Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Lyubutin, I. S.$<.>)
Общее количество найденных документов : 37
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-37 
1.


   
    Spin crossover and resulting insultor?metal transitions in Mott insulators under high pressure / S. G. Ovchinnikov, I. S. Lyubutin [et al.] // XXXV Совещание по физике низких температур (НТ-35) : тезисы докладов : Черноголовка, 29 сентября - 2 октября 2009 г. / Сов. по физ. низких температур. - P85 . - ISBN 978-5-94691-384-3


Доп.точки доступа:
Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Lyubutin, I. S.; Gavriliuk, A. G. ; Struzhkin, V. V.; Совещание по физике низких температур(35 ; 2009 ; сент.-окт. ; Черноголовка)
}
Найти похожие
2.


   
    Crystal structure dynamics of RFe3(BO3)4 single crystals in the temperature range 25–500 K / O. A. Alekseeva, E. S. Smirnova, K. V. Frolov [et al.] // Crystals. - 2022. - Vol. 12, Is. 9. - Ст. 1203, DOI 10.3390/cryst12091203. - Cited References: 67. - This research was funded by the Ministry of Science and Higher Education within the State assignment FSRC ‘Crystallography and Photonics’ RAS 075-01025-22-00 . - ISSN 2073-4352
Кл.слова (ненормированные):
rare-earth iron borates -- low-temperature X-ray diffraction -- single crystals -- structural distortions -- temperature structural dynamics -- exchange and super-exchange interaction -- Mossbauer spectroscopy
Аннотация: The multiferroic RFe3(BO3)4 family is characterized by diverse magnetic, magnetoelectric, and magnetoelastic properties, the fundamental aspects of which are essential for modern electronics. The present research, using single-crystal X-ray diffraction (XRD) and Mossbauer spectroscopy (MS) in the temperature range of 25–500 K, aimed to analyze the influence of local atomic coordination on magnetoelectric properties and exchange and super-exchange interactions in RFe3(BO3)4. Low-temperature, single-crystal XRD data of the magnetically ordered phase of RFe3(BO3)4 at 25 K, which were obtained for the first time, were supplemented with data obtained at higher temperatures, making it possible to draw conclusions about the mechanism of the structural dynamics. It was shown that, in structures with R = Gd, Ho, and Y (low-temperature space group P3121), a shift in oxygen atoms (O2, second coordination sphere of R atoms) was accompanied by rotation of the B2O3 triangle toward R atoms at low temperatures, and by different rearrangements in iron chains of two types, in contrast to Nd and Sm iron borates (space group R32). These rearrangements in the structures of space group P3121 affected the exchange and super-exchange paths at low temperatures. The MS results confirm the influence of the distant environment of atoms on the magnetoelectric properties of rare-earth iron borates at low temperatures.

Смотреть статью,
Scopus
Держатели документа:
Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’, Russian Academy of Sciences, Moscow, 119333, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Alekseeva, O. A.; Smirnova, E. S.; Frolov, K. V.; Lyubutina, M. V.; Lyubutin, I. S.; Gudim, I. A.; Гудим, Ирина Анатольевна
}
Найти похожие
3.


