Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (3)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=mechanical<.>)
Общее количество найденных документов : 40
Показаны документы с 1 по 20
 1-20    21-40  
1.


   
    A hybrid PHB-hydroxyapatite composite for biomedical application: Production, in vitro and in vivo investigation / E. I. Shishatskaya, I. A. Khlusov, T. G. Volova // Journal of Biomaterials Science, Polymer Edition. - 2006. - Vol. 17, Is. 5. - P481-498, DOI 10.1163/156856206776986242 . - ISSN 0920-5063
Кл.слова (ненормированные):
Biocompatibility -- Hydroxyapatite (HA) -- PHB-hydroxyapatite composite -- Polyhydroxyalkanoate (PHA) -- Polyhydroxybutyrate (P(3HB)) -- Properties -- Biocompatibility -- Differential thermal analysis -- Electron microscopy -- Free energy -- Interfacial energy -- Physical properties -- Surface properties -- X ray analysis -- Biomedical application -- Physicochemical properties -- Polyhydroxyalkanoate (PHA) -- Polyhydroxybutyrate (PHB) -- Hydroxyapatite -- hydroxyapatite -- poly(3 hydroxybutyric acid) -- polymer -- biomaterial -- hydroxybutyric acid -- adhesion -- animal cell -- animal tissue -- article -- biomedicine -- bone marrow cell -- cell differentiation -- cell growth -- chemical structure -- composite material -- controlled study -- crystallization -- decomposition -- electron microscopy -- in vitro study -- in vivo study -- melting point -- mouse -- nonhuman -- ossification -- osteoblast -- physical chemistry -- priority journal -- rat -- strength -- structure analysis -- surface property -- synthesis -- temperature measurement -- thermal analysis -- tissue engineering -- wettability -- animal -- biomechanics -- bioremediation -- bone prosthesis -- cattle -- cell culture -- chemistry -- cytology -- differential scanning calorimetry -- drug effect -- human -- materials testing -- prostheses and orthoses -- scanning electron microscopy -- standard -- Wistar rat -- Murinae -- Animals -- Biocompatible Materials -- Biodegradation, Environmental -- Biomechanics -- Bone Substitutes -- Cattle -- Cells, Cultured -- Differential Thermal Analysis -- Durapatite -- Humans -- Hydroxybutyrates -- Materials Testing -- Microscopy, Electron, Scanning -- Osteoblasts -- Prostheses and Implants -- Rats -- Rats, Wistar -- Surface Properties
Аннотация: Samples of a hybrid composite of polyhydroxybutyrate (PHB), a biodegradable polyester, and hydroxyapatite (HA), with different PHB/HA ratios, have been prepared using mechanical-physical method. Electron microscopy, X-ray structure analysis and differential thermal analysis have been used to investigate the structure and physicochemical properties of the composite, depending on the PHB/HA ratio. The properties of the surface of the HA-loaded composite are significantly different from those of the pure polymer. As the HA percentage in the composite increases, free interface energy, the cohesive force, i.e., the strength of the adhesive bond between the composite surface and the water phase, and surface wettability increase. The HA percentage of the composite does not influence its melting temperature, but affects the temperature for the onset of decomposition: as the HA content increases from 0 to 10% (w/w), Td decreases from 260В°C to 225В°C. The degree of crystallinity of PHB/HA increases from 77% to 89% with an increase in the HA fraction from 10% to 50%. Functional properties of the composites have been investigated in vitro and in vivo. The best parameters of growth and differentiation of murine marrow osteoblasts are registered on PHB/HA samples containing 10% and 20% HA. In ectopic bone formation assay it has been proven that the hybrid PHB/HA composites can function as scaffolds and that bone tissue develops on their surface and in pores. В© VSP 2006.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 60036, Russian Federation
Tomsk State University, Tomsk 634021, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Khlusov, I.A.; Volova, T.G.

Найти похожие
2.


   
    Degradation of P(3HB) and P(3HB-co-3HV) in biological media / E. I. Shishatskaya [et al.] // Journal of Biomaterials Science, Polymer Edition. - 2005. - Vol. 16, Is. 5. - P643-657, DOI 10.1163/1568562053783678 . - ISSN 0920-5063
Кл.слова (ненормированные):
Degradation rate -- Fiber properties -- Morphology -- Poly(hydroxybutyrate-co-hydroxyvalerate) (P(3HB-co-3HV)) -- Polyhydroxyalkanoates(PHAs) -- Polyhydroxybutyrate (P(3HB)) -- Copolymers -- Degradation -- Differential scanning calorimetry -- Enzymes -- Morphology -- Scanning electron microscopy -- Tensile strength -- Tissue -- Transmission electron microscopy -- Degradation rate -- Fiber properties -- Polyhydroxyalkanoates (PHAs) -- Polyhydroxybutyrate (P(3HB)) -- Biopolymers -- buffer -- copolymer -- poly(3 hydroxybutyric acid) -- polyhydroxybutyrate hydroxyvalerate copolymer -- unclassified drug -- animal experiment -- animal model -- animal tissue -- article -- biodegradation -- controlled study -- crystal structure -- fiber -- giant cell -- in vitro study -- in vivo study -- macrophage -- morphology -- nonhuman -- pH -- priority journal -- rat -- structure analysis -- tensile strength -- tissue water -- weight reduction -- Animals -- Biodegradation, Environmental -- Buffers -- Humans -- Hydrogen-Ion Concentration -- Hydroxybutyrates -- Macrophages -- Microscopy, Electron, Scanning -- Microscopy, Electron, Transmission -- Muscle, Skeletal -- Polyesters -- Rats -- Rats, Wistar
Аннотация: The biodegradability of oriented fibers made of polyhydroxybutyrate (P(3HB)) and its co-polymer with ?-hydroxyvalerate (P(3HB-co-3HV)) was investigated in buffer solutions and in biological media in vitro and in vivo. The fibers of both polymer types demonstrated resistance to hydrolytic degradation in buffer solutions at 38В°C and pH from 4.5 to 7.0 (for up to 180 days). It has been found that the biodegradation of the fibers in vitro in blood and serum and in vivo is accompanied by weight losses and minor changes in the microstructure with no significant losses in the tensile strength over a long time (up to 180 days). The biodegradation rate of the less crystalline co-polymer P(3HB-co-3HV) fibers was 1.4-2.0-times higher than that of the homopolymer P(3HB). It has also been shown that the degradation of the fibers in vivo is influenced both by tissue fluid enzymes and cells (macrophages and foreign-body giant cells). The fibers were eroded on the surface only with no gross defects and no dramatic effects on their mechanical performance. В© VSP 2005.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 600326, Russian Federation
Department of Cardiac Surgery, University of Glasgow, Royal Infirmary, 10 Alexandra Parade, Glasgow G3, United Kingdom : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Volova, T.G.; Gordeev, S.A.; Puzyr, A.P.

