Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=matrices<.>)
Общее количество найденных документов : 9
Показаны документы с 1 по 9
1.


   
    An in vivo study of pha matrices of different chemical composition: Tissue reaction and biodegradation / E. I. Shishatskaya [et al.] // Cellular Transplantation and Tissue Engineering. - 2012. - Vol. 7, Is. 1. - P73-80 . - ISSN 1815-445X
Кл.слова (ненормированные):
Degradable polymer matrices -- Degradation -- PHAs -- Polyhydroxyalkanoates -- Subcutaneous implantation -- Tissue reaction
Аннотация: The study addresses consequences of subcutaneous implantation of film matrices prepared from different PHAs to laboratory animals. No negative effects of subcutaneous implantation of PHA matrices on physiological and biochemical characteristics of the animals were determined. Independently of the matrices composition and duration of the contact with the internal environment of the organism we did not observe any deviations in the behavior of animals, their growth and development, as well as blood functions. Response of the tissues to PHA matrices was comparable with the response to polylactide, but substantially less expressed at the earlier time periods after implantation. Tissues response to implantation of PHA of all types is characterized by short-term (up to 2 weeks) post-traumatic inflammation with formation of fibrous capsules by 30th-60th days with the thickness less than 100 microns, which get thinner down to 40-60 microns by 180th day as the result of involution. No differences in response of tissues and the whole organism were observed for the matrices produced from the homopolymer of 3-hydroxybutyric acid (P3HB), copolymers of 3-hydroxybutyric and 4-hydroxybutyric acids (P3HB/4HB), 3-hydroxybutyric acid and 3-hydroxyvalerianic acids (P3HB/3HV), 3-hydroxybutyric and 3-hydroxyhexanoate acids (P3HB/3HH). Macrophages and foreign-body giant cells actively participate in the response of the tissues to PHAs. In the studied conditions matrices from the copolymers containing 3-hydroxyhexanoate and 4 hydroxybutyrate were determined as more actively degraded PHA. The next less degraded matrices were matrices from the copolymer of P3HB/3HV and the most resistant were P3HB matrices. The slower degradation of PHA matrices was accompanied by delayed development of giantcells response. The studied PHA matrices can be placed in the following range by their degradation: P3HB/3HH - P3HB/4HB - P3HB/HV - P3HB.

Scopus
Держатели документа:
Institute of Modern Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation
Massachusetts Institute of Technology, Cambridge, United States : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Nikolaeva, E.D.; Goreva, A.V.; Brigham, C.J.; Volova, T.G.; Sinskey, A.J.

Найти похожие
2.


   
    A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures [Text] / E. I. Shishatskaya, T. G. Volova // J. Mater. Sci.-Mater. Med. - 2004. - Vol. 15, Is. 8. - P915-923, DOI 10.1023/B:JMSM.0000036280.98763.c1. - Cited References: 34 . - 9. - ISSN 0957-4530
РУБ Engineering, Biomedical + Materials Science, Biomaterials
Рубрики:
DEGRADATION
   POLY(3-HYDROXYBUTYRATE)

   POLYESTERS

   POLYMERS

Аннотация: The paper describes the production and investigation of flexible films made of high-purity polyhydroxyalkanoates (PHAs) - polyhydroxybutyrate [poly-(3HB)] and poly-3-hydroxybutyrate-co-poly-3-hydroxyvalerate [poly(3Hl3-co-3HV)], containing 4-30 mol % hydroxyvalerate. Poly(3HB-co-3HV) films have a more porous structure than poly-(3HB) films, which are more compact, but their surface properties, such as wettability and surface and interface energies, are the same. Sterilisation of the PHA films by conventional methods (heat treatment and gamma-irradiation) did not impair their strength. Cells cultured on PHA films exhibited high levels of cell adhesion. Cell morphology, protein synthesis and DNA synthesis were estimated by extent of H-3-thymidine incorporation into the animal cell cultures of various origins (fibroblasts, endothelium cells, and isolated hepatocytes) in direct contact with PHAs. The investigation showed that this material can be used to make matrices for in vitro proliferous cells. The investigated properties of poly-(3HB) and poly(3HB-co-3HV) films proved to be fundamentally similar. (C) 2004 Kluwer Academic Publishers.