   
    Effect of magnetic impurities on superconductivity in LaH10 / D. V. Semenok, I. A. Troyan, A. V. Sadakov [et al.] // Adv. Mater. - 2022. - Vol. 34, Is. 42. - Ст. 2204038, DOI 10.1002/adma.202204038. - Cited References: 106. - In situ X-ray diffraction experiments at high pressure were performed on SPring-8, station BL10XU, Sayo, Japan (proposal No. 2020A0576). This work was supported by JSPS KAKENHI Grant Number 20H05644. Low-pressure studies were carried out on a synchrotron source of the Kurchatov institute (KISI-Kurchatov), station RKFM. The high-pressure experiments were supported by the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the FSRC Crystallography and Photonics of the RAS. I.A.T. was supported by the Russian Science Foundation, project No. 22-12-00163. A.R.O. thanks the Russian Science Foundation (grant 19-72-30043). D.V.S. thanks the Russian Foundation for Basic Research (project 20-32-90099). I.A.K. thanks the Russian Science Foundation (grant No. 21-73-10261) for the financial support of the anharmonic phonon density of states calculations and molecular dynamics simulations. SEM, XRF, and XRD studies of the initial alloys were performed using the equipment of the Shared Research Center FSRC Crystallography and Photonics of the RAS. I.A.T. and A.G.I. acknowledge the use of the facilities of the Center for Collective Use “Accelerator Center for Neutron Research of the Structure of Substance and Nuclear Medicine” of the INR RAS for high-pressure cell preparation. The research used resources of the LPI Shared Facility Center. V.M.P acknowledge the support of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (Project No. 0023-2019-0005) and A.V.S. and O.A.S. acknowledge the support of the Russian Science Foundation, grant 22-22-00570. K.S.P. thanks the Russian Foundation for Basic Research (project 19-02-00888). I.A.K. thanks the Russian Science Foundation (grant No. 19-73-00237) for the financial support of the development of T-USPEX method and anharmonic phonon density of states calculation algorithm. S.W.T was supported by NSF Cooperative Agreement No. DMR-1157490/1644779 and by the State of Florida. A.D.G. was supported by T.H. and T.F. funding. The authors acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL). The authors also thank Igor Grishin (Skoltech) for proofreading the manuscript, and Dr. C. Tantardini (University of Tromsø) for calculations using the virtual crystal approximation, and Dr. E. Talantsev (IMP RAS) for useful discussions . - ISSN 0935-9648. - ISSN 1521-4095
Кл.слова (ненормированные):
Anderson's theorem -- high pressure -- hydrides -- superconductivity
Аннотация: Polyhydrides are a novel class of superconducting materials with extremely high critical parameters, which is very promising for sensor applications. On the other hand, a complete experimental study of the best so far known superconductor, lanthanum superhydride LaH10, encounters a serious complication because of the large upper critical magnetic field HC2(0), exceeding 120–160 T. It is found that partial replacement of La atoms by magnetic Nd atoms results in significant suppression of superconductivity in LaH10: each at% of Nd causes a decrease in TC by 10–11 K, helping to control the critical parameters of this compound. Strong pulsed magnetic fields up to 68 T are used to study the Hall effect, magnetoresistance, and the magnetic phase diagram of ternary metal polyhydrides for the first time. Surprisingly, (La,Nd)H10 demonstrates completely linear HC2(T) ∝ |T – TC|, which calls into question the applicability of the Werthamer–Helfand–Hohenberg model for polyhydrides. The suppression of superconductivity in LaH10 by magnetic Nd atoms and the robustness of TC with respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem gives new experimental evidence of the isotropic (s-wave) character of conventional electron–phonon pairing in lanthanum decahydride.

Смотреть статью,
Scopus
Держатели документа:
Materials Discovery Laboratory, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30/1, Moscow, 121205, Russian Federation
Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 59 Leninsky Prospekt, Moscow, 119333, Russian Federation
V.L. Ginzburg Center for High-Temperature Superconductivity and Quantum Materials, P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991, Russian Federation
Center for Fundamental and Applied Research, Dukhov Research Institute of Automatics (VNIIA), st. Sushchevskaya, 22, Moscow, 127055, Russian Federation
Laboratory of Computational Materials Discovery, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny, 141700, Russian Federation
Crystal Physics Laboratory, NRC “Kurchatov Institute” PNPI, 1, mkr. Orlova roshcha, Gatchina, 188300, Russian Federation
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russian Federation
Synchrotron radiation source “KISI-Kurchatov”, National Research Center “Kurchatov Institute”, Moscow, 123182, Russian Federation
Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, 01328, Germany
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States
Brazilian Synchrotron Light Laboratory (LNLS/Sirius), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-100, Brazil
KYOKUGEN, Graduate School of Engineering Science, Osaka University, Machikaneyamacho 1-3, Osaka, Toyonaka, 560-8531, Japan
HSE Tikhonov Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, 20 Myasnitskaya ulitsa, Moscow, 101000, Russian Federation

Доп.точки доступа:
Semenok, D. V.; Troyan, I. A.; Sadakov, A. V.; Zhou, D.; Galasso, M.; Kvashnin, A. G.; Ivanova, A. G.; Kruglov, I. A.; Bykov, A. A.; Terent'ev, K. Yu.; Терентьев, Константин Юрьевич; Cherepakhin, A. V.; Черепахин, Александр Владимирович; Sobolevskiy, O. A.; Pervakov, K. S.; Seregin, A. Y.; Helm, T.; Forster, T.; Grockowiak, A. D.; Tozer, S. W.; Nakamoto, Y.; Shimizu, K.; Pudalov, V. M.; Lyubutin, I. S.; Oganov, A. R.
}
Найти похожие
4.