Найти похожие
3.


   
    In vitro justification of using endobiliary stents made of polyhydroxyalkanoates / N. M. Markelova [et al.] // Macromolecular Symposia. - 2008. - Vol. 269, Is. 1. - P82-91, DOI 10.1002/masy.200850910 . - ISSN 1022-1360
Кл.слова (ненормированные):
Bioresorbable materials -- Endobiliary stents -- Mechanical jaundice (MJ) -- PHAs -- ABS resins -- Biopolymers -- Biotechnology -- Body fluids -- Experiments -- Free radical polymerization -- Liver -- Polymers -- Prosthetics -- Silicon -- Surgery -- Turbulent flow -- Abdominal cavities -- Bile ducts -- Biliary -- Biological properties -- Bioresorbable materials -- Blood analyses -- Endobiliary stents -- Endoprosthesis -- Experimental groups -- Experimental models -- In vitro -- Inflammatory reactions -- Macroscopic changes -- Mechanical jaundice (MJ) -- Minimally invasive -- Negative controls -- PHAs -- Polyhydroxyalkanoates -- Positive control groups -- Radical surgeries -- Reconstructive surgeries -- Suture materials -- Biological materials
Аннотация: Treatment of patients with mechanical jaundice (MJ) has been one of the topical problems of current medicine. The fraction of patients having MJ of oncologic character that can undergo radical surgery does not exceed 25-30%. A way out of such situation is to use minimally invasive endobiliary interventions, the main type of which is endoprosthesis replacement of bile duct lumens. The aim of the work was to study the biological properties of the experimental models of polymer stents made of PHA for endobiliary prosthetics and to investigate the biological properties of PHA suture material for forming of biliary-enteric anastomoses (cholecystoduodenostomy). Experiments were performed on 20 adult mongrel dogs, weighing 10-12 kg. The animals were divided to three groups: the negative control group (intact animals); the positive control group (the animals with implanted endobiliary silicon stents); and the experimental group (the animals with the PHA stents). The animals were monitored for 100 days. The clinical blood analysis was made before the operation, on day 7, 30, 60 and 100 days. During autopsy the presence of exudate, commissural process in the free abdominal cavity and subhepatic spatium, the appearance of choledoch where the prosthesis was located, as well as the appearance of cholecystoenterostomy, liver and duodenum. We did not found any signs of inflammation, cicatrical changes were estimated in the free abdominal cavity and subhepatic spatium. All implanted PHA stents were at their initial places of implantation. After the end of the experiment inflammatory reaction and anastomositis were absent. Macroscopic changes of liver and duodenum were also not detected. Liver function did not have any pathological deviations. These positive results give grounds to conclude that application of PHA as endobiliary stents in reconstructive surgery of bile passages and as suture material is a promising technology. Copyright В© 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

Scopus
Держатели документа:
Krasnoyarsk State Medical Academy, Partizana Zheleznyaka Street, 1, 660022, Krasnoyarsk, Russian Federation
Institute of Biophysics, SB, RAS, Akademgorodok, 660036, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Markelova, N.M.; Shishatskaya, E.I.; Vinnik, Y.S.; Cherdantsev, D.V.; Beletskiy, I.I.; Kuznetsov, M.N.; Zykova, L.D.

Найти похожие
4.


   
    A glucose-utilizing strain, cupriavidus euthrophus B-10646: Growth kinetics, characterization and synthesis of multicomponent PHAs / T. Volova [et al.] // PLoS ONE. - 2014. - Vol. 9, Is. 2, DOI 10.1371/journal.pone.0087551 . - ISSN 1932-6203
Кл.слова (ненормированные):
3 hydroxybutyrate 3 hydroxyhexanoate 3 hydroxyvalerate copolymer -- 3 hydroxybutyrate 4 hydroxybutyrate 3 hydroxyvalerate copolymer -- copolymer -- gamma butyrolactone -- glucose -- hexanoic acid -- poly(3 hydroxybutyric acid) -- polyhydroxyalkanoic acid -- polystyrene -- propionic acid -- unclassified drug -- valeric acid -- animal cell -- article -- bacterial growth -- bacterium culture -- cell adhesion -- cell proliferation -- crystal structure -- culture optimization -- Cupriavidus -- Cupriavidus euthrophus -- decomposition -- elasticity -- film -- glucose utilization -- kinetics -- mechanics -- melting point -- mouse -- nonhuman -- nucleotide sequence -- physical chemistry -- polymerization -- strength -- synthesis
Аннотация: This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, ?-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/ 3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physical-mechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB. Copyright: © 2014 Volova et al.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.; Kiselev, E.; Vinogradova, O.; Nikolaeva, E.; Chistyakov, A.; Sukovatiy, A.; Shishatskaya, E.

Найти похожие
5.