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 60036, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Volova, T.G.

Найти похожие
3.


   
    In vivo study of 2D PHA matrices of different chemical compositions: Tissue reactions and biodegradations [] / T. G. Volova [et al.] // Mater. Sci. Technol. - 2014. - Vol. 30, Is. 5. - P549-557, DOI 10.1179/1743284713Y.0000000470 . - ISSN 1743-2847
Кл.слова (ненормированные):
Biocompatibility -- Biodegradation -- Implantation -- PHA -- Polyhydroxyalkanoates -- Tissue response -- Biocompatibility -- Biodegradable polymers -- Copolymers -- Degradation -- Ion implantation -- Microbiology -- Tissue -- Chemical compositions -- Foreign body giant cells -- Hydroxybutyric acids -- Maximum thickness -- PHA -- Polyhydroxyalkanoates -- Polymer matrices -- Tissue response -- Biodegradation
Аннотация: Matrices based on resorbable polyhydroxyalkanoates (PHAs) of five types {a homopolymer of 3- hydroxybutyric acid, copolymers of 3-hydroxybutyric and 4-hydroxybutyric acids [P(3HB/4HB)], 3-hydroxybutyric and 3-hydroxyvaleric acids [P(3HB/3HV)], 3-hydroxybutyric and 3-hydroxyhexanoic acids [P(3HB/3HHx)]} have been constructed and characterised. No significant differences have been found in tissue response to implantation of these PHAs. Non-coarse fibrous capsules that formed around PHA matrices reached their maximum thickness (60-90 ?m) 90 days after implantation; by day 180, the average thickness of the capsules had decreased by 1·5-2·3 times. The number of foreign body giant cells, resorbing PHAs, remained high. In vivo biodegradation behaviour of polymer matrices is related to the chemical composition of the PHA. Matrices prepared from copolymers P(3HB/4HB) and P(3HB/3HHx) exhibited the fastest degradation rates. P3HB/3HV matrices were degraded more slowly, and P3HB matrices were the most durable. In the PHA matrices that were degraded more slowly, giant cell reaction developed later. © 2014 Institute of Materials, Minerals and Mining.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Akademgorodok 50, Krasnoyarsk 660036, Russian Federation
Institute of Modern Biology and Biotechnology, Siberian Federal University, Svobodniy av. 79, Krasnoyarsk 660041, Russian Federation
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
Health Sciences Technology Division, Massachusetts Institute of Technology, Cambridge, MA 02139, United States : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Shishatskaya, E.I.; Nikolaeva, E.D.; Sinskey, A.J.

Найти похожие
4.


   
    In vivo study of 2D PHA matrices of different chemical compositions: tissue reactions and biodegradations [Text] / T. G. Volova [et al.] // Mater. Sci. Technol. - 2014. - Vol. 30, Is. 5. - P549-557, DOI 10.1179/1743284713Y.0000000470. - Cited References: 31. - The study was supported by the project initiated by the Government of the Russian Federation (decree no. 220 of 09.04.2010) for governmental support of scientific research conducted under the guidance of leading scientists at Russian institutions of higher learning (agreement no. 11.G34.31.0013) and the Program of Integrated Research of the Presidium of SB RAS (project no. 96). . - ISSN 0267-0836. - ISSN 1743-2847
РУБ Materials Science, Multidisciplinary + Metallurgy & Metallurgical Engineering
Рубрики:
BIOMEDICAL INVESTIGATIONS
   POLYHYDROXYALKANOATES

