Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>S=CLADOCERA<.>)
Общее количество найденных документов : 3
Показаны документы с 1 по 3
1.


   
    Chemical interactions between planktonic crustaceans [Текст] / E. S. Zadereev // Zhurnal Obshchei Biol. - 2002. - Vol. 63, Is. 2. - P. 159-167. - Cited References: 52 . - ISSN 0044-4596
РУБ Biology
Рубрики:
DIEL VERTICAL MIGRATION
   DAPHNIA-MAGNA CRUSTACEA

   SEX DETERMINATION

   COLONY FORMATION

   CLADOCERA

   FISH

   RESPONSES

   PULEX

   WATER

   SCENEDESMUS

Аннотация: Three levels of chemical communications involved plankton Crustacea are considered: 1) Influence of zooplankton excretion on phytoplankton; 2) Influence of zooplankton excretion on the individuals of the same or other species of the same trophic level; 3) Influence of chemical cues released by predatory zooplankton and fish on herbivorous zooplankton. The data on the influence of excreted cues on some physiological (growth, reproduction, feeding, etc.) and behavioural (vertical and horizontal migrations) characters of planktonic crustaceans are presented. Ecological role and chemistry cues responsible for the interactions of different trophic levels can be different. It is considered that chemical communications in aquatic ecosystems can be provided with: 1) Species-specific cues that strictly influence particular biological functions (communication system of feromone type); 2) Non-specific cues that strictly influence particular functions (system of regulator, that act at the whole ecosystem as the hormonal system of an organism). 3) Non-specific substances with broad (nonspecific) influence-toxic substances of "biocondition substances" according to classification of Novikov and Kharlamova (2000).

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Zadereev, E.S.

Найти похожие
2.


   
    Effect of chemical interactions on the diapause induction in zooplankton [Text] / Y. S. Zadereev ; ed. Acad Sci, Kirensky Inst Phys, Siberian Div, Aka Gorodok, Krasnoyarsk 660036, Russia Russi // International Association of Theoretical and Applied Limnology, Vol 29, Pt 1, Proceedings. Ser. INTERNATIONAL ASSOCIATION OF THEORETICAL AND APPLIED LIMNOLOGY - PROCEEDINGS : E SCHWEIZERBART'SCHE VERLAGSBUCHHANDLUNG, 2005. - Vol. 29: 29th Congress of the International-Association-of-Theoretical-and-Applied-Limnology (AUG 08-14, 2004, Lahti, FINLAND). - P. 227-230. - Cited References: 24 . - ISBN 0368-0770. - ISBN 3-510-54065-4
РУБ Limnology
Рубрики:
PREDATOR-INDUCED DIAPAUSE
   BRACHIONUS-PLICATILIS

   DAPHNIA-MAGNA

   REPRODUCTION

   CLADOCERA

   REDUCTION

   CRUSTACEA

   DENSITY

   GROWTH

   PULEX

Кл.слова (ненормированные):
embryonic diapause -- density dependence -- predator avoidance -- chemical interactions

WOS
Держатели документа:
RAS, SB, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Zadereev, Y.S.; Russi, Acad Sci, Kirensky Inst Phys, Siberian Div, Aka Gorodok, Krasnoyarsk 660036, Russia \ed.\

Найти похожие
3.


   
    Biogeographic patterns of planktonic and meiobenthic fauna diversity in inland waters of the Russian Arctic / E. Fefilova, O. Dubovskaya, L. Frolova [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13624. - Cited References:63. - We would like to thank A. Kotov, N. Korovchinsky, A. Sinev, E. Bekker, N. Smirnov (all from Severtsov Institute of Ecology and Evolution of RAS) for their assistance in Cladocera identification. We are very grateful to Jennifer Lento (University of New Brunswick, Canada) for helping us obtain elevation, temperature, and precipitation data from World Climate and ArcticDEM (NGA-NSF). We are also grateful to Willem Goedkoop for helpful comments on an earlier version of the manuscript. The study was performed in part as Federal Tasks of Department of Animals Ecology of the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (AAAA-A17-117112850235-2), and also of Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences (project No. 51.1.1) and the Siberian Federal University (project No. FSRZ-2020-0006). Monitoring investigations in the Lena River Delta were conducted under the framework of Russian-German, "Lena" expeditions (Alfred Wegener Institute, Potsdam, Germany) with logistic and technical support of Scientific Research Station "Samoylov Island" (Trofimuk Institute of Petroleum-Gas, Geology and Geophysics SB RAS, Novosibirsk). We are grateful to three anonymous reviewers, Guest Editor, Dr Joseph Culp, and the Chief Editor, Prof. Belinda Robson for their useful comments to improve the manuscript. . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
GLOBAL DIVERSITY
   CRUSTACEAN ZOOPLANKTON

