Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полныйинформационный краткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=влажность<.>)
Общее количество найденных документов : 29
Показаны документы с 1 по 20
1.

Швецов Е. Г. Исследование применимости данных SMOS для оценки уровня пожарной опасностина территории Красноярского края/Е. Г. Швецов, З. Ружичка, В. Л. Миронов // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева, 2013,N № 2.-С.110-115
2.

Тестирование в микроволновом диапазоне спектроскопической диэлектрической модели влажных почв, использующей в качестве входных параметров содержание глинистой фракции и влажность/С. В. Фомин, В. Л. Миронов, Л. Г. Косолапова // Известия высших учебных заведений. Физика, 2008. т.Т. 51,N № 9/2.-С.93-97
3.

Савин И. В. Температурно-зависимая многорелаксационная спектроскопическая диэлектрическая модель талой и мерзлой арктической почвы Аляски в диапазоне 0,05-16 ГГц/И. В. Савин, В. Л. Миронов // Известия высших учебных заведений. Физика:Томский государственный университет, 2015. т.Т. 58,N № 8/3.-С.19-21
4.

Полевое тестирование метода картографического моделирования влагозапасов поверхностного слоя почвенного покрова, основанного на данных радарной съёмки Sentinel-1 и цифровой модели рельефа/А. М. Зейлигер, K. V. Muzalevskiy, Е. В. Зинченко [и др.] // Современные проблемы дистанционного зондирования Земли из космоса, 2020. т.Т. 17,N № 4.-С.113-128
5.

Первое применение отечественного спутника «Метеор-М» № 2 для дистанционного зондирования влажности и температуры тундровой почвы/К. В. Музалевский [и др.] // Современные проблемы дистанционного зондирования Земли из космоса, 2017. т.Т. 14,N № 7.-С.100-118
6.

Музалевский К. В. Сверхширокополосное импульсное зондирование слоистой структуры снежно-почвенного покрова. Экспериментальное исследование/К. В. Музалевский, С. В. Фомин // Журнал радиоэлектроники, 2020. т.№ 8.- Ст.5
7.

Музалевский К. В. Сверхширокополосное импульсное зондирование слоистой структуры снежно-почвенного покрова. Теоретическое исследование/К. В. Музалевский // Журнал радиоэлектроники, 2020. т.№ 8.- Ст.4
8.

Музалевский К. В. Особенности радиотеплового излучения мёрзлых тундровых почв в L-диапазоне частот/К. В. Музалевский // Журнал радиоэлектроники, 2018,N № 12.- Ст.13
9.

Музалевский К. В. Особенности радиометрического зондирования влажности тундровых почв в P-диапазоне частот/К. В. Музалевский // Журнал радиоэлектроники, 2023,N № 12;Journal of Radio Electronics
10.

Музалевский К. В. Измерение влажности талой почвы арктической тундры радиометром MIRAS космического аппарата SMOS/К. В. Музалевский, В. Л. Миронов // Известия высших учебных заведений. Физика, 2013. т.Т. 56,N № 10/3:Физика взаимодействия электромагнитного излучения с веществом. Тематический вып..-С.85-87
11.

Музалевский К. В. Измерение влажности и температуры почвы на основе интерференционного приёма линейно-поляризованных сигналов ГЛОНАСС и GPS/К. В. Музалевский, М. И. Михайлов // Современные проблемы дистанционного зондирования Земли из космоса, 2018. т.Т. 15,N № 4.-С.155-165
12.

Музалевский К. В. Дистанционное измерение профилей влажности в пахотном слое почвы на основе поляриметрических наблюдений коэффициента отражения в P- и C-диапазонах частот. Эксперимент/К. В. Музалевский // Современные проблемы дистанционного зондирования Земли из космоса, 2020. т.Т. 17,N № 3.-С.145-148
13.

Музалевский К. В. Дистанционное измерение влажности в поверхностном слое минеральной почвы на двух частотах/К. В. Музалевский // Журнал радиоэлектроники, 2020. т.№ 1.-С.3
14.

Музалевский К. В. Восстановление влажности и температуры талых минеральных почв на основе многочастотных наблюдений в полевых условиях радиояркостной температуры в микроволновом диапазоне частот/К. В. Музалевский, В. Л. Миронов // Известия высших учебных заведений. Физика:Томский государственный университет, 2015. т.Т. 58,N № 8/2.-С.39-41
15.

Музалевский К. В. Возможности бистатической радиолокации пространственных вариаций влажности и рельефа поверхности почвенного покрова на основе сигналов ГЛОНАСС и GPS/К. В. Музалевский, М. И. Михайлов, В. Л. Миронов // Современные проблемы дистанционного зондирования Земли из космоса, 2018. т.Т. 15,N № 5.-С.75-82
16.

Миронов В. Л. Спектроскопическая многорелаксационная диэлектрическая модель талых и мерзлых арктических почв, учитывающая зависимости от температуры и содержания органического вещества/В. Л. Миронов, И. В. Савин // Исследование Земли из космоса, 2019,N № 1.-С.62-73
17.

Миронов В. Л. Диэлектрическая модель талой и мерзлой органической почвы на частоте радиометра AMSR/В. Л. Миронов, Л. Г. Косолапова, И. В. Савин // Исследование Земли из космоса, 2015. т.№ 5.-С.9-15
18.

Миронов В. Л. Диэлектрическая модель влажных почв для радиометра AMSR-E космического аппарата AQUA/В. Л. Миронов, Л. Г. Косолапова, Е. А. Рудакова // Известия высших учебных заведений. Физика, 2013. т.Т. 56,N № 10/3:Физика взаимодействия электромагнитного излучения с веществом.-С.79-81
19.

Метод мониторинга влажности почвы, покрытой растительным покровом, с использованием нейронной сети, радарных и мультиспектральных оптических данных Sentinel-1,2/А. М. Зейлигер, К. В. Музалевский, Е. В. Зинченко, О. С. Ермолаева // Журнал радиоэлектроники, 2023,N № 1.- Ст.7;Journal of Radio Electronics
20.

Метод импедансной спектроскопии для тестирования увлажненных зерен пшеницы/А. В. Чжан, Н. А. Дрокин, Н. М. Ничкова, Ж. М. Мороз // Вестник НГАУ (Новосибирский государственный аграрный университет), 2022,N № 2.-С.59-68;Bulletin of NSAU (Novosibirsk State Agrarian University)
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)