   
    Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties [Text] / T. . Volova [et al.] // J. Biomater. Sci.-Polym. Ed. - 2014. - Vol. 25, Is. 4. - P370-393, DOI 10.1080/09205063.2013.862400. - Cited References: 52. - This study was financially supported by Project 'Biotechnologies of novel biomaterials: innovative biopolymers and devices for biomedicine' (Agreement No. 1 of 15.02.2013 to Agreement No. 11.G34.31.0013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, 'On measures designed to attract leading scientists to the Russian institutions of higher learning' and Grant of the RF President for supporting young Doctors of Sciences No. MD-3112.2012.4. . - ISSN 0920-5063
РУБ Engineering, Biomedical + Materials Science, Biomaterials + Polymer Science
Рубрики:
TISSUE ENGINEERING APPLICATIONS
   FIBER MATS

   POLY 3-HYDROXYBUTYRATE

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)

   BIOCOMPATIBILITY

   PROLIFERATION

   FABRICATION

   NANOFIBERS

   COPOLYMERS

   MEMBRANES

Кл.слова (ненормированные):
electrospinning -- polyhydroxyalkanoates -- ultrafine fibers -- physical-mechanical properties -- fibroblast cells
Аннотация: In this study, electrospinning was used to prepare ultrafine fibers from PHAs with different chemical compositions: P(3HB) and copolymers: P(3HB-co-4HB), P(3HB-co-3HV), and P(3HB-co-3HHx). The main process parameters that influence ultrafine fiber diameter and properties (polymer concentration, solution feeding rate, working distance, and applied voltage) have been investigated and their effects evaluated. The study revealed electrospinning parameters for the production of high-quality ultrafine fibers and determined which parameters should be varied to tailor the properties of the products. This study is the first to compare biological and physical-mechanical parameters of PHAs with different chemical compositions as dependent upon the fractions of monomers constituting the polymers and ultrafine fiber orientation. Mechanical strength of aligned ultrafine fibers prepared from different PHAs is higher than that of randomly oriented ones; no significant effect of ultrafine fiber orientation on surface properties has been found. None of the fibrous scaffolds produced by electrospinning from PHAs had any adverse effects on attachment, growth, and viability of NIH 3T3 mouse fibroblast cells, and all of them were found to be suitable for tissue engineering applications.

WOS,
Scopus
Держатели документа:
[Volova, Tatiana
Sukovatyi, Aleksey
Nikolaeva, Elena] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Goncharov, Dmitriy
Shishatskaya, Ekaterina] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia
[Shabanov, Alexander] Russian Acad Sci, LV Kirenskii Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН
ИФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T...; Goncharov, D...; Sukovatyi, A...; Shabanov, A...; Nikolaeva, E...; Shishatskaya, E...; Project 'Biotechnologies of novel biomaterials: innovative biopolymers and devices for biomedicine' [1, 11.G34.31.0013]; Government of the Russian Federation [220]; RF President for supporting young Doctors of Sciences [MD-3112.2012.4]

Найти похожие
6.


   
    A Glucose-Utilizing Strain, Cupriavidus euthrophus B-10646: Growth Kinetics, Characterization and Synthesis of Multicomponent PHAs [Text] / T. . Volova [et al.] // PLoS One. - 2014. - Vol. 9, Is. 2. - Ст. e87551, DOI 10.1371/journal.pone.0087551. - Cited References: 64. - This study was financially supported by Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" (Agreement No. 11.G34.31.0013 with Amendment No. 1 of 15 February 2013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning." The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. . - ISSN 1932-6203
РУБ Multidisciplinary Sciences
Рубрики:
RALSTONIA-EUTROPHA
   BIODEGRADABLE POLYHYDROXYALKANOATES

   AEROMONAS-HYDROPHILA

   ESCHERICHIA-COLI

   MOLECULAR-WEIGHT

   SURFACE-ENERGY

   NORTH PACIFIC

   TERPOLYESTER

   BIOSYNTHESIS

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE-CO-3-HYDROXYHEXANOATE)

Аннотация: This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, c-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physicalmechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB.

WOS
Держатели документа:
[Volova, Tatiana
Kiselev, Evgeniy
Nikolaeva, Elena
Sukovatiy, Aleksey
Shishatskaya, Ekaterina] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Volova, Tatiana
Vinogradova, Olga
Shishatskaya, Ekaterina] Siberian Fed Univ, Krasnoyarsk, Russia
[Chistyakov, Anton] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T...; Kiselev, E...; Vinogradova, O...; Nikolaeva, E...; Chistyakov, A...; Sukovatiy, A...; Shishatskaya, E...; Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" [11.G34.31.0013]

Найти похожие
7.


   
    Adaptive simulation of atmospheric phenomena [Text] / J. P. Lankin ; ed. GA Zherebtsov [et al.] // EIGHTH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS. Ser. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE) : SPIE-INT SOC OPTICAL ENGINEERING, 2002. - Vol. 4678: 8th International Symposium on Atmospheric and Ocean Optics - Atmospheric Physics (JUN 25-29, 2001, IRKUTSK, RUSSIA). - P. 668-679, DOI 10.1117/12.458507. - Cited References: 46 . - ISBN 0277-786X. - ISBN 0-8194-4433-2
РУБ Meteorology & Atmospheric Sciences + Optics + Spectroscopy

Кл.слова (ненормированные):
atmosphere -- system -- adaptation -- self-adaptation -- neuroinformatics
Аннотация: The paper describes scientific methodology of developing complex nonlinear dynamic models which form the basis of a new scientific trend called Stikhioniks(1) and are a efficient tool to devise atmosphere models. The model is aimed to develop complexly organized hierarchical non-equilibrium adaptive systems with a wide range of connections and elements and is a new step as related to the now dominant mechanical-statistical paradigm.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Lankin, J.P.; Zherebtsov, GA \ed.\; Matvienko, GG \ed.\; Banakh, VA \ed.\; Banakh, \ed.\

Найти похожие
8.


