Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=magnesium<.>)
Общее количество найденных документов : 14
Показаны документы с 1 по 14
1.


   
    Content of metals in compartments of ecosystem of a Siberian pond / M. I. Gladyshev [et al.] // Archives of Environmental Contamination and Toxicology. - 2001. - Vol. 41, Is. 2. - P157-162, DOI 10.1007/s002440010233 . - ISSN 0090-4341
Кл.слова (ненормированные):
aluminum -- cadmium -- calcium -- chromium -- copper -- heavy metal -- iron -- lead -- magnesium -- manganese -- nickel -- potassium -- sodium -- zinc -- aquatic ecosystem -- biological uptake -- heavy metal -- pond -- article -- bioaccumulation -- ecosystem -- fish -- nonhuman -- pond -- priority journal -- Russian Federation -- sediment -- soil pollution -- water contamination -- Animals -- Ecosystem -- Environmental Monitoring -- Fishes -- Geologic Sediments -- Invertebrates -- Metals, Heavy -- Plants -- Water Pollutants -- Russian Federation
Аннотация: During three field seasons (June-September) of 1997-99 contents of Na, K, Ca, Mg, Fe, Mn, Zn, Cu, Al, Cr, Ni, Cd, and Pb were determined in compartments of ecosystem (surrounding soils, bottom sediments, water, zoobenthos, macrophytes, and fish) of a fish and recreation pond situated at the edge of Krasnoyarsk City (Siberia, Russia). Contents of most parts of metals in soils, water, and macrophytes significantly correlated with each other. As concluded, their contents were determined by natural, general, geochemical peculiarities of the region. Heavy metals, contents of which were higher than federal upper limits of concentration, were revealed. In muscles of fish with different feeding spectra - crucian and perch - concentrations of some metals differed significantly; correlation graphs for metals also had different structures. Comparison of our data with those on diverse aquatic ecosystems of Siberia, Europe, North America, and China published in the last decade was carried out. It was concluded that a distribution of heavy metals in the compartments of an aquatic ecosystem presently have to be determined for each particular water body until general regularities are discovered.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Krasnoyarsk State Agricultural University, Mira av., 88, Krasnoyarsk, 660049, Russian Federation
Krasnoyarsk State University, Svobodny av., 79, Krasnoyarsk, 660042, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Gribovskaya, I.V.; Moskvicheva, A.V.; Muchkina, E.Y.; Chuprov, S.M.; Ivanova, E.A.

Найти похожие
2.