   
    Crystal structure of bis­muth-containing NdFe3(BO3)4 in the temperature range 20–500 K / E. S. Smirnova, O. A. Alekseeva, A. P. Dudka [et al.] // Acta Crystallogr. B. - 2022. - Vol. 78, Pt. 1. - P. 1-13, DOI 10.1107/S205252062101180X. - Cited References: 44. - This work was performed using the equipment of the Shared Research Center FSRC `Crystallography and Photonics' RAS supported by the Russian Ministry of Science and Higher Education. This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC `Crystallography and Photonics' RAS . - ISSN 2052-5206
РУБ Chemistry, Multidisciplinary + Crystallography
Рубрики:
MAGNETIC PHASE-TRANSITIONS
   UNIT-CELL PARAMETERS

   DIFFRACTION

Кл.слова (ненормированные):
neodymium iron borate -- multiferroic -- crystal structure -- multi-temperature -- single-crystal X-ray diffraction -- Mossbauer spectroscopy -- characteristic temperature
Аннотация: Neodymium iron bor­ate NdFe3(BO3)4 is an intensively studied multiferroic with high electric polarization values controlled by a magnetic field. It is char­ac­ter­ized by a large quadratic magnetoelectric effect, rigidity in the base plane and a rather strong piezoelectric effect. In this work, the atomic structure of (Nd0.91Bi0.09)Fe3(BO3)4 was studied by single-crystal X-ray diffraction in the tem­per­ature range 20–500 K (space group R32, Z = 3). The Bi atoms found in the com­position partially substitute the Nd atoms in the 3a position; they entered the structure due to the growth conditions in the presence of Bi2Mo3O12. It was shown that in the tem­per­ature range 20–500 K there is no structural phase transition R32→P3121, which occurs in rare-earth iron bor­ates (RE = Eu–Er, Y) with an effective rare-earth cation radius smaller than that of Nd. The tem­per­ature dependence of the unit-cell c parameter reveals a slight increase on cooling below 90 K, which is similar to the results obtained previously for iron bor­ates of Gd, Y and Ho. The atomic distances (Nd,Bi)—O, (Nd,Bi)—B, (Nd,Bi)—Fe, Fe—O, Fe—B and Fe—Fe in the iron chains and between chains decrease steadily with decreasing tem­per­ature from 500 to 90 K, whereas the B1(3b)—O distance does not change and the average B2(9e)—O distance increases slightly. There is a uniform decrease in the atomic displacement parameters with decreasing tem­per­ature, with a more pronounced decrease for the Nd(3a) and O2(9e) atoms. The O2(9e) atoms are characterized by the maximum atomic displacement parameters and the most elongated atomic displacement ellipsoids. The characteristic Debye and Einstein tem­per­atures, and the static com­ponent in the atomic displacements were determined for cations using multi-tem­per­ature diffraction data. It was shown that the Nd cations have the weakest bonds with the surrounding atoms and the B cations have the strongest.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Russian Acad Sci, Fed Sci Res Ctr Crystallog & Photon, Shubnikov Inst Crystallog, Moscow 119333, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Smirnova, E. S.; Alekseeva, O. A.; Dudka, A. P.; Verin, I. A.; Artemov, V. V.; Lyubutina, M. V.; Gudim, I. A.; Гудим, Ирина Анатольевна; Frolov, K. V.; Lyubutin, I. S.; Russian Ministry of Science and Higher Education; Ministry of Science and Higher Education within the State assignment FSRC 'Crystallography and Photonics' RAS
}
Найти похожие
5.