   
    Essence of life and multiformity of its realization: expected signatures of life [Text] / S. I. Bartsev ; ed. G Horneck [et al.] // SPACE LIFE SCIENCES: SEARCH FOR SIGNATURES OF LIFE, AND SPACE FLIGHT ENVIRONMENTAL EFFECTS ON THE NERVOUS SYSTEM. Ser. ADVANCES IN SPACE RESEARCH-SERIES : PERGAMON-ELSEVIER SCIENCE LTD, 2004. - Vol. 33: 2nd World Space Congress/34th COSPAR Scientific Assembly (OCT 10-19, 2002, HOUSTON, TX), Is. 8. - P. 1313-1317, DOI 10.1016/j.asr.2003.08.032. - Cited References: 23 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Biophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
COMPLEX NETWORKS
   EMERGENCE

   EVOLUTION

Кл.слова (ненормированные):
astrobiology -- signatures of life -- essence of life -- multiformity of life
Аннотация: The question on the essence of life as phenomenon is the key one for astrobiology, since the answer to this question determines "breadth of our outlook". Taking Earth's version of life as the pattern extremely under-estimates our estimation of the probability of life origin and respectively expected probability of extraterrestrial life discovery. In the paper the hypothetical key attribute of life in general is selected on the base of comparative analyses and deductive inference. Simulation conducted on the base of neural network model shows that the same function could be realized by means of great variety of structures, which originated in the course of an evolutionary process. So multiplicity of evolutionary outcomes essentially increases the probability of final result - realization of an integrated function providing fitness to environment. Life as the integrated function can be realized via great variety of development ways and structures. A logical consequence of definitions for life as phenomenon is suggested. Final one is "Life is specific organization of informational and energetic processes coupling, enabling choice-making, and displayed as anomalies of different kinds". Anomalies of visible form, mechanical movement, chemical composition and noticeable response are considered. Presented in the paper sweeping generalization is not rigorously proven, however it can play heuristic role in increasing the level of specificity of searching for extraterrestrial life. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bartsev, S.I.; Horneck, G \ed.\; LevasseurRegourd, AC \ed.\; Rabin, BM \ed.\; Rabin, \ed.\

Найти похожие
9.


   
    The general evolution of energy–matter interactions on earth: From a gas whirlwind to a technogenic civilization / N. S. Pechurkin, A. N. Shuvaev // Biophysics. - 2015. - Vol. 60, Is. 2. - P331-334, DOI 10.1134/S0006350915020153 . - ISSN 0006-3509
Кл.слова (ненормированные):
biosphere -- energy transfer -- evolution -- Animalia -- Mammalia -- Protozoa
Аннотация: An idea of the general evolution through the long-term response of the Earth to the external flow of radiant energy from the Sun is proposed. Due to the finiteness of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy has been shown to lead to cyclization of transformations and mass transfer along the emerging gradients. The evolution of the energy–matter interaction follows the pathway of capturing and transferring more energy by a smaller quantity of matter, i.e., the pathway of the increase in the amount of energy used by each unit mass. According to this parameter, the least effective mass transfer is a simple transfer as vortices of gases along the gradients of temperature and pressure, which took place on the primary surface of the planet. Long-term natural selection towards water accumulation on the planet has played a special role in the development of the interaction between energy and matter. Phase transitions (ice, water, and vapor) and mechanical transfers are the most common energy–matter processes. Chemical transformation of substances became possible based on water cycles, cyclic transfers, and transformations and developed with time into biological transformation. This type of energy–matter interaction is the most efficient. In particular, the energy of our star is captured during photosynthesis and utilized in the most active region of its radiation spectrum. During the biological evolution of heterotrophs, a increase in the coefficient that characterizes the energy exchange intensity from protozoa to mammals by several hundred times is most illustrative. The development and current dominance of humans as the species that is most active in the capturing of energy and meaningful organization of its new flows, in particular, based on the organic debris of former biospheres, is amazing but quite natural from the energy standpoint. During the technological evolution of humankind, the energy-exchange intensity for homoiotherms (warm-blooded animals) has increased by 20 times if it is recalculated for the technological energy that is used by the average inhabitant of the Earth. Thus, the victory of our species in planetary evolution fits well into the mainstream of the general evolution through energy–matter interactions: a multiple increase in star energy has been used to transform the matter on the surface of the irradiated planet. © 2015, Pleiades Publishing, Inc.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Pechurkin, N.S.; Shuvaev, A.N.

Найти похожие
10.


   
    Laser processing of polymer constructs from poly(3-hydroxybutyrate) / T. G. Volova [et al.] // J. Biomater. Sci. Polym. Ed. - 2015. - Vol. 26, Is. 16. - P1210-1228, DOI 10.1080/09205063.2015.1082810 . - ISSN 0920-5063
Кл.слова (ненормированные):
biocompatibility -- biopolymers -- laser processing -- poly(3-hydroxybutyrate) -- polymer materials -- Biocompatibility -- Biomechanics -- Biopolymers -- Bone -- Cell culture -- Pulsed lasers -- Scaffolds (biology) -- Stem cells -- 3t3 mouse fibroblasts -- Bone marrow -- Bone regeneration -- Laser process -- Mesenchymal stem cell -- Poly-3-hydroxybutyrate -- Polymer materials -- Pulsed mode -- Laser materials processing
Аннотация: CO2 laser radiation was used to process poly(3-hydroxybutyrate) constructs - films and 3D pressed plates. Laser processing increased the biocompatibility of unperforated films treated with moderate uniform radiation, as estimated by the number and degree of adhesion of NIH 3T3 mouse fibroblast cells. The biocompatibility of perforated films modified in the pulsed mode did not change significantly. At the same time, pulsed laser processing of the 3D plates produced perforated scaffolds with improved mechanical properties and high biocompatibility with bone marrow-derived multipotent, mesenchymal stem cells, which show great promise for bone regeneration. © 2015 Taylor & Francis.

