Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>S=EXCHANGE<.>)
Общее количество найденных документов : 2
Показаны документы с 1 по 2
1.


   
    Experimental approach to study the effect of mutations on the protein folding pathway / E. V. Nemtseva [et al.] // PLoS One. - 2019. - Vol. 14, Is. 1. - Ст. e0210361, DOI 10.1371/journal.pone.0210361. - Cited References:38. - The study of time-resolved protein fluorescence was supported by the Ministry of Science and Education of the Russian Federation (Projects 6.7734.2017). The investigation of protein fluorescence and genetic engineering studies of bovine carbonic anhydrase II were supported by grant N14-24-00157 from the Russian Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; The study of time-resolved protein fluorescence was supported by the Ministry of Science and Education of the Russian Federation (Project 6.7734.2017). The investigation of protein fluorescence and genetic engineering studies of bovine carbonic anhydrase II were supported by grant N14-24-00157 from the Russian Science Foundation. . - ISSN 1932-6203
РУБ Multidisciplinary Sciences
Рубрики:
FLUORESCENCE LIFETIMES ORIGIN
   TRANSITION-STATE

   EXCHANGE

   TRYPTOPHAN

Аннотация: Is it possible to compare the physicochemical properties of a wild-type protein and its mutant form under the same conditions? Provided the mutation has destabilized the protein, it may be more correct to compare the mutant protein under native conditions to the wild-type protein destabilized with a small amount of the denaturant. In general, is it appropriate to compare the properties of proteins destabilized by different treatments: mutations, pH, temperature, and denaturants like urea? These issues have compelled us to search for methods and ways of presentation of experimental results that would allow a comparison of mutant forms of proteins under different conditions and lead to conclusions on the effect of mutations on the protein folding/unfolding pathway. We have studied equilibrium unfolding of wild-type bovine carbonic anhydrase II (BCA II) and its six mutant forms using different urea concentrations. BCA II has been already studied in detail and is a good model object for validating new techniques. In this case, time-resolved fluorescence spectroscopy was chosen as the basic research method. The main features of this experimental method allowed us to compare different stages of unfolding of studied proteins and prove experimentally that a single substitution of the amino acid in three mutant forms of BCA II affected the native state of the protein but did not change its unfolding pathway. On the contrary, the inserted disulfide bridge in three other mutant forms of BCA II affected the protein unfolding pathway. An important result of this research is that we have validated the new approach allowing investigation of the effect of mutations on the folding of globular proteins, because in this way it is possible to compare proteins in the same structural states rather than under identical conditions.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Krasnoyarsk, Russia.
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk, Russia.
Russian Acad Sci, Inst Prot Res, Pushchino, Moscow Region, Russia.

Доп.точки доступа:
Nemtseva, Elena V.; Gerasimova, Marina A.; Melnik, Tatiana N.; Melnik, Bogdan S.; Gerasimova, Marina; Nemtseva, Elena; Ministry of Science and Education of the Russian Federation [6.7734.2017]; Russian Science Foundation [N14-24-00157]

Найти похожие
2.


   
    Establishing cycling processes in an experimental model of a closed ecosystem / A. Tikhomirov, S. Ushakova, N. Tikhomirova [et al.] // Acta Astronaut. - 2020. - Vol. 166: 21st International-Academy-of-Astronautics (IAA) Humans in Space (NOV 27-30, 2017, Shenzhen, PEOPLES R CHINA). - P537-544, DOI 10.1016/j.actaastro.2018.08.023. - Cited References:18. - The study was supported by the Russian Science Foundation, Russia (Project No. 14-14-00599 Pi) and carried out in the IBP SB RAS at FRCKRC SB RAS. No competing financial interests exist. . - ISSN 0094-5765. - ISSN 1879-2030
РУБ Engineering, Aerospace
Рубрики:
BIOREGENERATIVE LIFE-SUPPORT
   EXCHANGE

   WASTES

   MASS

Кл.слова (ненормированные):
Experimental model of the closed ecosystem -- Oxidation of human and plant -- wastes -- Plant productivity -- Cycling
Аннотация: The purpose of this study was to investigate mass exchange processes in the experimental model of a closed ecological system intended for an estimated portion of a human in the long-duration (several-month) experiment. The diversity of the vegetable crop community in the system was increased, human wastes were involved in mass exchange processes, and human respiration was periodically connected to the system. The system has been designed to test different prospective technologies for future closed life support systems intended for prolonged autonomous operation in space and terrestrial applications. Three methods of plant cultivation in the conveyer mode have been used: hydroponics on expanded clay aggregate, growing plants on the soil-like substrate, and plant cultivation in aquaculture. The technology of more effective oxidation of organic wastes in a physicochemical processing reactor has been developed. A human exhaled the air into the system and consumed the air from the system. O-2 concentration did not drop below 20.8% and did not rise above 22.6%. CO2 concentration varied between 800 ppm and 2500 ppm. Plants growing under this CO2 range at a preset light irradiance showed optimal photosynthetic activity. The closure coefficients for Ca, Mg, S, N, K and P were above 90%. However, compared with the inflow, only 55% Ca, about 80% Mg, and 75% Na and P were removed from the system. The technological processes developed in this study will need to be modified and improved before they can be used in a full-scale closed biotechnical life support system intended for prolonged operation.

WOS
Держатели документа:
RAS, Inst Biophys, Krasnoyarsk Sci Ctr, Fed Res Ctr,SB, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Tikhomirov, Alexander; Ushakova, Sofya; Tikhomirova, Natalia; Velichko, Vladimir; Trifonov, Sergey; Anishchenko, Olesya; Russian Science Foundation, RussiaRussian Science Foundation (RSF) [14-14-00599Pi]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)