   
    Magnetic properties and structural anomalies observed in multiferroic NdFe3(BO3)4 by 57Fe Mossbauer spectroscopy / K. V. Frolov, I. S. Lyubutin, O. A. Alekseeva [et al.] // J. Alloys Compd. - 2022. - Vol. 909. - Ст. 164747, DOI 10.1016/j.jallcom.2022.164747. - Cited References: 61. - This work was supported by the Russian Ministry of Science and Higher Education within the State assignment FSRC "Crystallography and Photonics" RAS and performed using the equipment of the Shared Research Center "Structural diagnostics of materials" of FSRC "Crystallography and Photonics" RAS . - ISSN 0925-8388
Кл.слова (ненормированные):
Multiferroics -- Rare earth - iron compounds -- X-ray diffraction -- Mossbauer spectroscopy -- Commensurate and incommensurate magnetic structures
Аннотация: The results of studies of the NdFe3(BO3)4 by 57Fe Mossbauer spectroscopy in comparison with the data of single crystal X-ray diffraction measurements are presented. Scanning of the crystal cell parameters in a wide temperature range T = 15–500 K revealed a negative thermal expansion along the c axis and structural anomalies. The temperature dependences of the Mössbauer parameters of hyperfine interaction in the paramagnetic state of NdFe3(BO3)4 correlate well with the behavior of crystal cell parameters obtained by X-ray diffraction data. The temperature of the magnetic phase transition TN = 32.54(4) K is established, below which the iron ions form a 3D magnetic order of the Izing type. The magnetic transition of the iron subsystem from a commensurate to an incommensurate structure at a temperature of about T ≈ 15 K is discussed. The "Mössbauer" Debye temperature ΘM was estimated to be 485(2) K.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RAS, Moscow, 119333, Russian Federation
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Frolov, K. V.; Lyubutin, I. S.; Alekseeva, O. A.; Smirnova, E. S.; Dudka, A. P.; Verin, I. A.; Temerov, V. L.; Темеров, Владислав Леонидович; Gudim, I. A.; Гудим, Ирина Анатольевна
}
Найти похожие
6.


   
    Crystal structure, absolute configuration and characteristic temperatures of SmFe3(BO3)4 in the temperature range 11-400 K / E. S. Smirnova, O. A. Alekseeva, A. P. Dudka [et al.] // Acta Crystallogr. B. - 2022. - Vol. 78, Is. 3-2, Pt. 1. - P. 546-556, DOI 10.1107/S2052520622003948. - Cited References: 43. - The authors are grateful to D. Yu. Chernyshov (SNBL, ESRF, Grenoble) for assistance in obtaining the experimental data. This work was performed using the equipment of the Shared Research Center FSRC ‘Crystallography and Photonics’ RAS supported by the Russian Ministry of Science and Higher Education. This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC ‘Crystallography and Photonics’ RAS . - ISSN 2052-5206
Кл.слова (ненормированные):
samarium bismuth iron borate -- absolute configuration -- crystal structure -- multi-temperature single-crystal X-ray diffraction -- Mossbauer spectroscopy -- characteristic temperatures -- solution-melt growth
Аннотация: The crystal structure of samarium iron borate was analyzed with regard to growth conditions and temperature. The inclusion of about 7% Bi atoms in the crystals grown using the Bi2Mo3O12-based flux was discovered and there were no impurities in the crystals grown using the Li2WO4-based flux. No pronounced structural features associated with Bi inclusion were observed. The different absolute configurations of the samples grown using both fluxes were demonstrated. Below 80 K, a negative thermal expansion of the c unit-cell parameter was found. The structure of (Sm0.93Bi0.07)Fe3(BO3)4 belongs to the trigonal space group R32 in the temperature range 90–400 K. A decrease in the (Sm,Bi)—O, Sm—B, Sm—Fe, Fe—O, Fe—B and Fe—Fe distances is observed with a lowering of the temperature, B1—O does not change, B2—O increases slightly and the B2O3 triangles deviate from the ab plane. The strongest decrease in the equivalent isotropic atomic displacement parameters (Ueq) with decreasing temperature is observed for atoms Sm and O2, and the weakest is observed for B1. The O2 atoms have the highest Ueq values, the most elongated atomic displacement ellipsoids of all the atoms and the smallest number of allowed vibrational modes of all the O atoms. The largest number of allowed vibrational modes and the strongest interactions with neighbouring atoms is seen for the B atoms, and the opposite is seen for the Sm atoms. The quadrupole splitting Δ(T) of the paramagnetic Mössbauer spectra increases linearly with cooling. The Néel temperature [TN = 31.93 (5) K] was determined from the temperature dependence of the hyperfine magnetic field Bhf(T), which has a non-Brillouin character. The easy-plane long-range magnetic ordering below TN was confirmed.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics', Russian Academy of SciencesMoscow 119333, Russian Federation
Moscow State University, Faculty of GeologyMoscow 119991, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Smirnova, E. S.; Alekseeva, O. A.; Dudka, A. P.; Sorokin, T. A.; Khmelenin, D. N.; Yapaskurt, V. O.; Lyubutina, M. V.; Frolov, K. V.; Lyubutin, I. S.; Gudim, I. A.; Гудим, Ирина Анатольевна
}
Найти похожие
7.


