Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=richness<.>)
Общее количество найденных документов : 11
Показаны документы с 1 по 11
1.


   
    Community structure and vertical distribution of planktonic ciliates in the saline meromictic lake Shira during breakdown of meromixis / E. B. Khromechek, Y. V. Barkhatov, D. Y. Rogozin // Ecohydrol. Hydrobiol. - 2020, DOI 10.1016/j.ecohyd.2020.08.001 . - Article in press. - ISSN 1642-3593
Кл.слова (ненормированные):
Chemocline -- Ciliates -- Meromictic lakes -- Meromixis breakdown
Аннотация: The study deals with the vertical distribution and seasonal dynamics of planktonic ciliates in the pelagic and littoral zones of a saline meromictic Lake Shira. Fourteen species of free-living ciliates have been found in the Lake, seven of them inhabiting the pelagic zone. The richness of ciliates is higher both in terms of the number of species and biomass in the littoral zone compared to the pelagic zone. Although the ciliate species diversity is low in the pelagic zone, in certain seasons, the biomass of some of the species may reach considerable values, up to 3.4 g m?2 in the water column. The biomass of ciliates in Lake Shira is generally comparable to the average values for other mesotrophic lakes. The abundance and composition of ciliate populations in Lake Shira vary considerably with depth. Changes in the Lake ecosystem caused by meromixis breakdown in 2015-2016, which induced considerable variations in many Lake components, affected the vertical distribution of planktonic ciliates. However, the annual average biomass of the species that inhabited the Lake before meromixis breakdown remained unchanged. The total ciliate biomass increased due to the presence of the new species. © 2020 Elsevier Ltd

Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Khromechek, E. B.; Barkhatov, Y. V.; Rogozin, D. Y.

Найти похожие
2.


   
    Spatiotemporal Changes in the Bacterial Community of the Meromictic Lake Uchum, Siberia / Y. F. Chan, P. W. Chiang, K. Tandon [et al.] // Microb. Ecol. - 2020, DOI 10.1007/s00248-020-01592-9. - Cited References:77. - This work was supported by the Russian Foundation for Basic Research (grant no. 19-05-00428) and the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (project: "Bottom sediments of Lake Uchum (Krasnoyarsky kray) as a source of information for the reconstruction of the paleo-climate and the prediction of the healing properties of the lake", grant no. 18-45-243002) and the Ministry of Science and Technology, Taiwan (project: "Transition in microbial community of stratified lakes in arid zone of South Siberia: Current and Past," grant no. 105-2923-B-001-001-MY3 and project: "Postdoctoral Research Fellows", grant no. 108-2811-M-001-603). . - Article in press. - ISSN 0095-3628. - ISSN 1432-184X
РУБ Ecology + Marine & Freshwater Biology + Microbiology
Рубрики:
PHOTOTROPHIC SULFUR BACTERIA
   SP NOV.

   MICROBIAL COMMUNITIES

Кл.слова (ненормированные):
Lake Uchum -- bacterial community -- meromictic lake -- purple sulfur bacteria
Аннотация: Lake Uchum is a newly defined meromictic lake in Siberia with clear seasonal changes in its mixolimnion. This study characterized the temporal dynamics and vertical profile of bacterial communities in oxic and anoxic zones of the lake across all four seasons: October (autumn), March (winter), May (spring), and August (summer). Bacterial richness and diversity in the anoxic zone varied widely between time points.Proteobacteriawas the dominant bacterial phylum throughout the oxic and anoxic zones across all four seasons.Alphaproteobacteria(Loktanella) andGammaproteobacteria(Aliidiomarina) exhibited the highest abundance in the oxic and anoxic zone, respectively. Furthermore, there was a successional shift in sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria in the anoxic zone across the seasons. The most dominant SRB,Desulfonatronovibriosp., is likely one of the main producers of hydrogen sulfide (H2S) and typically accumulates the most H2S in winter. The representative anoxygenic phototrophic bacterial group in Lake Uchum was purple sulfur bacteria (PSB). PSB were dominant (60.76%) in summer, but only had 0.2-1.5% relative abundance from autumn to spring. Multivariate analysis revealed that the abundance of these SRB and PSB correlated to the concentration of H2S in Lake Uchum. Taken together, this study provides insights into the relationships between changes in bacterial community and environmental features in Lake Uchum.

WOS
Держатели документа:
Acad Sinica, Biodivers Res Ctr, Taipei 115, Taiwan.
Acad Sinica, Taiwan Int Grad Program, Inst Informat Sci, Bioinformat Program, Taipei 115, Taiwan.
Natl Tsing Hua Univ, Inst Mol & Cellular Biol, Hsinchu 300, Taiwan.
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia.
Siberia Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Chan, Ya-Fan; Chiang, Pei-Wen; Tandon, Kshitij; Rogozin, Denis; Degermendzhi, Andrey; Zykov, Vladimir; Tang, Sen-Lin; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-05-00428]; Russian Foundation for Basic Research, Government of Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science (project: "Bottom sediments of Lake Uchum (Krasnoyarsky kray) as a source of information for the reconstruction of the paleo-climate and the prediction of the healing properties of the lake") [18-45-243002]; Ministry of Science and Technology, TaiwanMinistry of Science and Technology, Taiwan [105-2923-B-001-001-MY3, 108-2811-M-001-603]

Найти похожие
3.


