Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>S=BIOSYNTHESIS<.>)
Общее количество найденных документов : 3
Показаны документы с 1 по 3
1.


   
    A Glucose-Utilizing Strain, Cupriavidus euthrophus B-10646: Growth Kinetics, Characterization and Synthesis of Multicomponent PHAs [Text] / T. . Volova [et al.] // PLoS One. - 2014. - Vol. 9, Is. 2. - Ст. e87551, DOI 10.1371/journal.pone.0087551. - Cited References: 64. - This study was financially supported by Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" (Agreement No. 11.G34.31.0013 with Amendment No. 1 of 15 February 2013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning." The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. . - ISSN 1932-6203
РУБ Multidisciplinary Sciences
Рубрики:
RALSTONIA-EUTROPHA
   BIODEGRADABLE POLYHYDROXYALKANOATES

   AEROMONAS-HYDROPHILA

   ESCHERICHIA-COLI

   MOLECULAR-WEIGHT

   SURFACE-ENERGY

   NORTH PACIFIC

   TERPOLYESTER

   BIOSYNTHESIS

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE-CO-3-HYDROXYHEXANOATE)

Аннотация: This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, c-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physicalmechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB.

WOS
Держатели документа:
[Volova, Tatiana
Kiselev, Evgeniy
Nikolaeva, Elena
Sukovatiy, Aleksey
Shishatskaya, Ekaterina] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Volova, Tatiana
Vinogradova, Olga
Shishatskaya, Ekaterina] Siberian Fed Univ, Krasnoyarsk, Russia
[Chistyakov, Anton] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T...; Kiselev, E...; Vinogradova, O...; Nikolaeva, E...; Chistyakov, A...; Sukovatiy, A...; Shishatskaya, E...; Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" [11.G34.31.0013]

Найти похожие
2.


   
    Dynamics of activity of the key enzymes of polyhydroxyalkanoate metabolism in Ralstonia eutropha B5786 [Text] / T. G. Volova [et al.] // Appl. Biochem. Microbiol. - 2004. - Vol. 40, Is. 2. - P. 170-177, DOI 10.1023/B:ABIM.0000018921.04863.d5. - Cited References: 27 . - ISSN 0003-6838
РУБ Biotechnology & Applied Microbiology + Microbiology
Рубрики:
POLY-BETA-HYDROXYBUTYRATE
   ORGANISM ALCALIGENES-EUTROPHUS

   ESCHERICHIA-COLI

   PHB

   POLY(3-HYDROXYBUTYRATE)

   BIOSYNTHESIS

   CLONING

   GENES

   CHAIN

   H16

Аннотация: The dynamics of accumulation of polyhydroxybutyrate (PHB) and the activities of key enzymes of PHB metabolism (beta-ketothiolase, acetoacetyl-CoA reductase, PHB synthase, D-hydroxybutyrate dehydrogenase, and PHB depolymerase) in the hydrogen bacterium Ralstonia eutropha B5786 were studied under various conditions of carbon nutrition and substrate availability. The highest activities of beta-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase were recorded during acceleration of PHB synthesis. The activities of enzymes catalyzing PHB depolymerization (PHB depolymerase and D-hydroxybutyrate dehydrogenase) were low, being expressed only upon stimulated endogenous PHB degradation. The change of carbon source (CO2 or fructose) did not affect the time course of the enzyme activity significantly.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Kalacheva, G.S.; Gorbunova, O.V.; Zhila, N.O.

Найти похожие
3.


   
    The effect of the chemical composition and structure of polymer films made from resorbable polyhydroxyalkanoates on blood cell response / E. I. Shishatskaya, N. G. Menzyanova, A. A. Shumilova // Int. J. Biol. Macromol. - 2019. - Vol. 141. - P765-+, DOI 10.1016/j.ijbiomac.2019.09.015. - Cited References:57. - The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study is supporting by the Russian Science Foundation, Project No 17-15-01352. . - ISSN 0141-8130. - ISSN 1879-0003
РУБ Biochemistry & Molecular Biology + Chemistry, Applied + Polymer Science
Рубрики:
3-HYDROXYBUTYRATE
   BIOCOMPATIBILITY

   BIOSYNTHESIS

   ADHESION

   STENTS

Кл.слова (ненормированные):
Degradable polyhydroxyalkanoates (PHAs) -- Surface structure and -- properties -- Blood cell response
Аннотация: Four PHA types were synthesized in the culture of Cupriavidus eutrophus B-10646 under special conditions, poly(3 hydroxybutyrate) [P(3HB)] and of copolymers, which contained 3HB monomers and 4 hydroxybutyrate (4HB), 3 hydroxyvalerate (3HV), or 3 hydroxyhexanoate (3HHx). All copolymers had the M-w of about 550-670 kDa, and the homopolymer P(3HB) had a significantly higher M-w - 920 kDa. P(3HB co 4HB) and P(3HB co 3HHx) had the lowest C-x (42 and 49%) while P(3HB co 3HV) and P(3HB) exhibited higher C-x values (76%). Polymer films were prepared from different PHAs. Electron microscopy showed differences in the surface microstructure of the films. Films prepared from the P(3HB) were more hydrophobic and the arithmetic mean surface roughness of 71-75 nm, than the copolymer films, which were hydrophilic (57-60 degrees) and had considerably higher roughness (158-177 nm). Blood parameters (hemoglobin and hemolysis) and response of the cells (erythrocytes, platelets, and monocytes) were studied in experiments with blood directly contacting the surface of the films of PHAs with different compositions. Cultivation of blood cells on polymer films did not cause any adverse effects on adhesion and morphology of all cell types. Results of studying blood cell response suggested that the films made from low-crystallinity copolymers containing 4 hydroxybutyrate and 3 hydroxyhexanoate were the best for contact with blood. (C) 2019 Elsevier B.V. All rights reserved.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Ave, Krasnoyarsk 660041, Russia.
RAS, SB, Krasnoyarsk Sci Ctr, Inst Biophys,Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Shishatskaya, Ekaterina I.; Menzyanova, Natalia G.; Shumilova, Anna A.; Russian Science FoundationRussian Science Foundation (RSF) [17-15-01352]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)