   
    Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link / N. A. Tikhomirova [et al.] // Advances in Space Research. - 2005. - Vol. 35, Is. 9 SPEC. ISS. - P1589-1593, DOI 10.1016/j.asr.2005.01.055 . - ISSN 0273-1177
Кл.слова (ненормированные):
BLSS -- Intensity of PAR -- Mineral nutrition -- Productivity -- Salicornia europaea -- Biomass -- Concentration (process) -- Nitrogen -- Nutrition -- Photosynthesis -- Productivity -- Sodium chloride -- Bioregenerative life support systems (BLSS) -- Intensity of PAR -- Mineral nutrition -- Salicornia europaea -- Plants (botany) -- calcium -- magnesium -- nitrogen -- phosphorus -- potassium -- sodium chloride -- sulfur -- urea -- biomass -- conference paper -- culture medium -- dose response -- drug effect -- goosefoot -- growth, development and aging -- human -- light -- metabolism -- microclimate -- radiation exposure -- urine -- Biomass -- Calcium -- Chenopodiaceae -- Culture Media -- Dose-Response Relationship, Drug -- Ecological Systems, Closed -- Humans -- Life Support Systems -- Light -- Magnesium -- Nitrogen -- Phosphorus -- Potassium -- Sodium Chloride -- Sulfur -- Urea -- Urine
Аннотация: Use of halophytes (salt-tolerant vegetation), in a particular vegetable Salicornia europaea plants which are capable of utilizing NaCl in rather high concentrations, is one of possible means of NaCl incorporation into mass exchange of bioregenerative life support systems. In preliminary experiments it was shown that S. europaea plants, basically, could grow on urine pretreated with physicochemical processing and urease-enzyme decomposing of urea with the subsequent ammonia distillation. But at the same time inhibition of the growth process of the plants was observed. The purpose of the given work was to find out the influence of excessive quantities of some mineral elements contained in products of physicochemical processing of urine on the production process and NaCl accumulation by S. europaea plants. As the content of mineral salts in the human liquid wastes (urine) changed within certain limits, two variants of experimental solutions were examined. In the first variant, the concentration of mineral salts was equivalent to the minimum salt content in the urine and was: K - 1.5 g/l, P - 0.5 g/l, S - 0.5 g/l, Mg - 0.07 g/l, Ca - 0.2 g/l. In the second experimental variant, the content of mineral salts corresponded to the maximum salt content in urine and was the following: K - 3.0 g/l, P - 0.7 g/l, S - 1.2 g/l, Mg - 0.2 g/l, Ca - 0.97 g/l. As the control, the Tokarev nutrient solution containing nitrogen in the form of a urea, and the Knop nutrient solution with nitrogen in the nitrate form were used. N quantity in all four variants made up 177 mg/l. Air temperature was 24 В°C, illumination was continuous. Light intensity was 690 ?mol/m2s of photosynthetically active radiation. NaCl concentration in solutions was 1%. Our researches showed that the dry aboveground biomass of an average plant of the first variant practically did not differ from the control and totaled 11 g. In the second variant, S. europaea productivity decreased and the dry aboveground biomass of an average plant totaled 8 g. The increase of K quantity in the experimental solutions resulted in an elevated content of the element in the plants. The increase of K uptake in the second experimental variant was accompanied by a 30-50% decrease of Na content in comparison with the other variants. Comparative Na content in the other variants was practically identical. N, Mg and P content in the control and experimental variants was also practically identical. The increase of S quantity in the second experimental variant also increased S uptake by the plants. But Ca quantity, accumulated in aboveground plants biomass in the experimental variants was lower than in the control. NaCl uptake by plants, depending on the concentration of mineral salts in the experimental solutions, ranged from 8 g (maximum salt content) up to 15 g (minimum salt content) on a plant growth area that totaled 0.032 m2. Thus, high concentrations of mineral salts simulating the content of mineral salts contained in urine did not result in a significant decrease of S. europaea productivity. The present work also considers the influence of higher light intensity concentrations on productivity and NaCl accumulation by S. europaea plants grown on experimental solutions with high salt content. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirova, N.A.; Ushakova, S.A.; Kovaleva, N.P.; Gribovskaya, I.V.; Tikhomirov, A.A.

Найти похожие
3.


   
    Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS / S. A. Ushakova [et al.] // Advances in Space Research. - 2005. - Vol. 36, Is. 7. - P1349-1353, DOI 10.1016/j.asr.2004.09.017 . - ISSN 0273-1177
Кл.слова (ненормированные):
Life support system -- NaCl -- Salicornia europaea -- Space biology -- Calcium -- Concentration (process) -- Minerals -- Photosynthesis -- Plants (botany) -- Salinity measurement -- Sodium chloride -- Vegetation -- Life support systems -- Liquid wastes -- NaCl -- Salicornea europea -- Space biology -- Space research
Аннотация: The accumulation of solid and liquid wastes in manmade ecosystems presents a problem that has not been efficiently solved yet. Urine, containing NaCl, are part of these products. This is an obstacle to the creation of biological systems with a largely closed material cycling, because the amount of solid and liquid wastes in them must be reduced to a minimum. A possible solution to the problem is to select plant species capable of utilizing sufficiently high concentrations of NaCl, edible for humans, and featuring high productivity. Until recently, the life support systems have included the higher plants that were either sensitive to salinization (wheat, many of the legumes, carrot, potato, maize) or relatively salt-resistant (barley, sugar beet, spinach). Salicomia europaea, whose above-ground part is fully edible for humans, is one of the most promising candidates to be included in life support systems. It is reported in the literature that this plant is capable of accumulating up to 50% NaCl (dry basis). Besides, excessive accumulation of sodium ions should bring forth a decrease in the uptake of potassium ions and other biogenic elements. The aim of this work is to study the feasibility of using S. europaea plants in growth chambers to involve NaCl into material cycling. Plants were grown in vegetation chambers at the irradiance of 100 or 150 W/m2 PAR (photosynthetically active radiation) and the air temperature 24 В°C, by two methods. The first method was to grow the plants on substrate - peat. The peat was supplemented with either 3% NaCl (Variant 1) or 6% NaCl (Variant 2) of the oven-dry mass of the peat. The second method was to grow the plants in water culture, using the solution with a full complement of nutrients, which contained 0.0005% of NaCl, 1% or 2%. The study showed that the addition of NaCl to the substrate or to the solution resulted in the formation of more succulent plants, which considerably increased their biomass. The amount of NaCl uptake was the highest in the plants grown in water culture, 2.6 g per plant. As the sodium uptake increased, the consumption of potassium and the sum of the reduced N forms decreased twofold. The uptake of calcium and magnesium by plants decreased as the NaCl concentration increased; the smallest amounts were taken up by S. europaea grown in water culture. Salinity had practically no effect on the uptake of phosphorus and sulfur. Thus, S. europaea is a promising candidate to be included in life support systems; of special interest is further research on growing these plants in water culture. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Science, Siberian Branch, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Ushakova, S.A.; Kovaleva, N.P.; Gribovskaya, I.V.; Dolgushev, V.A.; Tikhomirova, N.A.