   
    Overview of past, current, and future ecosystem and biodiversity trends of inland saline lakes of Europe and Central Asia / E. Zadereev, O. Lipka, B. Karimov [et al.] // Inland Waters. - 2020, DOI 10.1080/20442041.2020.1772034. - Cited References:123 . - Article in press. - ISSN 2044-2041. - ISSN 2044-205X
РУБ Limnology + Marine & Freshwater Biology
Рубрики:
ARAL SEA
   SHALLOW LAKES

   SALT LAKES

   WATER-LEVEL

   HISTORY

Кл.слова (ненормированные):
aquatic -- climate -- conservation -- habitat -- salinity
Аннотация: This review of trends in inland saline lakes of Europe and Central Asia is based on the relevant section of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Regional Assessment Report for Europe and Central Asia (ECA). We assessed the present status of ECA saline lakes and the effects of direct drivers (climate change, land use, pollution, resource exploitation, invasive species) on ecosystem health and biodiversity. We also assessed past, current and future trends using habitat area and degradation, species richness, and endangered species as indicators. No uniform scenario is applicable to saline lakes in the region. The desiccation of the Aral Sea is caused mainly by land use change and water extraction. In the Caspian Sea, river modifications, water pollution, overfishing and poaching, and species invasions have led to a decrease in species richness and have threatened endemic species. Although trends for smaller saline lakes vary, our analysis demonstrates that land use change, over-exploitation, and pollution are more important direct drivers of ecosystem health and biodiversity than climate change. The establishment of baseline biodiversity values for saline lakes is, however, complicated because biodiversity and the food-web structure are variable and depend strongly on salinity. Thus, there is a need to classify the ecological quality, biodiversity and ecosystem services of saline lakes along a salinity gradient. The improvement of water management and reuse of water, conservation measures, and introduction of climate-smart agriculture are basic conditions for the sustainable use of saline lakes in the region.

WOS
Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Yu A Izrael Inst Global Climate & Ecol, Moscow, Russia.
Tashkent Inst Irrigat & Agr Mechanizat Engineers, Tashkent, Uzbekistan.
RAS, Shirshov Inst Oceanol, Gelendzhik, Russia.
WWF Russia, Moscow, Russia.
Univ Porto, Fac Sci, Dept Biol, Porto, Portugal.
Interdisciplinary Ctr Marine & Environm Res Ciima, Porto, Portugal.
Azerbaijan Natl Acad Sci, Inst Bot, Baku, Azerbaijan.
Ariel Univ, Dept Chem Engn, Ariel, Israel.
Ariel Univ, Eastern R&D Ctr, Ariel, Israel.
Univ Bristol, Fac Engn, Bristol, Avon, England.
RAS, Inst Geog, Moscow, Russia.
Inst Global Environm Strategies, Hayama, Kanagawa, Japan.
Univ Bern, Inst Plant Sci, Bern, Switzerland.

Доп.точки доступа:
Zadereev, Egor; Lipka, Oksana; Karimov, Bakhtiyor; Krylenko, Marina; Elias, Victoria; Pinto, Isabel Sousa; Alizade, Valida; Anker, Yaakov; Feest, Alan; Kuznetsova, Daria; Mader, Andre; Salimov, Rashad; Fischer, Markus; Sousa, Isabel

Найти похожие
4.