Scopus,
WOS
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, Russian Federation
School of Engineering Physics and Radio Electronics, Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, Russian Federation
Special Design and Technological Bureau, Nauka Krasnoyarsk Scientific Centre of Siberian Branch, Russian Academy of Sciences, 53 Mir Avenue, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Tarasevich, A. A.; Golubev, A. I.; Boyandin, A. N.; Shumilova, A. A.; Nikolaeva, E. D.; Shishatskaya, E. I.

Найти похожие
11.


   
    Growth and light emission of luminous basidiomycetes cultivated on solid media and in submerged culture [Text] / S. E. Medvedeva [et al.] // Mycosphere. - 2014. - Vol. 5, Is. 4. - P565-577, DOI 10.5943/mycosphere/5/4/9. - Cited References:23. - This study was supported by grant No. 11.G34.31.058 (RF Government) and Projects No. 71 and No. 38 (SB RAS). . - ISSN 2077-7000
РУБ Mycology
Рубрики:
MYCELIAL GROWTH
   PANELLUS-STYPTICUS

   BIOLUMINESCENCE

   LUMINESCENCE

Кл.слова (ненормированные):
luminescence -- luminous higher fungi -- mycelium
Аннотация: There are higher fungi that emit visible light; however, little is known about their requirements for good growth and bright luminescence. Knowledge of these requirements is extremely important for maintaining fungal cultures in laboratory conditions and preparation of luminous mycelia for research purposes. Luminous higher fungi Panellus stipticus, Armillaria sp. and Neonothopanus nambi isolated from different climatic areas and maintained in CCIBSO 836 (Collection of IBP SB RAS, Russia) were used for experiments. Techniques for static and submerged cultivation of mycelia of higher fungi have been developed and optimized for the production of samples of aerial and globular mycelia with prolonged and stable luminescence. We investigated the growth characteristics and luminescence of mycelia cultivated in/on different nutrient media, and the effects of deionized water and mechanical damage on the light emission of mycelia. An increase in luminescence intensity of fungal mycelia can be obtained during cultivation of fungi on a nutrient medium with a certain composition. A significant increase in light emission from N. nambi mycelium can also be obtained after its incubation in water and mechanical damage. The light emission from N. nambi mycelium was greatly enhanced after these treatments, in contrast to the mycelia of Armillaria sp. or P. stipticus. Cultivation conditions that enable growing mycelia with high levels of luminescence will expedite further studies to gain a better understanding of fungal bioluminescence.

WOS
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Medvedeva, S. E.; Artemenko, K. S.; Krivosheenko, A. A.; Rusinova, A. G.; Rodicheva, E. K.; Puzyr, A. P.; Bondar, V. S.; RF Government [11.G34.31.058]; SB RAS [71, 38]

Найти похожие
12.


   
    Synthesis of P(3HB-co-3HHx) copolymers containing high molar fraction of 3-hydroxyhexanoate monomer by Cupriavidus eutrophus B10646 / T. G. Volova [et al.] // J. Chem. Technol. Biotechnol. - 2016. - Vol. 91, Is. 2. - P416-425, DOI 10.1002/jctb.4592 . - ISSN 0268-2575
Кл.слова (ненормированные):
Growth kinetics -- Physicochemical and mechanical properties -- Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) -- Wild-type strain Cupriavidus eutrophus B10646 -- Biomaterials -- Biomechanics -- Chemical industry -- Cultivation -- Growth kinetics -- Mechanical properties -- Organic compounds -- Polymers -- Sodium -- 3-Hydroxyhexanoate -- Bacterial strains -- Cultivation conditions -- Kinetic properties -- Physico-chemical and mechanical properties -- Physiological range -- Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) -- Wild-type strain -- Strain
Аннотация: BACKGROUND: P(3HB-co-3HHx) copolymers are very promising biomaterials. The main challenge in the production of these polymers is to simultaneously achieve high cell biomass; high P(3HB-co-3HHx) content; and high molar fraction of 3HHx in P(3HB-co-3HHx). The most common approach to production of these copolymers is the use of recombinant bacterial strains. The purpose of this study was to optimize the process of production of P(3HB-co-3HHx) copolymers containing high molar fractions of 3HHx by using the wild-type strain Cupriavidus eutrophus B10646. RESULTS: Kinetic properties of C. eutrophus B10646 were studied during cultivation of the cells on substrates necessary for P(3HB-co-3HHx) synthesis: glucose, nitrogen, sodium hexanoate, and sodium acrylate. The physiological ranges of their effects were determined experimentally, and C. eutrophus B10646 was grown in culture media with different dosages of these substrates. P(3HB-co-3HHx) copolymers with different molar fractions of 3HHx, including high ones (12 to 68%), were synthesized, and their physicochemical and mechanical properties were investigated. CONCLUSION: For the first time, cultivation conditions of Cupriavidus eutrophus B10646 enabled production of high biomass yields (5-6gL-1) and high content of the polymer (60-75%) that contained high 3HHx molar fraction. By varying the 3HB/3HHx ratio, one can change physicochemical and mechanical properties of P(3HB-co-3HHx) copolymers. © 2014 Society of Chemical Industry © 2016 Society of Chemical Industry.

Scopus,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Akademgorodok 50, Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodny pr, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Syrvacheva, D. A.; Zhila, N. O.; Sukovatiy, A. G.

Найти похожие
13.