Найти похожие
4.


   
    Survival and alteration of the plasmid-containing microorganism Escherichia coli Z905/pPHL7 introduced into manmade closed aquatic microcosms / A. N. Boyandin [et al.] // Advances in Space Research. - 2003. - Vol. 31, Is. 7. - P1763-1768, DOI 10.1016/S0273-1177(03)00118-2 . - ISSN 0273-1177
Кл.слова (ненормированные):
Cells -- Escherichia coli -- Salts -- Recombinant plamid -- Space research -- ampicillin -- chloride -- inorganic salt -- magnesium -- mineral -- potassium -- sodium -- sulfate -- genetically modified organism -- article -- bacterial count -- chemoluminescence -- culture medium -- drug effect -- Escherichia coli -- genetics -- growth, development and aging -- microbiology -- microclimate -- penicillin resistance -- plasmid -- Russian Federation -- transgenic organism -- Ampicillin -- Ampicillin Resistance -- Chemiluminescent Measurements -- Chlorides -- Colony Count, Microbial -- Culture Media -- Ecological Systems, Closed -- Escherichia coli -- Magnesium -- Minerals -- Organisms, Genetically Modified -- Plasmids -- Potassium -- Russia -- Salts -- Sodium -- Sulfates -- Water Microbiology
Аннотация: It has been demonstrated that the transgenic microorganism Escherichia coli Z905/pPHL7 (Ap'Lux+) can exist for a long time at an elevated concentration of mineral salts. The microorganism was introduced into microcosms with sterile brackish water (salinity variable from 21 to 22 g 1-1) taken from Lake Shira (Khakasia, Russia). The survivof the microorganism was estimated both by measuring the growth of the colonies on solid nutrient media and by the bioluminescence exhibited by the transgenic strain in samples from the microcosms and in the enrichment culture with the added selective factor - ampicillin (50 ?g/ml). In the enrichment culture, the bioluminescent signal was registered through the 160-day experiment. It has been shown that in the closed microcosms with brackish water the E. coli strain becomes heterogeneous in its ampicillin resistance. The populations of the transgenic strain were mainly represented by isolates able to persist in the medium containing 50 ?g/ml, but there were also the cells (about 10%) with the threshold of ampicillin resistance not more than 0.05 ?g/ml. Thus, it was shown that in the microcosms with brackish water and in the absence of the selective factor the transgenic strain survives and retains the recombinant plasmid. В© 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Boyandin, A.N.; Lobova, T.I.; Popova, L.Yu.; Pechurkin, N.S.

Найти похожие
5.


   
    Sensitivity of Ca2+-regulated photoprotein bioluminescence to magnesium ions is determined by EF-hand motif III / L. P. Burakova, N. P. Malikova, E. S. Vysotski // Luminescence. - 2012. - Vol. 27, Is. 2. - P102-103. - Cited References: 3 . - ISSN 1522-7235
РУБ Biochemistry & Molecular Biology
Рубрики:
AEQUORIN

Держатели документа:
[Burakova, L. P.
Malikova, N. P.
Vysotski, E. S.] Inst Biophys SB RAS, Photobiol Lab, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Burakova, L.P.; Malikova, N.P.; Vysotski, E.S.