   
    Biogeographic patterns of planktonic and meiobenthic fauna diversity in inland waters of the Russian Arctic / E. Fefilova, O. Dubovskaya, L. Frolova [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13624 . - Article in press. - ISSN 0046-5070
Кл.слова (ненормированные):
cladocerans -- copepods -- rotifers -- spatial and temporal trends -- species richness
Аннотация: Broad-scale assessment of biodiversity is needed for detection of future changes across substantial regions of the Arctic. Presently, there are large data and information gaps in species composition and richness of the freshwater planktonic and meiobenthos communities of the Russian Arctic. Analysis of these data is very important for identifying the spatial distribution and temporal changes in species richness and diversity of rotifers, cladocerans, and copepods in the continental Russian Arctic. We investigated biogeographic patterns of freshwater plankton and meiobenthos from c. 67° to 73°N by analysing data over the period 1960–2017. These data include information on the composition of rotifers, cladocerans, and copepods obtained from planktonic and meiobenthic samples, as well as from subfossil remains in bottom sediments of seven regions from the Kola Peninsula in the west, to the Indigirka River Basin (east Siberia) in the east. Total richness included 175 species comprised of 49 rotifer genera, 81 species from 40 cladoceran genera, and 101 species from 42 genera of calanoid, cyclopoid, and harpacticoid copepods. Longitudinal trends in rotifer and micro-crustacean diversity were revealed by change in species composition from Europe to eastern Siberia. The most common and widespread species were 19 ubiquitous taxa that included Kellicottia longispina (Rotifera), Chydorus sphaericus s. lat. (Cladocera), Heterocope borealis, Acanthocyclops vernalis, and Moraria duthiei (Copepoda). The highest number of rare species was recorded in the well-studied region of the Bolshezemelskaya tundra and in the Putorana Plateau. The total number of copepod and rotifer species in both Arctic lakes and ponds tended to increase with latitude. Relative species richness of copepods was positively associated with waterbody area, elevation, and precipitation, while relative species richness of cladocerans was positively related to temperature. This result is consistent with known thermophilic characteristics of cladocerans and the cold tolerance properties of copepods, with the former being dominant in shallow, warmer waterbodies of some western regions, and the latter being dominant in large cold lakes and waterbodies of eastern regions. Rotifers showed a negative association with these factors. Alpha- and ?-diversity of zooplankton in the Russian Arctic were strongly related to waterbody type. Lake zooplankton communities were more diverse than those in pond and pool systems. Moreover, the highest ?-diversity values were observed in regions that showed a greater breadth in latitude and highly heterogeneous environmental conditions and waterbody types (Bolshezemelskaya tundra and Putorana Plateau). Redistribution of freshwater micro-fauna caused by human activities occurred in the 1990s and 2000s. As a result of climate warming, a few cladoceran species appear to have extended their range northward. Nevertheless, the rotifer and micro-crustacean fauna composition and diversity of the majority of Arctic regions generally remain temporally conservative, and spatial differences in composition and species richness are chiefly associated with the differences between the warmer European and colder east Siberian climates. © 2020 John Wiley & Sons Ltd.

Scopus
Держатели документа:
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
Institute of Biophysics of Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russian Federation
Lena Delta Nature Reserve, Tiksi, Sakha Republic, Russian Federation
Finnish Natural History Museum LUOMUS University of Helsinki, Helsinki, Finland

Доп.точки доступа:
Fefilova, E.; Dubovskaya, O.; Frolova, L.; Abramova, E.; Kononova, O.; Nigamatzyanova, G.; Zuev, I.; Kochanova, E.

Найти похожие
5.


   
    Biogeographic patterns of planktonic and meiobenthic fauna diversity in inland waters of the Russian Arctic / E. Fefilova, O. Dubovskaya, L. Frolova [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13624. - Cited References:63. - We would like to thank A. Kotov, N. Korovchinsky, A. Sinev, E. Bekker, N. Smirnov (all from Severtsov Institute of Ecology and Evolution of RAS) for their assistance in Cladocera identification. We are very grateful to Jennifer Lento (University of New Brunswick, Canada) for helping us obtain elevation, temperature, and precipitation data from World Climate and ArcticDEM (NGA-NSF). We are also grateful to Willem Goedkoop for helpful comments on an earlier version of the manuscript. The study was performed in part as Federal Tasks of Department of Animals Ecology of the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (AAAA-A17-117112850235-2), and also of Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences (project No. 51.1.1) and the Siberian Federal University (project No. FSRZ-2020-0006). Monitoring investigations in the Lena River Delta were conducted under the framework of Russian-German, "Lena" expeditions (Alfred Wegener Institute, Potsdam, Germany) with logistic and technical support of Scientific Research Station "Samoylov Island" (Trofimuk Institute of Petroleum-Gas, Geology and Geophysics SB RAS, Novosibirsk). We are grateful to three anonymous reviewers, Guest Editor, Dr Joseph Culp, and the Chief Editor, Prof. Belinda Robson for their useful comments to improve the manuscript. . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
GLOBAL DIVERSITY
   CRUSTACEAN ZOOPLANKTON