   VITRO

   BIOCOMPATIBILITY

   DEGRADATION

   SCAFFOLDS

   CONDUITS

   POLYMERS

Кл.слова (ненормированные):
PHA -- Polyhydroxyalkanoates -- Biocompatibility -- Implantation -- Tissue response -- Biodegradation
Аннотация: Matrices based on resorbable polyhydroxyalkanoates (PHAs) of five types {a homopolymer of 3-hydroxybutyric acid, copolymers of 3-hydroxybutyric and 4-hydroxybutyric acids [P(3HB/4HB)], 3-hydroxybutyric and 3-hydroxyvaleric acids [P(3HB/3HV)], 3-hydroxybutyric and 3-hydroxyhexanoic acids [P(3HB/3HHx)]} have been constructed and characterised. No significant differences have been found in tissue response to implantation of these PHAs. Non-coarse fibrous capsules that formed around PHA matrices reached their maximum thickness (60-90 mm) 90 days after implantation; by day 180, the average thickness of the capsules had decreased by 1.5- 2.3 times. The number of foreign body giant cells, resorbing PHAs, remained high. In vivo biodegradation behaviour of polymer matrices is related to the chemical composition of the PHA. Matrices prepared from copolymers P(3HB/4HB) and P(3HB/3HHx) exhibited the fastest degradation rates. P3HB/3HV matrices were degraded more slowly, and P3HB matrices were the most durable. In the PHA matrices that were degraded more slowly, giant cell reaction developed later.

WOS
Держатели документа:
[Volova, T. G.
Shishatskaya, E. I.
Nikolaeva, E. D.] Inst Biophys SB RAS, Krasnoyarsk 660036, Russia
[Volova, T. G.
Shishatskaya, E. I.
Nikolaeva, E. D.] Siberian Fed Univ, Inst Modern Biol & Biotechnol, Krasnoyarsk 660041, Russia
[Sinskey, A. J.] MIT, Dept Biol, Cambridge, MA 02139 USA
[Sinskey, A. J.] MIT, Engn Syst Div, Cambridge, MA 02139 USA
[Sinskey, A. J.] MIT, Hlth Sci Technol Div, Cambridge, MA 02139 USA
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Shishatskaya, E.I.; Nikolaeva, E.D.; Sinskey, A.J.; Government of the Russian Federation

Найти похожие
5.


   
    A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures [Text] / E. I. Shishatskaya, T. G. Volova // J. Mater. Sci.-Mater. Med. - 2004. - Vol. 15, Is. 8. - P. 915-923, DOI 10.1023/B:JMSM.0000036280.98763.c1. - Cited References: 34 . - ISSN 0957-4530
РУБ Engineering, Biomedical + Materials Science, Biomaterials
Рубрики:
DEGRADATION
   POLY(3-HYDROXYBUTYRATE)

   POLYESTERS

   POLYMERS

Аннотация: The paper describes the production and investigation of flexible films made of high-purity polyhydroxyalkanoates (PHAs) - polyhydroxybutyrate [poly-(3HB)] and poly-3-hydroxybutyrate-co-poly-3-hydroxyvalerate [poly(3Hl3-co-3HV)], containing 4-30 mol % hydroxyvalerate. Poly(3HB-co-3HV) films have a more porous structure than poly-(3HB) films, which are more compact, but their surface properties, such as wettability and surface and interface energies, are the same. Sterilisation of the PHA films by conventional methods (heat treatment and gamma-irradiation) did not impair their strength. Cells cultured on PHA films exhibited high levels of cell adhesion. Cell morphology, protein synthesis and DNA synthesis were estimated by extent of H-3-thymidine incorporation into the animal cell cultures of various origins (fibroblasts, endothelium cells, and isolated hepatocytes) in direct contact with PHAs. The investigation showed that this material can be used to make matrices for in vitro proliferous cells. The investigated properties of poly-(3HB) and poly(3HB-co-3HV) films proved to be fundamentally similar. (C) 2004 Kluwer Academic Publishers.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 60036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Volova, T.G.

Найти похожие
6.