Найти похожие
6.


   
    Effect of different salts and detergents on luciferin-luciferase luminescence of the enchytraeid Fridericia heliota / N. S. Rodionova, V. N. Petushkov // Journal of Photochemistry and Photobiology B: Biology. - 2006. - Vol. 83, Is. 2. - P123-128, DOI 10.1016/j.jphotobiol.2005.12.014 . - ISSN 1011-1344
Кл.слова (ненормированные):
ATP -- Bioluminescence -- Earthworms -- Ions -- Luciferin-luciferase systems -- Triton X-100 -- adenosine triphosphate -- anion -- bromine -- calcium ion -- carbonic acid -- cation -- chloride -- chromium derivative -- detergent -- dodecyl sulfate sodium -- inorganic salt -- iodine -- iron derivative -- luciferase -- luciferin -- magnesium ion -- manganese -- nitrate -- phosphate -- sulfate -- sulfite -- triton x 100 -- annelid worm -- article -- bioluminescence -- concentration (parameters) -- controlled study -- enzyme activation -- enzyme activity -- enzyme inhibition -- enzyme mechanism -- in vitro study -- nonhuman -- priority journal -- qualitative analysis -- quantitative analysis -- Adenosine Triphosphate -- Animals -- Cations, Divalent -- Cations, Monovalent -- Detergents -- Firefly Luciferin -- Kinetics -- Luciferases -- Luminescence -- Metals -- Oligochaeta -- Photobiology -- Salts -- Annelida -- Clitellata -- earthworms (sp.) -- Enchytraeidae -- Fridericia heliota -- Oligochaeta (Metazoa) -- Pheretima sieboldi
Аннотация: The study addresses the effect produced by different inorganic salts and detergents (SDS, Triton X-100, the Tween series) on the ATP-dependent bioluminescent reaction catalyzed by the luciferase of the new earthworm species Fridericia heliota (Annelida: Clitellata: Oligochaeta: Enchytraeidae). It has been shown that the effect of divalent metal salts on luminescence is determined by the action of cations. Three of them - Mg2+, Mn2+ and Ca2+ - can stimulate luciferase activity at concentrations varying within a wide range, and Mn2+ can act as a 100%-effective substitute for Mg2+ in F. heliota luminescence reaction in vitro. The inhibitory effect of monovalent metal salts on luminescence is largely determined by the action of the anion part of the molecule. The effectiveness of the inhibitory effect of anions increases in the following order: {Mathematical expression}. Of the sodium salts, dodecyl sulfate, which is an anionic detergent, produces the strongest inhibitory effect on luciferase. On the contrary, nonionic detergents produce a stimulatory effect on the F. heliota luciferase. The action of the most effective of them - Triton X-100 - is determined by its ability to reduce the actual concentration of lipid inhibitors in the reaction mixture. В© 2006 Elsevier B.V. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Rodionova, N.S.; Petushkov, V.N.

Найти похожие
7.


   
    ATP is a cosubstrate of the luciferase of the earthworm Fridericia heliota (Annelida: Clitellata: Oligochaeta: Enchytraeidae) / N. S. Rodionova, V. S. Bondar', V. N. Petushkov // Doklady Biochemistry and Biophysics. - 2003. - Vol. 392, Is. 1-6. - P253-255, DOI 10.1023/A:1026134628735 . - ISSN 1607-6729
Кл.слова (ненормированные):
adenosine diphosphate -- adenosine phosphate -- adenosine triphosphate -- luciferase -- luciferin -- magnesium -- animal cell -- article -- controlled study -- earthworm -- hydrolysis -- luminescence -- nonhuman -- Adenosine Diphosphate -- Adenosine Triphosphate -- Animals -- Firefly Luciferin -- Kinetics -- Luciferases -- Luminescent Measurements -- Magnesium -- Oligochaeta -- Substrate Specificity -- Animalia -- Annelida -- Clitellata -- Enchytraeidae -- Pheretima sieboldi

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Rodionova, N.S.; Bondar', V.S.; Petushkov, V.N.

Найти похожие
8.