   CLADOCERA

   ANOMOPODA

Кл.слова (ненормированные):
cladocerans -- copepods -- rotifers -- spatial and temporal trends -- species -- richness
Аннотация: Broad-scale assessment of biodiversity is needed for detection of future changes across substantial regions of the Arctic. Presently, there are large data and information gaps in species composition and richness of the freshwater planktonic and meiobenthos communities of the Russian Arctic. Analysis of these data is very important for identifying the spatial distribution and temporal changes in species richness and diversity of rotifers, cladocerans, and copepods in the continental Russian Arctic. We investigated biogeographic patterns of freshwater plankton and meiobenthos fromc. 67 degrees to 73 degrees N by analysing data over the period 1960-2017. These data include information on the composition of rotifers, cladocerans, and copepods obtained from planktonic and meiobenthic samples, as well as from subfossil remains in bottom sediments of seven regions from the Kola Peninsula in the west, to the Indigirka River Basin (east Siberia) in the east. Total richness included 175 species comprised of 49 rotifer genera, 81 species from 40 cladoceran genera, and 101 species from 42 genera of calanoid, cyclopoid, and harpacticoid copepods. Longitudinal trends in rotifer and micro-crustacean diversity were revealed by change in species composition from Europe to eastern Siberia. The most common and widespread species were 19 ubiquitous taxa that includedKellicottia longispina(Rotifera),Chydorus sphaericuss. lat. (Cladocera),Heterocope borealis,Acanthocyclops vernalis, andMoraria duthiei(Copepoda). The highest number of rare species was recorded in the well-studied region of the Bolshezemelskaya tundra and in the Putorana Plateau. The total number of copepod and rotifer species in both Arctic lakes and ponds tended to increase with latitude. Relative species richness of copepods was positively associated with waterbody area, elevation, and precipitation, while relative species richness of cladocerans was positively related to temperature. This result is consistent with known thermophilic characteristics of cladocerans and the cold tolerance properties of copepods, with the former being dominant in shallow, warmer waterbodies of some western regions, and the latter being dominant in large cold lakes and waterbodies of eastern regions. Rotifers showed a negative association with these factors. Alpha- and beta-diversity of zooplankton in the Russian Arctic were strongly related to waterbody type. Lake zooplankton communities were more diverse than those in pond and pool systems. Moreover, the highest beta-diversity values were observed in regions that showed a greater breadth in latitude and highly heterogeneous environmental conditions and waterbody types (Bolshezemelskaya tundra and Putorana Plateau). Redistribution of freshwater micro-fauna caused by human activities occurred in the 1990s and 2000s. As a result of climate warming, a few cladoceran species appear to have extended their range northward. Nevertheless, the rotifer and micro-crustacean fauna composition and diversity of the majority of Arctic regions generally remain temporally conservative, and spatial differences in composition and species richness are chiefly associated with the differences between the warmer European and colder east Siberian climates.

WOS
Держатели документа:
Russian Acad Sci, Inst Biol, Komi Sci Ctr, Ural Branch, Kommunisticheskaya 28, Syktyvkar 167982, Russia.
Russian Acad Sci, Inst Biophys, Fed Res Ctr, Krasnoyarsk Sci Ctr,Siberian Branch, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Kazan Fed Univ, Inst Geol & Petr Technol, Kazan, Russia.
Lena Delta Nat Reserve, Tiksi, Sakha Republic, Russia.
Univ Helsinki, Finnish Nat Hist Museum LUOMUS, Helsinki, Finland.

Доп.точки доступа:
Fefilova, Elena; Dubovskaya, Olga; Frolova, Larisa; Abramova, Ekaterina; Kononova, Olga; Nigamatzyanova, Gulnara; Zuev, Ivan; Kochanova, Elena; Federal Tasks of Department of Animals Ecology of the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences [AAAA-A17-117112850235-2]; Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences [51.1.1]; Siberian Federal University [FSRZ-2020-0006]

Найти похожие
6.


   
    Community structure and vertical distribution of planktonic ciliates in the saline meromictic lake Shira during breakdown of meromixis / E. B. Khromechek, Y. V. Barkhatov, D. Y. Rogozin // Ecohydrol. Hydrobiol. - 2021. - Vol. 21, Is. 1. - P142-152, DOI 10.1016/j.ecohyd.2020.08.001. - Cited References:41. - The authors are grateful to F.F. Kozlov, V.V. Zykov, and A.P. Tolomeev for their assistance during field studies. The present study was funded by RFBR and Krasnoyarsk Krai Government and the Krasnoyarsk Regional Fund of Science, project number 19-44-240002. The present study was financially supported by Russian Foundation for Basic Research (RFBR) Project No. 19-05-00428. . - ISSN 1642-3593. - ISSN 2080-3397
РУБ Ecology + Water Resources
Рубрики:
SHUNET SOUTH SIBERIA
   SEASONAL SUCCESSION

   PROTOZOA

   FOOD

Кл.слова (ненормированные):
Ciliates -- Meromictic lakes -- Chemocline -- Meromixis breakdown
Аннотация: The study deals with the vertical distribution and seasonal dynamics of planktonic ciliates in the pelagic and littoral zones of a saline meromictic Lake Shira. Fourteen species of free-living ciliates have been found in the Lake, seven of them inhabiting the pelagic zone. The richness of ciliates is higher both in terms of the number of species and biomass in the littoral zone compared to the pelagic zone. Although the ciliate species diversity is low in the pelagic zone, in certain seasons, the biomass of some of the species may reach considerable values, up to 3.4 g m(-2) in the water column. The biomass of ciliates in Lake Shira is generally comparable to the average values for other mesotrophic lakes. The abundance and composition of ciliate populations in Lake Shira vary considerably with depth. Changes in the Lake ecosystem caused by meromixis breakdown in 2015-2016, which induced considerable variations in many Lake components, affected the vertical distribution of planktonic ciliates. However, the annual average biomass of the species that inhabited the Lake before meromixis breakdown remained unchanged. The total ciliate biomass increased due to the presence of the new species. (C) 2021 European Regional Centre for Ecohydrology of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Khromechek, Elena B.; Barkhatov, Yuri, V; Rogozin, Denis Y.; Barkhatov, Yuri V.; RFBRRussian Foundation for Basic Research (RFBR); Krasnoyarsk Krai Government; Krasnoyarsk Regional Fund of Science [19-44-240002]; Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR) [19-05-00428]