   
    Properties of a novel quaterpolymer P(3HB/4HB/3HV/3HHx) / T. G. Volova [et al.] // Polymer. - 2016. - Vol. 101. - P67-74, DOI 10.1016/j.polymer.2016.08.048 . - ISSN 0032-3861
Кл.слова (ненормированные):
Physicochemical and mechanical properties -- Polyhydroxyalkanoates -- Quaterpolymers -- Biocompatibility -- Cell culture -- Chain length -- Chains -- Decomposition -- 3-Hydroxyhexanoate -- Degrees of crystallinity -- Elongation at break -- Physico-chemical and mechanical properties -- Polyhydroxyalkanoates -- Quaterpolymers -- Short chain lengths -- Thermal decomposition temperature -- Film preparation
Аннотация: Cupriavidus eutrophus В10646 was used to synthesize a series of polyhydroxyalkanoate (PHA) quaterpolymers composed of the short-chain-length 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB), and 3-hydroxyvalerate (3HV) and the medium-chain-length 3-hydroxyhexanoate (3HHx). The molar fraction of 3HB in the quaterpolymers varied between 63.5 and 93.1 mol.%, 3HV – between 1.1 and 24.6 mol.%, 4HB – between 2.4 and 15.6 mol.%, and 3HHx – between 0.4 and 4.8 mol.%. The properties of PHA quaterpolymers were significantly different from those of the P(3HB) homopolymer: they had much lower degrees of crystallinity (up to 30–45%), and lower melting points and thermal decomposition temperatures, with the interval between these temperatures remaining practically unchanged. Films prepared from PHA quaterpolymers were rougher and more porous than P(3HB) films; they showed higher values of elongation at break (up to 6–113%), i.e. were more elastic. Films prepared from PHA quaterpolymers were biocompatible and had no toxic effect on mouse fibroblast NIH 3T3 cells. © 2016 Elsevier Ltd

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, Russian Federation
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Institute of Chemistry and Chemical Technology of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Vinogradova, O. N.; Zhila, N. O.; Peterson, I. V.; Kiselev, E. G.; Vasiliev, A. D.; Sukovatiy, A. G.; Shishatskaya, E. I.

Найти похожие
14.


   
    A study of synthesis and properties of poly-3-hydroxybutyrate/diethylene glycol copolymers / T. Volova [et al.] // Biotechnol. Prog. - 2016. - Vol. 32, Is. 4. - P1017-1028, DOI 10.1002/btpr.2267 . - ISSN 8756-7938
Кл.слова (ненормированные):
biocompatibility -- biosynthesis -- molecular weight -- physicochemical and mechanical properties -- poly(3-hydroxybutyrate)/diethylene glycol copolymers -- Biochemistry -- Biocompatibility -- Biosynthesis -- Cell culture -- Cell membranes -- Cells -- Cytology -- Fatty acids -- Glycols -- Molecular weight -- American Institute of Chemical Engineers -- Biological properties -- Chemical compositions -- Cytoplasmic membrane -- Degree of saturations -- Physico-chemical and mechanical properties -- Physiological effects -- Poly-3-hydroxybutyrate -- Biomechanics
Аннотация: This study investigates synthesis of poly(3-hydroxybutyrate)/diethylene glycol copolymers (P3HB/DEG) by Cupriavidus eutrophus B-10646 cells as related to DEG concentration in the medium and the time when it is added to the culture of cells synthesizing P3HB. The study determines the limits of physiological effect of DEG on C. eutrophus cells, showing that at DEG concentrations above 30 g/L, it inhibits cell growth, decreasing cell concentration and total P3HB/DEG yield and inducing an increase in the degree of saturation of fatty acids in lipids of cell cytoplasmic membrane. A series of copolymers containing different molar fractions of DEG (between 0.13 and 3.0 mol%) have been synthesized and their physicochemical, physical/mechanical, and biological properties have been investigated as related to the chemical composition and proportions of DEG monomers of the polymers. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1017–1028, 2016. © 2016 American Institute of Chemical Engineers

Scopus,
Смотреть статью,
WOS
Держатели документа:
Inst. of Biophysics SB RAS, Akademgorodok 50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T.; Zhila, N.; Kiselev, E.; Shishatskaya, E.

Найти похожие
15.


   
    Luminescence of wood samples during long-term storage / A. P. Puzyr, S. E. Medvedeva // Mycosphere. - 2016. - Vol. 7, Is. 6. - P716-727, DOI 10.5943/mycosphere/7/6/2 . - ISSN 2077-7000
Кл.слова (ненормированные):
Light emitting wood -- Luminous mycelia
Аннотация: The present study describes changes in the mycelium of the fungus growing on the luminescent wood collected on Borneo Island in early December 2013 that occurred during 31 months of storage. The study shows that wood samples retain their ability to emit light, forming two types of luminescent mycelium: surface mycelium and aerial mycelium. The hyphae of the surface mycelium form on the surface of the wood sample and then spread over the surface of the polyethylene bag or over the surface of the bottom of tissue culture flasks containing the samples. The aerial mycelium develops later and only in tissue culture flasks, forming biomass composed of local interlaced hyphae, growing upward. The surface mycelium is characterized by non-uniform "flickering" luminescence along the hyphae. There is no diurnal periodicity in the luminescence of this fungus, but luminescence is increased by mechanical disturbance or exposure to ultraviolet radiation. The local impact of these factors causes an increase in luminescence of the mycelium regions that have not been directly affected. It has been assumed that the variable level of luminescence is an individual trait of this fungus species. The results obtained in this study suggest that luminescent wood found on Borneo Island contains mycelium of a fungus species, whose luminescent properties are essentially different from those of the fungi described in the scientific literature.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center 'Krasnoyarsk Science Center SB RAS', Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Puzyr, A. P.; Medvedeva, S. E.

Найти похожие
16.