   
    Study of the luminescence system of the soil enchytraeid Fridericia heliota (Annelida: Clitellata: Oligochaeta: Enchytraeidae) / V. N. Petushkov, N. S. Rodionova, V. S. Bondar' // Doklady Biochemistry and Biophysics. - 2003. - Vol. 391, Is. 1-6. - P204-207, DOI 10.1023/A:1025105323648 . - ISSN 1607-6729
Кл.слова (ненормированные):
adsorption chromatography -- animal cell -- annelid worm -- article -- luminescence -- nonhuman -- purification -- animal -- drug antagonism -- isolation and purification -- metabolism -- physiology -- soil -- Animalia -- Annelida -- Clitellata -- Enchytraeidae -- edetic acid -- luciferase -- magnesium -- Animals -- Edetic Acid -- Luciferases -- Luminescent Measurements -- Magnesium -- Oligochaeta -- Soil

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Petushkov, V.N.; Rodionova, N.S.; Bondar', V.S.

Найти похожие
9.


   
    Utilization of substrate when growing oyster mushroom Pleurotus florida Fovose [Текст] / N. S. Manukovsky, V. S. Kovalev, I. V. Gribovskaya // Mikol. Fitopatol. - 1998. - Vol. 32, Is. 6. - P. 43-46. - Cited References: 8 . - ISSN 0026-3648
РУБ Mycology

Аннотация: Content of biogenic elements in the residual substrate after growing of oyster mushroom Pleurotus florida Fovose on wheat straw was studied. It was calculated, that masses of sulphur, calcium and magnesium in the residual substrate were more than 90 % of their initial masses in wheat straw used for growing. Therefore the accumulation of these elements in the substrate under its repeated recycling for mushroom growing is possible. On the contrary the lack of phosphorus is expected. After washing content of all biogenic elements tested in residual substrate, except for calcium, was lower than their content in wheat straw. The decreasing of mushroom yield under increasing rate of residual substrate in its mixture with wheat straw was shown. Washing of residual substrate did not lead to decreasing of yield.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Krasnoyarsk, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Manukovsky, N.S.; Kovalev, V.S.; Gribovskaya, I.V.

Найти похожие
10.


   
    All Ca2+-binding loops of light-sensitive ctenophore photoprotein berovin bind magnesium ions: The spatial structure of Mg2 +-loaded apo-berovin / L. P. Burakova [et al.] // J. Photochem. Photobiol. B Biol. - 2016. - Vol. 154. - P57-66, DOI 10.1016/j.jphotobiol.2015.11.012 . - ISSN 1011-1344
Кл.слова (ненормированные):
Aequorin -- Bioluminescence -- Calcium -- Coelenterazine -- Obelin
Аннотация: Light-sensitive photoprotein berovin accounts for a bright bioluminescence of ctenophore Beroe abyssicola. Berovin is functionally identical to the well-studied Ca2+-regulated photoproteins of jellyfish, however in contrast to those it is extremely sensitive to the visible light. Berovin contains three EF-hand Ca2+-binding sites and consequently belongs to a large family of the EF-hand Ca2+-binding proteins. Here we report the spatial structure of apo-berovin with bound Mg2+ determined at 1.75 A. The magnesium ion is found in each functional EF-hand loop of a photoprotein and coordinated by oxygen atoms donated by the side-chain groups of aspartate, carbonyl groups of the peptide backbone, or hydroxyl group of serine with characteristic oxygen-Mg2+ distances. As oxygen supplied by the side-chain of the twelfth residue of all Ca2+-binding loops participates in the magnesium ion coordination, it was suggested that Ca2+-binding loops of berovin belong to the mixed Ca2+/Mg2+ rather than Ca2+-specific type. In addition, we report an effect of physiological concentration of Mg2+ on bioluminescence of berovin (sensitivity to Ca2+, rapid-mixed kinetics, light-sensitivity, thermostability, and apo-berovin conversion into active protein). The different impact of physiological concentration of Mg2+ on berovin bioluminescence as compared to hydromedusan photoproteins was attributed to different affinities of the Ca2 +-binding sites of these photoproteins to Mg2+. © 2015 Elsevier B.V. All rights reserved.