Найти похожие
7.


   
    Data on taxa composition of freshwater zooplankton and meiobenthos across Arctic regions of Russia / E. Fefilova, O. Dubovskaya, O. Kononova [et al.] // Data Brief. - 2021. - Vol. 36. - Ст. 107112, DOI 10.1016/j.dib.2021.107112 . - ISSN 2352-3409
Кл.слова (ненормированные):
Arctic -- Cladocerans -- Copepods -- Fresh waters -- Meiobenthos -- Rotifers -- Species list -- Zooplankton
Аннотация: We present the presence/absence species list (Table 1) of rotifer, cladoceran, and copepod (Calanoida, Harpacticoida, and Cyclopoida) fauna from seven Arctic regions of Russia (the Kola Peninsula, the Pechora River Delta, the Bolshezemelskaya tundra, the Polar Ural, the Putorana Plateau, the Lena River Delta, and the Indigirka River Basin) based on our own and literature data. Our own records were obtained by analyzing samples of zooplankton, meiobenthos, and two cores of bottom sediments (from the Kola Peninsula and the Bolshezemelskaya tundra lakes) that we collected once in July or August in 1992, 1995–2017. To supplement the list, we used relevant literature with periods of research from the 1960s to the 2010s. The list is almost identical to “Dataset 2: Zooplankton and Meiofauna across Arctic Regions of Russia”, which was analyzed but not published in [1]. The detailed analysis of this list revealed the specific composition of the aquatic fauna associated with the climatic and geographical factors [1]. The data provide information on the current state of biodiversity and species richness in Arctic fresh waters and can serve as the basis for monitoring these environments and predicting how they are likely to change in the future. © 2021

Scopus
Держатели документа:
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Kommunisticheskaya 28, Syktyvkar, 167982, Russian Federation
Institute of Biophysics of Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk, 660041, Russian Federation
Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlyovskaya 18, Kazan, 420008, Russian Federation
Lena Delta Nature Reserve, Ak. Fedorova 28, Sakha Republic, Tiksi 678400, Russian Federation

Доп.точки доступа:
Fefilova, E.; Dubovskaya, O.; Kononova, O.; Frolova, L.; Abramova, E.; Nigamatzyanova, G.

Найти похожие
8.


   
    First circumpolar assessment of Arctic freshwater phytoplankton and zooplankton diversity: Spatial patterns and environmental factors / A. K. Schartau, H. L. Mariash, K. S. Christoffersen [et al.] // Freshw. Biol. - 2021, DOI 10.1111/fwb.13783 . - Article in press. - ISSN 0046-5070
Кл.слова (ненормированные):
ecoregions -- latitude -- taxonomic richness -- temperature -- ? diversity -- ? diversity
Аннотация: Arctic freshwaters are facing multiple environmental pressures, including rapid climate change and increasing land-use activities. Freshwater plankton assemblages are expected to reflect the effects of these stressors through shifts in species distributions and changes to biodiversity. These changes may occur rapidly due to the short generation times and high dispersal capabilities of both phyto- and zooplankton. Spatial patterns and contemporary trends in plankton diversity throughout the circumpolar region were assessed using data from more than 300 lakes in the U.S.A. (Alaska), Canada, Greenland, Iceland, the Faroe Islands, Norway, Sweden, Finland, and Russia. The main objectives of this study were: (1) to assess spatial patterns of plankton diversity focusing on pelagic communities; (2) to assess dominant component of ? diversity (turnover or nestedness); (3) to identify which environmental factors best explain diversity; and (4) to provide recommendations for future monitoring and assessment of freshwater plankton communities across the Arctic region. Phytoplankton and crustacean zooplankton diversity varied substantially across the Arctic and was positively related to summer air temperature. However, for zooplankton, the positive correlation between summer temperature and species numbers decreased with increasing latitude. Taxonomic richness was lower in the high Arctic compared to the sub- and low Arctic for zooplankton but this pattern was less clear for phytoplankton. Fennoscandia and inland regions of Russia represented hotspots for, respectively, phytoplankton and zooplankton diversity, whereas isolated regions had lower taxonomic richness. Ecoregions with high ? diversity generally also had high ? diversity, and turnover was the most important component of ? diversity in all ecoregions. For both phytoplankton and zooplankton, climatic variables were the most important environmental factors influencing diversity patterns, consistent with previous studies that examined shorter temperature gradients. However, barriers to dispersal may have also played a role in limiting diversity on islands. A better understanding of how diversity patterns are determined by colonisation history, environmental variables, and biotic interactions requires more monitoring data with locations dispersed evenly across the circumpolar Arctic. Furthermore, the importance of turnover in regional diversity patterns indicates that more extensive sampling is required to fully characterise the species pool of Arctic lakes. © 2021 The Authors. Freshwater Biology published by John Wiley & Sons Ltd.