   
    Active mixing of immobilised enzymatic system in microfluidic chip / K. A. Lukyanenko [et al.] // Micro Nano Lett. - 2017. - Vol. 12, Is. 6. - P377-381, DOI 10.1049/mnl.2016.0646. - Cited References:17. - The research was supported by the grant of the Russian Science Foundation (project no. 15-19-10041). . - ISSN 1750-0443
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
POLY(METHYL METHACRYLATE)
   SURFACE MODIFICATION

   POINT

   DEVICES

   PMMA

Аннотация: Parameters for sample introduction, dried reagents dissolution and mixing with sample for bienzyme system NAD(H):FMN-oxidoreductase and luciferase immobilised in microfluidic chip were successfully determined. Numerical simulations of reaction chamber geometry, flavin mononucleotide (FMN) escape from starch gel and mixing options were conducted to achieve higher sensitivity of bioluminescent reaction. Results of numerical simulations were verified experimentally. The active mixer for dried reagents was made from an electro-mechanical speaker's membrane which was connected to the input of the chip. Such a mixer provided better efficiency than a passive mixing, and it is simple enough for use in point-of-care devices with any systems based on immobilised enzymes in chips.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
ITMO Univ, St Petersburg 197101, Russia.
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Inst Analyt Instrumentat, St Petersburg 198095, Russia.

Доп.точки доступа:
Lukyanenko, Kirill A.; Belousov, Kirill I.; Denisov, Ivan A.; Yakimov, Anton S.; Esimbekova, Elena N.; Bukatin, Anton S.; Evstrapov, Anatoly A.; Belobrov, Peter I.; Russian Science Foundation [15-19-10041]

Найти похожие
17.


   
    Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics / T. G. Volova [et al.] // Polym Test. - 2018. - Vol. 65. - P54-68, DOI 10.1016/j.polymertesting.2017.10.023 . - ISSN 0142-9418
Кл.слова (ненормированные):
Antibacterial activity -- Antibiotics -- Bacterial cellulose -- Composites -- Properties -- Silver nanoparticles -- Antibiotics -- Atoms -- Boron carbide -- Cell culture -- Cellulose -- Cellulose films -- Composite materials -- Escherichia coli -- Materials testing apparatus -- Metal nanoparticles -- Nanocomposite films -- Nanoparticles -- Scanning electron microscopy -- Silver compounds -- Spectrum analysis -- Synthesis (chemical) -- Tensile testing -- Water pollution -- X ray analysis -- Anti-bacterial activity -- Antibacterial properties -- Bacterial cellulose -- Mechanical characteristics -- Properties -- Silver nanoparticles -- Structure and properties -- Tensile testing machines -- Silver -- Antibiotics -- Cellulose -- Composites -- Properties -- Silver
Аннотация: The present study describes production of bacterial cellulose composites with silver nanoparticles and antibiotics and compares their properties. Bacterial cellulose (BC) composites synthesized in the culture of the strain of acetic acid bacterium Komagataeibacter xylinus VKPM B-12068 with silver nanoparticles, BC/AgNps, were produced hydrothermally, under different AgNO3 concentrations (0.0001, 0.001, and 0.01 M) in the reaction medium. The presence of silver in the BC/AgNp composites was confirmed by elemental analysis conducted using scanning electron microscopy with a system of X-ray spectral analysis. Analysis showed that the average atomic number of silver particles in composite samples depended on the concentration of AgNO3: as AgNO3 concentration in the reaction solution was increased, silver content in the composites increased from 0.044 to 0.37 mg/cm2. BC composites with amikacin and ceftriaxone were prepared by immersing dry BC films in solutions containing different concentrations of the antibiotics. The surface structure and properties and physicochemical and mechanical characteristics of composites were investigated using SEM, DSC, X-ray analysis, the system for measuring water contact angles, and electromechanical tensile testing machine. The disk-diffusion method and the shake-flask culture method used in this study showed that all experimental composites had pronounced antibacterial activity against E. coli, Ps. eruginosa, K. pneumoniae, and St. aureus, and the BC/antibiotic composites were more active than BC/AgNp ones; S. aureus was the most susceptible to the effect of BC composites. No potential cytotoxicity was detected in any of the BC/AgNp composites in the NIH 3T3 mouse fibroblast cell culture, in contrast to the BC/antibiotic composites. These results suggest that BC composites constructed in the present study hold promise as dressings for managing wounds, including contaminated ones. © 2017 Elsevier Ltd

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 43/50 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Shumilova, A. A.; Shidlovskiy, I. P.; Nikolaeva, E. D.; Sukovatiy, A. G.; Vasiliev, A. D.; Shishatskaya, E. I.

Найти похожие
18.


   
    Electrospinning of degradable phas: Process, properties, applications / T. G. Volova [et al.] // : Nova Science Publishers, Inc., 2017. - P1-56
Кл.слова (ненормированные):
Biological and physical/mechanical properties -- Cell proliferation -- Electrospinning -- Nonwoven membranes -- Pha -- Scaffolds -- Skin regeneration -- Ultrafine fibers -- Wound dressings
Аннотация: An integrated study has been performed to investigate the process of formation of ultrafine fibers and nonwoven membranes by electrospinning from natural degradable polymers-polyhydroxyalkanoates (PHAs); physical, mechanical, and biological properties of the products have been studied. Then, electrospinning was used to prepare ultrafine fibers from PHAs with different compositions: P(3HB) and its copolymers P(3HB-co-4HB), P(3HB-co-3HV), and P(3HB-co-3HHx). The main process parameters, that influence UF-fiber diameter and properties of fibrous non-woven membranes) (polymer concentration, solution feeding rate, working distance, and applied voltage), were investigated and their effects evaluated. This study was the first to compare biological and physical/mechanical parameters of PHAs with different chemical compositions as dependent upon the fractions of monomers, constituting the polymers and fiber orientation. Electrospun polymer membranes, prepared from the [P(3HB-co-4HB)], were tested as wound dressings. The developed nonwoven membranes can be used as the equivalent of collagen skine dressings in the treatment of burns of degree II. Experiments on laboratory animals with model skin defects showed, that the membranes fitted the wound shape good, protected the wound from external influences, and facilitated wound healing, promoting fast repair. The successful experiments on laboratory animals were followed by pilot clinical trials of nanomembranes, comprised of PHA membranes as wound dressings in the treatment of septic wounds. During the regeneration phase, PHA membranes served as a scaffold for the new tissue on the skin and filled out soft tissue defects. The formation of the uniform and sufficiently vascularized tissue is a prerequisite for quicker wound healing and can serve as a basis for the subsequent skin grafting and spontaneous re-epithelialization of superficial wounds. The wound dressing, tested in this clinical trial, performs important physiological functions of natural skin, provides a barrier against secondary infection, reduces fluid loss, and, at the same time, does not keep the air out. © 2017 Nova Science Publishers, Inc.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Goncharov, D. B.; Nikolaeva, E. D.; Shishatskaya, E. I.