Scopus,
WOS
Держатели документа:
Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok 50, Krasnoyarsk, Russian Federation
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China
IHuman Institute, ShanghaiTech University, 99 Haike Road, Shanghai, China

Доп.точки доступа:
Burakova, L. P.; Natashin, P. V.; Malikova, N. P.; Niu, F.; Pu, M.; Vysotski, E. S.; Liu, Z.-J.
Свободных экз. нет
Найти похожие
11.


   
    Progress in the Study of Bioluminescent Earthworms / N. S. Rodionova [et al.] // Photochem. Photobiol. - 2017. - Vol. 93, Is. 2. - P416-428, DOI 10.1111/php.12709 . - ISSN 0031-8655
Аннотация: Even though bioluminescent oligochaetes rarely catch people's eyes due to their secretive lifestyle, glowing earthworms sighting reports have come from different areas on all continents except Antarctica. A major breakthrough in the research of earthworm bioluminescence occurred in the 1960s with the studies of the North American Diplocardia longa. Comparative studies conducted on 13 earthworm species belonging to six genera showed that N-isovaleryl-3-aminopropanal (Diplocardia luciferin) is the common substrate for bioluminescence in all examined species, while luciferases appeared to be responsible for the color of bioluminescence. The second momentous change in the situation has occurred with the discovery in Siberia (Russia) of two unknown luminous enchytraeids. The two bioluminescent systems belong to different types, have different spectral characteristics and localization, and different temperature and pH optima. They are unique, and this fact is confirmed by the negative results of all possible cross-reactions. The bioluminescent system of Henlea sp. comprises four essential components: luciferase, luciferin, oxygen and calcium ion. For Friderica heliota, the luminescent reaction requires five components: luciferase, luciferin, ATP, magnesium ion and oxygen. Along with luciferin, more than a dozen analogues were isolated from worm biomass. These novel peptide-like natural compounds represent an unprecedented chemistry found in terrestrial organisms. © 2017 The American Society of Photobiology

Scopus,
Смотреть статью,
WOS
Держатели документа:
Laboratory of Photobiology, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
Pirogov Russian National Research Medical University, Moscow, Russian Federation

Доп.точки доступа:
Rodionova, N. S.; Rota, E.; Tsarkova, A. S.; Petushkov, V. N.

Найти похожие
12.


   
    Computing-feasibility study of NASA nutrition requirements as applied to a bioregenerative life support system / V. S. Kovalev, N. S. Manukovsky, A. A. Tikhomirov // Acta Astronaut. - 2019. - Vol. 159. - P371-376, DOI 10.1016/j.actaastro.2019.04.001 . - ISSN 0094-5765
Кл.слова (ненормированные):
Constraint -- Food -- Modeling -- Nutrient -- Objective function -- Amino acids -- Animals -- Food products -- Models -- NASA -- Nutrients -- Nutrition -- Proteins -- Saturated fatty acids -- Uncertainty analysis -- Vitamins -- Bioregenerative life support systems -- Constraint -- Essential amino acids -- Independent variables -- Interpretation of models -- Long duration missions -- Lower and upper bounds -- Objective functions -- Life support systems (spacecraft)
Аннотация: In view of previous studies, a list of 46 foods designated for use in bioregenerative life support system was composed. With the help of a computer program, daily sets of foods of plant and animal origin were compiled from the list of foods. The objective function of modeling was intended to minimize the discrepancy between the calculated values of nutrients in daily food sets and NASA nutrition requirements for long-duration missions. The independent variables in the model were the masses of foods restricted by the lower and upper bounds. It was established that a food set is able to comprise 10-46 foods with violation of the NASA nutrition requirements for iron, vitamin B5 and vitamin D daily intakes. Inclusion of 9 foods in a set resulted in a further violation of the NASA standards concerning saturated fat. As the number of foods in a set has increased from 10 to 22, the objective function decreased from 1.0736 to 1.0332, followed by a gradual increase to 1.1233, when the maximum number of foods was selected from the list of foods. The source of uncertainty in the interpretation of modeling results are the standard NASA intakes of magnesium, potassium, zinc, manganese, vitamin C, thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, vitamin E, vitamin K and n-6 fatty acids, given as exact values. Varying the nutrient content of food sets did not significantly affect the value of the objective function. However, some solutions were infeasible, due to the violation of the NASA standard concerning saturated fat. Also, there were food sets in which the scores of sulfur-containing amino acids and threonine were below 100. In order to reliably maintain the scores of essential amino acids above 100 in a food set, it is necessary to maintain a mass ratio of “animal protein/total protein” equal to 2/3 in accordance with the requirement of NASA. © 2019 IAA

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kovalev, V. S.; Manukovsky, N. S.; Tikhomirov, A. A.