Scopus
Держатели документа:
Norwegian Institute for Nature Research, Oslo, Norway
Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
Freshwater Biological Section, Department of Biology, University of Copenhagen, Copenhagen O, Denmark
Alaska Center for Conservation Science, University of Alaska Anchorage, Anchorage, AK, United States
Institute of Biophysics, Krasnoyarsk Science Center, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biology, Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russian Federation
Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, NB, Canada
Natural History Museum of Kopavogur, Kopavogur, Iceland
Norwegian Institute for Nature Research, Trondheim, Norway
Department of General Ecology and Hydrobiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
State Nature Reserve Wrangel Island, Pevek, Chukotka Autonomous Region, Russian Federation
Departement des sciences fondamentales, Universite du Quebec a Chicoutimi, Saguenay, QC, Canada
Centre for Northern Studies (CEN), Universite Laval, Quebec City, QC, Canada
Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of Biology, Queen’s University, Kingston, ON, Canada
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Lammi Biological Station, University of Helsinki, Lammi, Finland

Доп.точки доступа:
Schartau, A. K.; Mariash, H. L.; Christoffersen, K. S.; Bogan, D.; Dubovskaya, O. P.; Fefilova, E. B.; Hayden, B.; Ingvason, H. R.; Ivanova, E. A.; Kononova, O. N.; Kravchuk, E. S.; Lento, J.; Majaneva, M.; Novichkova, A. A.; Rautio, M.; Ruhland, K. M.; Shaftel, R.; Smol, J. P.; Vrede, T.; Kahilainen, K. K.

Найти похожие
9.


   
    First circumpolar assessment of Arctic freshwater phytoplankton and zooplankton diversity: Spatial patterns and environmental factors / A. K. Schartau, H. L. Mariash, K. S. Christoffersen [et al.] // Freshw. Biol. - 2021, DOI 10.1111/fwb.13783. - Cited References:78. - RFBR, Grant/Award Number: 20-04-00145_a . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
HIGH-LATITUDE LAKES
   CLIMATE-CHANGE

   SPECIES RICHNESS

   BETA DIVERSITY

Кл.слова (ненормированные):
alpha diversity -- beta diversity -- ecoregions -- latitude -- taxonomic -- richness -- temperature
Аннотация: Arctic freshwaters are facing multiple environmental pressures, including rapid climate change and increasing land-use activities. Freshwater plankton assemblages are expected to reflect the effects of these stressors through shifts in species distributions and changes to biodiversity. These changes may occur rapidly due to the short generation times and high dispersal capabilities of both phyto- and zooplankton. Spatial patterns and contemporary trends in plankton diversity throughout the circumpolar region were assessed using data from more than 300 lakes in the U.S.A. (Alaska), Canada, Greenland, Iceland, the Faroe Islands, Norway, Sweden, Finland, and Russia. The main objectives of this study were: (1) to assess spatial patterns of plankton diversity focusing on pelagic communities; (2) to assess dominant component of beta diversity (turnover or nestedness); (3) to identify which environmental factors best explain diversity; and (4) to provide recommendations for future monitoring and assessment of freshwater plankton communities across the Arctic region. Phytoplankton and crustacean zooplankton diversity varied substantially across the Arctic and was positively related to summer air temperature. However, for zooplankton, the positive correlation between summer temperature and species numbers decreased with increasing latitude. Taxonomic richness was lower in the high Arctic compared to the sub- and low Arctic for zooplankton but this pattern was less clear for phytoplankton. Fennoscandia and inland regions of Russia represented hotspots for, respectively, phytoplankton and zooplankton diversity, whereas isolated regions had lower taxonomic richness. Ecoregions with high alpha diversity generally also had high beta diversity, and turnover was the most important component of beta diversity in all ecoregions. For both phytoplankton and zooplankton, climatic variables were the most important environmental factors influencing diversity patterns, consistent with previous studies that examined shorter temperature gradients. However, barriers to dispersal may have also played a role in limiting diversity on islands. A better understanding of how diversity patterns are determined by colonisation history, environmental variables, and biotic interactions requires more monitoring data with locations dispersed evenly across the circumpolar Arctic. Furthermore, the importance of turnover in regional diversity patterns indicates that more extensive sampling is required to fully characterise the species pool of Arctic lakes.