Найти похожие
19.


   
    Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units / N. Zhila, E. Shishatskaya // Int. J. Biol. Macromol. - 2018. - Vol. 111. - P1019-1026, DOI 10.1016/j.ijbiomac.2018.01.130. - Cited References:39. - The research was supported by the Russian Science Foundation (grant No. 17-15-01352). . - ISSN 0141-8130. - ISSN 1879-0003
РУБ Biochemistry & Molecular Biology + Chemistry, Applied + Polymer Science
Рубрики:
ALCALIGENES-FAECALIS T1
   COMAMONAS-ACIDOVORANS

   ENZYMATIC DEGRADATION

Кл.слова (ненормированные):
Polyhydroxyalkanoates -- 4-Hydroxybutyrate monomer units -- Physicochemical -- and mechanical properties
Аннотация: The present study investigates physicochemical, mechanical, and biological properties of polyhydroxyalkanoate (PHA) copolymers containing 4-hydroxybutyrate (4HB) synthesized in Cupriavidus eutrophus B10646 culture. In poly(3-hydroxybutyrate/4-hydroxybutyrate) [P(3HB/4HB)]bipolymers, 4HB varied between 10.4 and 75.0 mol%; in poly(3-hydroxybutyrate/3-hydroxyvalerate/4-hydroxybutyrate) terpolymers, 4HB constituted 28.7-55.6 mol%; and in poly(3-hydroxybutyrate/3-hydroxyvalerate/4-hydroxybutyrate/3-hydroxyhexanoate) quaterpolymers, 4HB varied between 9.3 and 13.3 mol%. The degree of crystallinity of P(3HB/4HB) copolymers decreased consistently with an increase in 4HB content, reaching 38%. The incorporation of 3-hydroxyvalerate and 3-hydroxyhexanoate into copolymers enhanced that effect. The effect of 4HB monomer units on temperature properties of copolymers was exhibited as lowering of the melting temperature and crystallization temperature, which improved the processing-related properties of the copolymers. All copolymers containing 4HB showed enhanced elongation at break compared to poly(3-hydroxybutyrate). Polymer films prepared from PHA5 with different chemical composition had similar microstructure and porosity and had no toxic effect on mouse fibroblast NIH 3 T3 cells, proving their high biocompatibility. (C) 2018 Elsevier B.V. All rights reserved.

WOS,
Смотреть статью
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Ave, Krasnoyarsk 660041, Russia.
RAS, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys,SB, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Zhila, Natalia; Shishatskaya, Ekaterina; Russian Science Foundation [17-15-01352]

Найти похожие
20.


   
    Polyhydroxyalkanoates (PHA) for therapeutic applications / J. Y. Zhang [et al.] // Mater. Sci. Eng. C-Mater. Biol. Appl. - 2018. - Vol. 86. - P144-150, DOI 10.1016/j.msec.2017.12.035. - Cited References:105. - This research was financially supported by a grant from Ministry of Sciences and Technology (Grant No. 2016YFB0302504); grants from National Natural Science Foundation of China (Grant No. 31430003, 31600072 and 81503079); a grant from Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB215204); and a grant from Russian Science Foundation (Grant No. 17-15-01352). Tsinghua President Fund also supported this project (Grant No. 2015THZ10). . - ISSN 0928-4931. - ISSN 1873-0191
РУБ Materials Science, Biomaterials
Рубрики:
TISSUE ENGINEERING APPLICATIONS
   3-HYDROXYBUTYRATE METHYL-ESTER

Кл.слова (ненормированные):
PHA -- Therapeutics -- Tissue engineering -- Implants -- Drug delivery -- Biomedicine
Аннотация: As intracellular carbon and energy storage materials, polyhydroxyalkanoates (PHA) are a diverse biopolyesters synthesized by many bacteria. PHA have been produced in large quantity for various application research including medical implants for approximately 30 years. Many studies demonstrated that PHA are promising implant materials due to their diverse and ascendant mechanical, biodegradable and tissue compatible properties. Importantly, common PHA biodegradation products including oligomers and monomers are also not toxic to the cells and tissues. Pharmaceutical applications of some PHA degradation products also have been reported. So far, no study has been reported to have any carcinogenesis result induced by any PHA or their biodegradation products. All results suggest that PHA could be developed into various bio-implant products.

WOS,
Смотреть статью
Держатели документа:
Nanchang Univ, Inst Life Sci, Lab Fear & Anxiety Disorders, Nanchang 330031, Jiangxi, Peoples R China.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Tsinghua Univ, Sch Life Sci, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China.
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.
Univ Sao Paulo, Inst Ciencias Biomed, Dept Microbiol, BR-05509900 Sao Paulo, Brazil.

Доп.точки доступа:
Zhang, Junyu; Shishatskaya, Ekaterina I.; Volova, Tatiana G.; da Silva, Luiziana Ferreira; Chen, Guo-Qiang; Ministry of Sciences and Technology [2016YFB0302504]; National Natural Science Foundation of China [31430003, 31600072, 81503079]; Natural Science Foundation of Jiangxi Province [20161BAB215204]; Russian Science Foundation [17-15-01352]; Tsinghua President Fund [2015THZ10]

Найти похожие
 1-20    21-40  
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)