Найти похожие
13.


   
    Spatial and temporal variation in Arctic freshwater chemistry-Reflecting climate-induced landscape alterations and a changing template for biodiversity / B. J. Huser, M. N. Futter, D. Bogan [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13645. - Cited References:98. - Environment and Climate Change Canada; Cumulative Impact Monitoring Program, Government of Northwest Territories . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
DISSOLVED ORGANIC-CARBON
   PERMAFROST THAW

   CHEMICAL LIMNOLOGY

Кл.слова (ненормированные):
biogeochemistry -- eutrophication -- lakes -- oligotrophication -- rivers
Аннотация: Freshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970-1985), Middle (1986-2000), and Late (2001-2015) periods. Spatial patterns were assessed using data collected since 2001. Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated. Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps. Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic. Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to -2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes. The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future.

WOS
Держатели документа:
Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Box 7050, S-75007 Uppsala, Sweden.
Univ Alaska Anchorage, Alaska Ctr Conservat Sci, Anchorage, AK USA.
Norwegian Water Resources & Energy Directorate, Oslo, Norway.
Univ Oslo, Nat Hist Museum, Oslo, Norway.
Wilfrid Laurier Univ, Cold Regions Res Ctr, Waterloo, ON, Canada.
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk, Russia.
Umea Univ, Climate Impacts Res Ctr, Dept Ecol & Environm Sci, Umea, Sweden.
Queens Univ, Dept Biol, Paleoecol Environm Assessment & Res Lab PEARL, Kingston, ON, Canada.
Norwegian Inst Nat Res, Oslo, Norway.
Univ New Brunswick, Canadian Rivers Inst, Fredericton, NB, Canada.
Univ New Brunswick, Dept Biol, Fredericton, NB, Canada.

Доп.точки доступа:
Huser, Brian J.; Futter, Martyn N.; Bogan, Daniel; Brittain, John E.; Culp, Joseph M.; Goedkoop, Willem; Gribovskaya, Iliada; Karlsson, Jan; Lau, Danny C. P.; Ruhland, Kathleen M.; Schartau, Ann Kristin; Shaftel, Rebecca; Smol, John P.; Vrede, Tobias; Lento, Jennifer; Environment and Climate Change Canada; Cumulative Impact Monitoring Program, Government of Northwest Territories

Найти похожие
14.


   
    Spatial and temporal variation in Arctic freshwater chemistry—Reflecting climate-induced landscape alterations and a changing template for biodiversity / B. J. Huser, M. N. Futter, D. Bogan [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13645 . - Article in press. - ISSN 0046-5070
Кл.слова (ненормированные):
biogeochemistry -- eutrophication -- lakes -- oligotrophication -- rivers
Аннотация: Freshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970–1985), Middle (1986–2000), and Late (2001–2015) periods. Spatial patterns were assessed using data collected since 2001. Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated. Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps. Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic. Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to ?2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes. The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future. © 2020 The Authors. Freshwater Biology published by John Wiley & Sons Ltd.

Scopus
Держатели документа:
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Alaska Center for Conservation Science, University of Alaska Anchorage, Anchorage, AK, United States
Norwegian Water Resources & Energy Directorate, Oslo, Norway
Natural History Museum, University of Oslo, Oslo, Norway
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, Canada
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Department of Ecology and Environmental Science, Climate Impacts Research Centre, Umea University, Abisko, Sweden
Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of Biology, Queen’s University, Kingston, ON, Canada
Norwegian Institute for Nature Research, Oslo, Norway
Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, NB, Canada

Доп.точки доступа:
Huser, B. J.; Futter, M. N.; Bogan, D.; Brittain, J. E.; Culp, J. M.; Goedkoop, W.; Gribovskaya, I.; Karlsson, J.; Lau, D. C.P.; Ruhland, K. M.; Schartau, A. K.; Shaftel, R.; Smol, J. P.; Vrede, T.; Lento, J.

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)