WOS
Держатели документа:
Norwegian Inst Nat Res, Songsveien 68, NO-0855 Oslo, Norway.
Natl Wildlife Res Ctr, Environm & Climate Change Canada, Ottawa, ON, Canada.
Univ Copenhagen, Freshwater Biol Sect, Dept Biol, Copenhagen O, Denmark.
Univ Alaska Anchorage, Alaska Ctr Conservat Sci, Anchorage, AK USA.
Russian Acad Sci, Inst Biophys, Krasnoyarsk Sci Ctr, Siberian Branch, Krasnoyarsk, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Russian Acad Sci, Inst Biol, Komi Sci Ctr, Ural Branch, Syktyvkar, Russia.
Univ New Brunswick, Canadian Rivers Inst, Fredericton, NB, Canada.
Univ New Brunswick, Dept Biol, Fredericton, NB, Canada.
Nat Hist Museum Kopavogur, Kopavogur, Iceland.
Norwegian Inst Nat Res, Trondheim, Norway.
Lomonosov Moscow State Univ, Fac Biol, Dept Gen Ecol & Hydrobiol, Moscow, Russia.
State Nat Reserve Wrangel Isl, Pevek, Chukotka Autono, Russia.
Univ Quebec Chicoutimi, Dept Sci Fondamentales, Saguenay, PQ, Canada.
Univ Laval, Ctr Northern Studies CEN, Quebec City, PQ, Canada.
Queens Univ, Dept Biol, Paleoecol Environm Assessment & Res Lab PEARL, Kingston, ON, Canada.
Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Uppsala, Sweden.
Univ Helsinki, Lammi Biol Stn, Lammi, Finland.

Доп.точки доступа:
Schartau, Ann Kristin; Mariash, Heather L.; Christoffersen, Kirsten S.; Bogan, Daniel; Dubovskaya, Olga P.; Fefilova, Elena B.; Hayden, Brian; Ingvason, Haraldur R.; Ivanova, Elena A.; Kononova, Olga N.; Kravchuk, Elena S.; Lento, Jennifer; Majaneva, Markus; Novichkova, Anna A.; Rautio, Milla; Ruhland, Kathleen M.; Shaftel, Rebecca; Smol, John P.; Vrede, Tobias; Kahilainen, Kimmo K.; RFBRRussian Foundation for Basic Research (RFBR) [20-04-00145_a]

Найти похожие
10.


   
    Data on taxa composition of freshwater zooplankton and meiobenthos across Arctic regions of Russia / E. Fefilova, O. Dubovskaya, O. Kononova [et al.] // Data Brief. - 2021. - Vol. 36. - Ст. 107112, DOI 10.1016/j.dib.2021.107112. - Cited References:17. - The work was performed in part as Federal Tasks to the Department of Animal Ecology of the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (AAAA-A17-117112850235-2) (to EF and OK), to the Institute of Biophysics of the Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences (project No. 51.1.1) and the Siberian Federal University (project No. FSRZ-2020-0006) (to OD). The paleolimnological part of this work was supported by grant from Russian Science Foundation (project 20-17-00135). L. Frolova and G. Nigamatzyanova were supported by the subsidy allocated to Kazan Federal University for the state assignment #671-2020-0049 in the sphere of scientific activities and by the Russian Foundation for Basic Research (grant 18-05-00406). The work was partly financially supported by the Russian Foundation for Basic Research (RFBR) grant: 20-04-00145_a (to EF). Monitoring investigations in the Lena River Delta were conducted under the framework of Russian-German, "Lena" expeditions (Alfred Wegener Institute, Potsdam, Germany) with logistic and technical support of Scientific Research Station "Samoylov Island" (the Trofimuk Institute of Petroleum-Gas, Geology and Geophysics SB RAS, Novosibirsk) (to EA). . - ISSN 2352-3409
РУБ Multidisciplinary Sciences
Рубрики:
CRUSTACEA
   RECORDS

   LAKES

Кл.слова (ненормированные):
Arctic -- Fresh waters -- Rotifers -- Cladocerans -- Copepods -- Zooplankton -- Meiobenthos -- Species list
Аннотация: We present the presence/absence species list (Table 1) of rotifer, cladoceran, and copepod (Calanoida, Harpacticoida, and Cyclopoida) fauna from seven Arctic regions of Russia (the Kola Peninsula, the Pechora River Delta, the Bolshezemelskaya tundra, the Polar Ural, the Putorana Plateau, the Lena River Delta, and the Indigirka River Basin) based on our own and literature data. Our own records were obtained by analyzing samples of zooplankton, meiobenthos, and two cores of bottom sediments (from the Kola Peninsula and the Bolshezemelskaya tundra lakes) that we collected once in July or August in 1992, 1995-2017. To supplement the list, we used relevant literature with periods of research from the 1960s to the 2010s. The list is almost identical to "Dataset 2: Zooplankton and Meiofauna across Arctic Regions of Russia", which was analyzed but not published in [1]. The detailed analysis of this list revealed the specific composition of the aquatic fauna associated with the climatic and geographical factors [1]. The data provide information on the current state of biodiversity and species richness in Arctic fresh waters and can serve as the basis for monitoring these environments and predicting how they are likely to change in the future. (C) 2021 The Author(s). Published by Elsevier Inc.