   
    Constructing Slow-Release Formulations of Metribuzin Based on Degradable Poly(3-hydroxybutyrate) / A. N. Boyandin [et al.] // J. Agric. Food Chem. - 2016. - Vol. 64, Is. 28. - P5625-5632, DOI 10.1021/acs.jafc.5b05896 . - ISSN 0021-8561
Кл.слова (ненормированные):
controlled release -- degradable poly(3-hydroxybutyrate) -- herbicide -- metribuzin -- release kinetics -- Polyethylene glycols -- Weed control -- Controlled release -- Environmental release -- Herbicide release -- Laboratory system -- Matrix formulation -- Metribuzin -- Poly-3-hydroxybutyrate -- Release kinetics -- Herbicides
Аннотация: Experimental formulations of herbicide metribuzin embedded in matrices of degradable natural polymer poly(3-hydroxybutyrate) (P3HB) and its composites with poly(ethylene glycol) (PEG), poly-?-caprolactone (PCL), and wood powder have been prepared in the form of pressed pellets containing 75% polymeric basis (pure P3HB or its composite with a second component at a ratio of 7:3) and 25% metribuzin. Incubation of formulations in soil laboratory systems led to the degradation of the matrix and herbicide release. The most active release of metribuzin (about 60% of the embedded herbicide over 35 days) was detected for the P3HB/PEG carrier compared to the P3HB, P3HB/wood, and P3HB/PCL forms (30-40%). Thus, the study shows that herbicide release can be controlled by the matrix formulation. Metribuzin formulations exerted a significant herbicidal effect on the plant Agrostis stolonifera, used as a weed plant model. Application of these long-term formulations will make it possible to reduce environmental release of chemicals, which will restrict the rate of their accumulation in trophic chains of ecosystems and abate their adverse effects on the biosphere. © 2016 American Chemical Society.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Zhila, N. O.; Kiselev, E. G.; Volova, T. G.

Найти похожие
7.


   
    Efficacy of tebuconazole embedded in biodegradable poly-3-hydroxybutyrate to inhibit the development of Fusarium moniliforme in soil microecosystems / T. G. Volova [et al.] // Pest Manag. Sci. - 2017. - Vol. 73, Is. 5. - P925-935, DOI 10.1002/ps.4367. - Cited References:43. - This study was supported by the Russian Science Foundation (grant number 14-26-00039). The authors declare no competing financial interest. . - ISSN 1526-498X. - ISSN 1526-4998
РУБ Agronomy + Entomology
Рубрики:
CONTROLLED-RELEASE
   FUNGICIDE TEBUCONAZOLE

   BRASSICA-NAPUS

   OILSEED

Кл.слова (ненормированные):
tebuconazole -- poly-3-hydroxybutyrate -- degradation -- embedding -- tebuconazole release -- fungicidal effect
Аннотация: BACKGROUND: An important line of research is the development of a new generation of formulations with targeted and controlled release of the pesticide, using matrices made from biodegradable materials. In this study, slow-release formulations of the fungicide tebuconazole (TEB) have been prepared by embedding it into the matrix of poly-3-hydroxybutyrate (P3HB) in the form of films, microgranules and pellets. RESULTS: The average rates of P3HB degradation were determined by the geometry of the formulation, reaching, for 63 days, 0.095-0.116, 0.081-0.083 and 0.030-0.055 mg day(-1) for films, microgranules and pellets respectively. The fungicidal activity of P3HB/TEB against the plant pathogen Fusarium moniliforme was compared with that of the commercial formulation Raxil Ultra. A pronounced fungicidal effect of the experimental P3HB/TEB formulations was observed in 2-4 weeks after application, and it was retained for 8 weeks, without affecting significantly the development of soil aboriginal microflora. CONCLUSION: TEB release can be regulated by the process employed to fabricate the formulation and the fungicide loading, and the TEB accumulates in the soil gradually, as the polymer is degraded. The experimental forms of TEB embedded in the slowly degraded P3HB can be used as a basis for developing slow-release fungicide formulations. (c) 2016 Society of Chemical Industry

WOS,
Смотреть статью
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Sect, 50-50 Akademgorodok, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Volova, Tatiana G.; Prudnikova, Svetlana V.; Zhila, Natalia O.; Vinogradova, Olga N.; Shumilova, Anna A.; Nikolaeva, Elena D.; Kiselev, Evgeniy G.; Shishatskaya, Ekaterina I.; Russian Science Foundation [14-26-00039]

Найти похожие
8.