   
    Structural peculiarities of bismuth-containing RFe3(BO3)4 (R = Ho, Y, Sm, Nd) / E. Smirnova, O. Alekseeva, A. Dudka [et al.] // Acta Crystallogr. A. - 2021. - Vol. 77, Supplement. - P. C1237-C1237, DOI 10.1107/S0108767321084749. - Cited References: 4. - This work was performed using the equipment of the Shared Research Center FSRC 'Crystallography and Photonics' RAS and was supported by the Ministry of Science and Higher Education within the State assignment FSRC 'Crystallography and Photonics' RAS . - ISSN 2053-2733
РУБ Chemistry, Multidisciplinary + Crystallography

Кл.слова (ненормированные):
phase transition -- single crystals -- multiferroics -- rare-earth iron borates -- X-ray structure analysis -- EDS spectroscopy -- Mossbauer spectroscopy -- characteristic temperatures

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
FSRC Crystallog & Photon RAS, Leninskiy Prospekt 59, Moscow 119333, Russia.
RAS, Kirensky Inst Phys, Siberian Branch, Akad Gorodok 50, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Smirnova, E.; Alekseeva, O. A.; Dudka, A. P.; Verin, I. A.; Artemov, V. V.; Артемов Владимир В.; Khmelenin, D. N.; Gudim, I. A.; Гудим, Ирина Анатольевна; Frolov, K. V.; Lyubutin, I. S.; Ministry of Science and Higher Education within the State assignment FSRC 'Crystallography and Photonics' RAS; Congress of the International Union of Crystallography(25 ; 14-22 August 2021 ; Prague, Czech Republic)
}
Найти похожие
8.


   
    Characterization of the iron oxide phases formed during the synthesis of core-shell FexOy@C nanoparticles modified with Ag / D. A. Petrov, C. R. Lin, R. D. Ivantsov [et al.] // Nanotechnology. - 2020. - Vol. 31, Is. 39. - Ст. 395703, DOI 10.1088/1361-6528/ab9af2. - Cited References: 46. - The reported study was funded by Joint Research Project of Russian Foundation for Basic Research № 19-52-52002 and Ministry of Science and Technology, Taiwan MOST № 108-2923-M-153-001-MY3 and № 106-2112-M-153-001-MY3. The samples of series 1 were studied with the support of the Ministry of Science and Higher Education of the Russian Federation within the State assignment FSRC «Crystallography and Photonics» RAS. The electron microscopy investigations were conducted in the SFU Joint Scientific Center supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation . - ISSN 1361-6528
   Перевод заглавия: Идентификация фаз оксида железа, формирующихся в процессе синтеза наночастиц FexOy@C с морфологией ядро-оболочка, модифицированных Ag
Кл.слова (ненормированные):
core–shell nanoparticles -- iron oxides -- carbon shell -- Ag nanoparticles
Аннотация: Core–shell FexOy@C nanoparticles (NPs) modified with Ag were studied with x-ray diffraction, transmission electron microscopy, energy dispersive elemental mapping, Mössbauer spectroscopy, static magnetic measurements, and optical magnetic circular dichroism (MCD). FexOy@C NPs synthesized by the pyrolysis process of the mixture of Fe(NO3)3 centerdot 9H2O with oleylamine and oleic acid were added to a heated mixture of oleylamine and AgNO3 in different concentrations. The final product was a mixture of iron oxide crystalline NPs in an amorphous carbon shell and Ag crystalline NPs. The iron oxide NPs were presented by two magnetic phases with extremely close crystal structures: Fe3O4 and γ-Fe2O3. Ag is shown to form crystalline NPs located very close to the iron oxide NPs. An assumption is made about the formation of hybrid FexOy@C-Ag NPs. Correlations were obtained between the Ag concentration in the fabricated samples, their magnetic properties and the MCD spectrum shape. Introducing Ag led to a approximately linear decrease of the NPs saturation magnetization depending upon the Ag concentration, it also resulted into the MCD spectrum shift to the lower light wave energies. MCD was also studied for the Fe3O4@C NPs synthesized earlier with the same one-step process using different heat treatment temperatures, and MCD spectra were compared for two series of NPs. A possible contribution of the surface plasmon excitation in Ag NPs to the MCD spectrum of the FexOy@C-Ag NPs is discussed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
National Pingtung University, Pingtung City, Pingtung County 90003, Taiwan
Siberian Federal University, Svobodny Av., 79, Krasnoyarsk 660041, Russia
Shubnikov Institute of Crystallography of FSRC 'Crystallography and Photonics' RAS, Moscow 119333, Russia