WOS
Держатели документа:
Russian Acad Sci, Ural Branch, Komi Sci Ctr, Inst Biol, Kommunist Skaya 28, Syktyvkar 167982, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys,Siberian Branch, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny Av 79, Krasnoyarsk 660041, Russia.
Kazan Fed Univ, Inst Geol & Petr Technol, Kremlyovskaya 18, Kazan 420008, Russia.
Lena Delta Nat Reserve, Ak Fedorova 28, Tiksi 678400, Sakha Republic, Russia.

Доп.точки доступа:
Fefilova, Elena; Dubovskaya, Olga; Kononova, Olga; Frolova, Larisa; Abramova, Ekaterina; Nigamatzyanova, Gulnara; Institute of Biophysics of the Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences [51.1.1]; Siberian Federal University [FSRZ-2020-0006]; Russian Science FoundationRussian Science Foundation (RSF) [20-17-00135]; Kazan Federal University [671-2020-0049]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-05-00406]; Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR) [20-04-00145_a]

Найти похожие
11.


   
    Specific Features of the Macrozoobenthic Communities of Small Arctic Lakes in Eurasia / M. V. Chertoprud, S. V. Krylenko, A. I. Lukinych [et al.] // Inland Water Biol. - 2021. - Vol. 14, Is. 4. - P401-414, DOI 10.1134/S1995082921030056. - Cited References:58. - The primary processing of the material and statistical analysis of the data were carried out with financial support from the Russian Foundation for Basic Research (project No. 20-04-00145). Field works on Kolguev Island were sup-ported by the Meeresenten project (Bundesamt fur Naturschutz, BfN; online ID 100308472), the Federal Agency for Nature Protection of Germany (Conservation Bundesamtfur Naturschutz, BfN), grant MEERESENTEN (3516821500), and State assignment.AAAA-A19119021990093-8; works on Svalbard were funded by the Norwegian Institute for Nature Research (NINA) and Research Council of Norway, projects no. 227024 and 246726. Research on the Putorana Plateau was supported by a state task as part of the Basic Research Program of the Russian Federation, topic no. 51.1.1, and the State Assignment of the Ministry of Science and Higher Education of the Russian Federation to the Siberian Federal University, project no. FSRZ-2020-0006. . - ISSN 1995-0829. - ISSN 1995-0837
РУБ Marine & Freshwater Biology
Рубрики:
WATER BODIES
   ECOSYSTEMS

   ZOOBENTHOS

   RECOVERY

   SVALBARD

   IMPACT

   PONDS

Кл.слова (ненормированные):
small lakes -- Arctic -- subarctic -- Putorana Plateau -- Kolguev Island -- Svalbard -- macrozoobenthos -- community structure
Аннотация: The taxonomic structure, typology, species richness, and total abundance of bentic and littoral macroinvertebrate communities from small lakes of the Arctic and Subarctic zones are considered on the basis of original data from three northern Palearctic regions (the foot of the Putorana Plateau, Kolguev Island, and Western Svalbard Island). A comparative analysis of the communities of these regions has been carried out. The features of High Arctic insular, Low Arctic, subarctic, and boreal lake communities are discussed using a large volume of literature data. The complex pattern of changes in the total benthos biomass of small lakes has been revealed: it decreases in the subarctic taiga, increases in the hypoarctic tundra, and decreases again in the High Arctic.

WOS
Держатели документа:
Moscow MV Lomonosov State Univ, Moscow, Russia.
Russian Acad Sci, Inst Geog, Moscow, Russia.
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Russian Acad Sci, Severtsov Inst Ecol & Evolut, Moscow, Russia.

Доп.точки доступа:
Chertoprud, M. V.; Krylenko, S. V.; Lukinych, A. I.; Glazov, P. M.; Dubovskaya, O. P.; Chertoprud, E. S.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [20-04-00145]; Meeresenten project (Bundesamt fur Naturschutz, BfN) [100308472]; Federal Agency for Nature Protection of Germany (Conservation Bundesamtfur Naturschutz, BfN), grant MEERESENTEN [3516821500]; Norwegian Institute for Nature Research (NINA); Research Council of NorwayResearch Council of Norway [227024, 246726]; Basic Research Program of the Russian Federation [51.1.1]; Ministry of Science and Higher Education of the Russian Federation to the Siberian Federal University [FSRZ-2020-0006]; [AAAA-A19119021990093-8]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)