   
    Design of bioluminescent biosensors for assessing contamination of complex matrices / E. N. Esimbekova, V. P. Kalyabina, K. V. Kopylova [et al.] // Talanta. - 2021. - Vol. 233. - Ст. 122509, DOI 10.1016/j.talanta.2021.122509. - Cited By :1 . - ISSN 0039-9140
Кл.слова (ненормированные):
Bioluminescent biosensor -- Complex matrices -- Enzyme inhibition-based assay -- Heavy metals -- Pesticides
Аннотация: The presence of potentially toxic xenobiotics in complex matrices has become rather the rule than the exception. Therefore, there is a need for highly sensitive inexpensive techniques for analyzing environmental and food matrices for toxicants. Enzymes are selectively sensitive to various toxic compounds, and, thus, they can be used as the basis for detection of contaminants in complex matrices. There are, however, a number of difficulties associated with the analysis of complex matrices using enzyme assays, including the necessity to take into account properties and effects of the natural components of the test media for accurate interpretation of results. The present study describes the six-stage procedure for designing new enzyme sensors intended for assessing the quality of complex matrices. This procedure should be followed both to achieve the highest possible sensitivity of the biosensor to potentially toxic substances and to minimize the effect of the uncontaminated components of complex mixtures on the activity of the biosensor. The proposed strategy has been tested in designing a bioluminescent biosensor for integrated rapid assessment of the safety of fruits and vegetables. The biosensor is based on the coupled enzyme system NAD(P)H:FMN-oxidoreductase and luciferase as the biorecognition element. The study describes methods and techniques for attaining the desired result in each stage. The proposed six-stage procedure for designing bioluminescent enzyme biosensors can be used to design the enzymatic biosensors based on other enzymes. © 2021 Elsevier B.V.

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Esimbekova, E. N.; Kalyabina, V. P.; Kopylova, K. V.; Torgashina, I. G.; Kratasyuk, V. A.

Найти похожие
9.


   
    Design of bioluminescent biosensors for assessing contamination of complex matrices / E. N. Esimbekova, V. P. Kalyabina, K. V. Kopylova [et al.] // Talanta. - 2021. - Vol. 233. - Ст. 122509, DOI 10.1016/j.talanta.2021.122509. - Cited References:87. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project No. 20-44-242001 and Ministry of Science and Higher Education of Russian Federation No. FSRZ-2020-0006. . - ISSN 0039-9140. - ISSN 1873-3573
РУБ Chemistry, Analytical
Рубрики:
SAMPLE PREPARATION
   PESTICIDES

   FOOD

   BIOMOLECULES

   SENSITIVITY

Кл.слова (ненормированные):
Bioluminescent biosensor -- Enzyme inhibition-based assay -- Complex -- matrices -- Pesticides -- Heavy metals
Аннотация: The presence of potentially toxic xenobiotics in complex matrices has become rather the rule than the exception. Therefore, there is a need for highly sensitive inexpensive techniques for analyzing environmental and food matrices for toxicants. Enzymes are selectively sensitive to various toxic compounds, and, thus, they can be used as the basis for detection of contaminants in complex matrices. There are, however, a number of difficulties associated with the analysis of complex matrices using enzyme assays, including the necessity to take into account properties and effects of the natural components of the test media for accurate interpretation of results. The present study describes the six-stage procedure for designing new enzyme sensors intended for assessing the quality of complex matrices. This procedure should be followed both to achieve the highest possible sensitivity of the biosensor to potentially toxic substances and to minimize the effect of the uncontaminated components of complex mixtures on the activity of the biosensor. The proposed strategy has been tested in designing a bioluminescent biosensor for integrated rapid assessment of the safety of fruits and vegetables. The biosensor is based on the coupled enzyme system NAD(P)H:FMN-oxidoreductase and luciferase as the biorecognition element. The study describes methods and techniques for attaining the desired result in each stage. The proposed six-stage procedure for designing bioluminescent enzyme biosensors can be used to design the enzymatic biosensors based on other enzymes.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Esimbekova, Elena N.; Kalyabina, Valeriya P.; Kopylova, Kseniya, V; Torgashina, Irina G.; Kratasyuk, Valentina A.; Kopylova, Kseniya; Esimbekova, Elena; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR); Government of Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [20-44-242001]; Ministry of Science and Higher Education of Russian Federation [FSRZ-2020-0006]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)