, Ca, Mg, Zn, Cu, Ba, Al, Mn, U, Mo, Cr, Ni, As, Co, Sr, Fe, Pb, Cd, and Bi in water of the Yenisei River between the city of Krasnoyarsk and the outfall of the Angara River. The methods used in the study. Total contents of the elements were determined by inductively coupled plasma mass spectrometry, using an Agilent 7500a instrument. The results. The study showed the changes in average concentrations of 20 chemical elements in water of the Yenisei River between the city of Krasnoyarsk and the outfall of the Angara River (the village Strelka), for 2010-2015. Comparison of the data obtained with the levels of maximum permissible concentrations showed that the examined part of the Yenisei River contained the increased concentrations of Fe, Cu, Mn, Al, and Zn. For the study period, the magnitudes of average concentrations of Fe reached 1...2 maximum permissible concentrations (MPC) and Cu concentrations reached 1...5 MPC The average concentrations of Mn amounted to 1...3 MPC in the parts of the river over 90 km downstream of Krasnoyarsk (at the villages Atamanovo and Strelka). Cu, Fe, and Zn concentrations tend to increase somewhat in the parts of the river over 90 km downstream of Krasnoyarsk, which may be caused by the influence of the industrial complex of the town Zheleznogorsk and the outfall of the Kan River, with the large industrial facilities located along its banks, in Zelenogorsk, in particular.

Scopus,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences FRC KSC SB RAS, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation
ICCT SB RAS FRC KSC SB RAS, 50/24 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Dementyev, D. V.; Bolsunovsky, A. Y.; Borisov, R. V.; Alexandrova, Y. V.

Найти похожие
7.


   
    INTRACANOPY LIGHTING IN PHYTOCENOSES AND PHOTOBIOLOGICAL EFFICIENCY OF RADIATION IN PHOTOCULTURE CONDITIONS / A. A. Tikhomirov // Light Eng. - 2021. - Vol. 29, Is. 2. - P4-15, DOI 10.33383/2020-076. - Cited References:42. - The work is performed as part of state assignments VI.56.1.4 and 0287-2019-0009 "Research of the Effect of Plant Texture on Photosynthesis Efficiency" with the Biophysics Institute of the Federal Research Centre "Krasnoyarsk Research Facility of the Siberian Branch of the Russian Academy of Sciences". . - ISSN 0236-2945
РУБ Engineering, Electrical & Electronic + Optics
Рубрики:
DIFFERENT SPECTRAL COMPOSITION
   EMITTING-DIODES

   GREEN LIGHT

   LETTUCE

Кл.слова (ненормированные):
plant light culture -- intracanopy lighting -- light sources -- canopy -- architectonics -- optical canopy properties -- canopy productivity
Аннотация: The review is devoted to the study of the internal radiation regime in the canopies cultivated under controlled environmental conditions. The expediency of using canopies as an object of research for evaluating the photobiological efficiency of radiation in light culture conditions is justified. The appropriateness of light measurements in multi-tiered canopies is shown, taking into account the role of leaves of different tiers in the formation of an economically useful crop. The main requirements for light devices for their use in measuring artificial radiation in light culture conditions are considered, and a brief analysis of the existing instrument base for performing these studies is given. A number of examples show the complexity and ambiguity of the internal structure of the light field that is forming within canopies in light culture conditions. Conceptual approaches to the choice of spectral and energy characteristics of artificial irradiation for plant light culture are proposed and justified. The necessity of taking into account the light conditions of leaves of different tiers when choosing the spectral and energy characteristics of light sources for the cultivation of multi-tiered canopies is justified. Techniques, methods, and light sources used for additional intracanopy lighting are analysed. The efficiency of using side illumination of plant canopies and conditions for its implementation are considered. The advantages of the volume distribution of canopies on the most common multi-tiered lighting installations are discussed. Based on the presented mate- rial, we consider ways to improve methodological approaches for evaluating the photobiological effectiveness of artificial radiation in light culture conditions for canopies of cultivated plants, taking into account the features of their architectonics and internal radiation regime.

WOS
Держатели документа:
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia.
Krasnoyarsk Sci Ctr, Inst Biophys, SB RAS,Fed Res Ctr, Krasnoyarsk, Russia.

Доп.точки доступа:
Tikhomirov, Alexander A.; Biophysics Institute of the Federal Research Centre "Krasnoyarsk Research Facility of the Siberian Branch of the Russian Academy of Sciences" [VI.56.1.4, 0287-2019-0009]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)