   CLADOCERA

   ANOMOPODA

Кл.слова (ненормированные):
cladocerans -- copepods -- rotifers -- spatial and temporal trends -- species -- richness
Аннотация: Broad-scale assessment of biodiversity is needed for detection of future changes across substantial regions of the Arctic. Presently, there are large data and information gaps in species composition and richness of the freshwater planktonic and meiobenthos communities of the Russian Arctic. Analysis of these data is very important for identifying the spatial distribution and temporal changes in species richness and diversity of rotifers, cladocerans, and copepods in the continental Russian Arctic. We investigated biogeographic patterns of freshwater plankton and meiobenthos fromc. 67 degrees to 73 degrees N by analysing data over the period 1960-2017. These data include information on the composition of rotifers, cladocerans, and copepods obtained from planktonic and meiobenthic samples, as well as from subfossil remains in bottom sediments of seven regions from the Kola Peninsula in the west, to the Indigirka River Basin (east Siberia) in the east. Total richness included 175 species comprised of 49 rotifer genera, 81 species from 40 cladoceran genera, and 101 species from 42 genera of calanoid, cyclopoid, and harpacticoid copepods. Longitudinal trends in rotifer and micro-crustacean diversity were revealed by change in species composition from Europe to eastern Siberia. The most common and widespread species were 19 ubiquitous taxa that includedKellicottia longispina(Rotifera),Chydorus sphaericuss. lat. (Cladocera),Heterocope borealis,Acanthocyclops vernalis, andMoraria duthiei(Copepoda). The highest number of rare species was recorded in the well-studied region of the Bolshezemelskaya tundra and in the Putorana Plateau. The total number of copepod and rotifer species in both Arctic lakes and ponds tended to increase with latitude. Relative species richness of copepods was positively associated with waterbody area, elevation, and precipitation, while relative species richness of cladocerans was positively related to temperature. This result is consistent with known thermophilic characteristics of cladocerans and the cold tolerance properties of copepods, with the former being dominant in shallow, warmer waterbodies of some western regions, and the latter being dominant in large cold lakes and waterbodies of eastern regions. Rotifers showed a negative association with these factors. Alpha- and beta-diversity of zooplankton in the Russian Arctic were strongly related to waterbody type. Lake zooplankton communities were more diverse than those in pond and pool systems. Moreover, the highest beta-diversity values were observed in regions that showed a greater breadth in latitude and highly heterogeneous environmental conditions and waterbody types (Bolshezemelskaya tundra and Putorana Plateau). Redistribution of freshwater micro-fauna caused by human activities occurred in the 1990s and 2000s. As a result of climate warming, a few cladoceran species appear to have extended their range northward. Nevertheless, the rotifer and micro-crustacean fauna composition and diversity of the majority of Arctic regions generally remain temporally conservative, and spatial differences in composition and species richness are chiefly associated with the differences between the warmer European and colder east Siberian climates.

WOS
Держатели документа:
Russian Acad Sci, Inst Biol, Komi Sci Ctr, Ural Branch, Kommunisticheskaya 28, Syktyvkar 167982, Russia.
Russian Acad Sci, Inst Biophys, Fed Res Ctr, Krasnoyarsk Sci Ctr,Siberian Branch, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Kazan Fed Univ, Inst Geol & Petr Technol, Kazan, Russia.
Lena Delta Nat Reserve, Tiksi, Sakha Republic, Russia.
Univ Helsinki, Finnish Nat Hist Museum LUOMUS, Helsinki, Finland.

Доп.точки доступа:
Fefilova, Elena; Dubovskaya, Olga; Frolova, Larisa; Abramova, Ekaterina; Kononova, Olga; Nigamatzyanova, Gulnara; Zuev, Ivan; Kochanova, Elena; Federal Tasks of Department of Animals Ecology of the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences [AAAA-A17-117112850235-2]; Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences [51.1.1]; Siberian Federal University [FSRZ-2020-0006]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)