Доп.точки доступа:
Petrov, D. A.; Петров, Дмитрий Анатольевич; Lin, C. R.; Ivantsov, R. D.; Иванцов, Руслан Дмитриевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Zharkov, S. M.; Жарков, Сергей Михайлович; Yurkin, G. Yu.; Юркин, Глеб Юрьевич; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Knyazev, Yu. V.; Князев, Юрий Владимирович; Molokeev, M. S.; Молокеев, Максим Сергеевич; Tseng, Y. T.; Lin, E. S.; Edelman, I. S.; Эдельман, Ирина Самсоновна; Baskakov, A. O.; Starchikov, S. S.; Lyubutin, I. S.
}
Найти похожие
9.


   
    Crystal structure and structural phase transition in bis­muth-containing HoFe3(BO3)4 in the temperature range 11–500 K / E. S. Smirnova, O. A. Alekseeva, A. P. Dudka [et al.] // Acta Crystallogr. B. - 2019. - Vol. 75. - P. 954-968, DOI 10.1107/S2052520619010473. - Cited References: 37. - The authors are grateful to D. Yu. Chernyshov (SNBL, ESRF, Grenoble) for his assistance in obtaining the experimental data. This work was performed using the equipment of the Shared Research Center FSRC ‘Crystallography and Photonics’ RAS and was supported by the Russian Ministry of Education and Science (project RFMEFI62119X0035). - This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC ‘Crystallography and Photonics’ RAS and partially by the Russian Foundation for Basic Research (grant No. 17-02-00766) . - ISSN 2052-5192
Кл.слова (ненормированные):
holmium iron borate -- crystal structure -- structural phase transition -- Mossbauer spectroscopy -- characteristic temperatures
Аннотация: An accurate single-crystal X-ray diffraction study of bis­muth-containing HoFe3(BO3)4 between 11 and 500 K has revealed structural phase transition at Tstr = 365 K. The Bi atoms enter the composition from Bi2Mo3O12-based flux during crystal growth and significantly affect Tstr. The content of Bi was estimated by two independent methods, establishing the composition as (Ho0.96Bi0.04)Fe3(BO3)4. In the low-temperature (LT) phase below Tstr the (Ho0.96Bi0.04)Fe3(BO3)4 crystal symmetry is trigonal, of space group P3121, whereas at high temperature (HT) above 365 K the symmetry increases to space group R32. There is a sharp jump of oxygen O1 (LT) and O2 (LT) atomic displacement parameters (ADP) at Tstr. O1 and O2 ADP ellipsoids are the most elongated over 90–500 K. In space group R32 specific distances decrease steadily or do not change with decreasing temperature. In space group P3121 the distortion of the polyhedra Ho(Bi)O6, Fe1O6 and Fe2O6, B2O3 and B3O3 increases with decreasing temperature, whereas the triangles B1O3 remain almost equilateral. All BO3 triangles deviate from the ab plane with decreasing temperature. Fe–Fe distances in Fe1 chains decrease, while distances in Fe2 chains increase with decreasing temperature. The Mössbauer study confirms that the FeO6 octahedra undergo complex dynamic distortions. However, all observed distortions are rather small, and the general change in symmetry during the structural phase transition has very little influence on the local environment of iron in oxygen octahedra. The Mössbauer spectra do not distinguish two structurally different Fe1 and Fe2 positions in the LT phase. The characteristic temperatures of cation thermal vibrations were calculated using X-ray diffraction and Mössbauer data.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Shubnikov Inst. of Cristal. of Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences, Moscow, 119333, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Smirnova, E. S.; Alekseeva, O. A.; Dudka, A. P.; Khmelenin, D. N.; Frolov, K. V.; Lyubutina, M. V.; Gudim, I. A.; Гудим, Ирина Анатольевна; Lyubutin, I. S.
}
Найти похожие
10.


   
    Pressure-Induced Structural Transition to the Polar Phase in GdFe3(BO3)4 / I. S. Lyubutin [et al.] // Cryst. Growth Des. - 2019. - Vol. 19, Is. 12. - P. 6935-6944, DOI 10.1021/acs.cgd.9b00609. - Cited References: 39. - The authors express their deep gratitude to Prof. S. G. Ovchinnikov for initiating this work and fruitful discussions. These studies were performed with the support of the Ministry of Science and Higher Education within the State assignment FSRC "Crystallography and Photonics" RAS in part for the synchrotron Mössbauer measurements. Support from RFBR Grant No. 17-02-00766 in part for the Raman spectroscopy measurements and from No. 18-02-00696 in part for the theoretical calculations is also acknowledged. For preparation and tests of high-pressure cells, (39) the facilities of Center for Collective Use “Accelerator Center for Neutron Research of the Structure of Substance and Nuclear Medicine” of the INR RAS were used. . - ISSN 1528-7483
   Перевод заглавия: Индуцированный давлением структурный переход в полярную фазу в GdFe3(BO3)4
Кл.слова (ненормированные):
Boron -- Crystal lattices -- Ferroelectricity -- Ions -- Iron compounds
Аннотация: The GdFe3(BO3)4 crystal has attracted great interest as a magnetic-field-induced multiferroic. In this paper, we show that the multiferroic properties in this crystal can be induced by high pressure. At high pressures up to 50 GPa, created in diamond anvil cells, the structural and vibrational (phonon) properties of the GdFe3(BO3)4 crystal were studied. The structural phase transition was detected at about 23–25 GPa by Raman and synchrotron Mössbauer (NFS) spectroscopy. First-principle calculations of the crystal lattice dynamics at pressures below and above the structural transition were carried out. It was established that at pressures above the structural transition, the space group R32 of GdFe3(BO3)4 is changed to the polar space group R3, and the crystal becomes a ferroelectric. At the R32 → R3 transition, the displacement of the boron ion B(2) and oxygen O results in the formation of boron–oxygen B(2)O4 tetrahedrons instead of the plane BO3 triangles. Meanwhile, the triangle oxygen environment of boron in the site B(1) remains unchanged. The nearest environment of the gadolinium ion also changes significantly. Instead of six oxygen ions in the R32 phase, the nearest surroundings of Gd in the R3 phase consist of nine oxygen ions forming a complex polyhedron. A large hysteresis of the transition indicates that this crystal remains a ferroelectric with a decrease in pressure to about ambient pressure.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Shubnikov Institute of Crystallography of FSRC Crystallography and Photonics RAS, Moscow, 119333, Russian Federation
Institute for Nuclear Research, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
REC Functional Nanomaterials, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russian Federation

Доп.точки доступа:
Lyubutin, I. S.; Gavriliuk, A. G.; Andryushin, N. D.; Андрюшин, Никита Дмитриевич; Pavlovskiy, M. S.; Павловский, Максим Сергеевич; Zinenko, V. I.; Зиненко, Виктор Иванович; Lyubutina, M. V.; Troyan, I. A.; Smirnova, E. S.
}
Найти похожие
 1-10    11-20   21-30   31-37 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)