Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Decomposition<.>)
Общее количество найденных документов : 25
Показаны документы с 1 по 10
 1-10    11-20   21-25 
1.


   
    Decomposition in Ni-Co-Mn-In functional Hensler alloys and its effect on shell-ferromagnetic and magnetocaloric effects / M. Sasmaz, F. Dreist, I. Iglesias [et al.] // Phys. Rev. B. - 2020. - Vol. 102, Is. 6. - Ст. 064401, DOI 10.1103/PhysRevB.102.064401. - Cited References: 38. - This work was supported by Deutsche Forschungsgemeinschaft (Project No. 405553726-CRC/TRR 270). The authors acknowledge support from the Turkish Scientific and Technological Research Council (Project No. 1059B191701241), the Deutsche Akademisches Austausch Dienst, and the Government of the Russian Federation (Grant No. 075-15-2019-1886). . - ISSN 2469-9950. - ISSN 2469-9969
РУБ Materials Science, Multidisciplinary + Physics, Applied + Physics,
Рубрики:
FIELD-INDUCED STRAIN
   MAGNETIC-FIELD

   MARTENSITIC-TRANSFORMATION

Аннотация: Ni-Co-Mn-In Heusler-based compounds are interesting for their magnetocaloric properties and have been widely investigated for this purpose. For Co compositions more than 5 at% in (Ni100-xCox)50Mn25+yIn25-y the material is no longer single phase, and for y 25, shell-ferromagnetic precipitation occurs. Our study is twofold: First we study here the shell-ferromagnetic properties of these systems and show that their ferromagnetic exchange can be strengthened by introducing Co into the precipitate. Second, we further show that both the multiphase character and shell-ferromagnetic precipitation have strong implications on the magnetocaloric properties.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Adiyaman Univ, Golbasi Vocat Sch, Dept Elect & Energy, TR-02500 Adiyaman, Turkey.
Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany.
Univ Duisburg Essen, CENIDE, D-47048 Duisburg, Germany.
Mugla Univ, Dept Met & Mat Engn, TR-48000 Mugla, Turkey.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Sasmaz, M.; Dreist, F.; Iglesias, I.; Cakir, A.; Farle, M.; Фарле, Михаель; Acet, M.; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [405553726-CRC/TRR 270]; Turkish Scientific and Technological Research CouncilTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [1059B191701241]; Deutsche Akademisches Austausch Dienst; Government of the Russian Federation [075-15-2019-1886]
}
Найти похожие
2.


   
    Mossbauer and MCD spectroscopy of the Fe3S4 nanoparticles synthesized by the thermal decomposition method with two different surfactants / R. D. Ivantsov, C.-R. Lin, O. S. Ivanova [et al.] // Curr. Appl. Phys. - 2021. - Vol. 25. - P. 55-61, DOI 10.1016/j.cap.2021.02.013. - Cited References: 30. - The reported study was funded by Joint Research Project of Russian Foundation for Basic Research № 19-52-52002 and Ministry of Science and Technology, Taiwan MOST № 108-2923-M-153-001-MY3 and № 106-2112-M-153-001-MY3 , and by Russian Foundation for Basic Research with Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science , the research project number 19-42-240005 : “Features of the electronic structure, magnetic properties and optical excitations in nanocrystals of the multifunctional magnetic chalcogenides Fe3S4 and FeSe”. The electron microscopy and electron diffraction investigations were conducted in the SFU Joint Scientific Center supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation. The thermal-gravity measurements were carried out with the differential Scanning Calorimeter DSC 204 F-1 Phoenix (NETZSCH) in the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center «Krasnoyarsk Science Center SB RAS» . - ISSN 1567-1739
   Перевод заглавия: Мёссбауэровская и МКД-спектроскопия наночастиц Fe3S4, синтезированных методом термического разложения с двумя разными ПАВ
Кл.слова (ненормированные):
Greigite -- Thermal decomposition -- Surfactants -- Mössbauer effect -- FT-IR spectra -- Magnetic circular dichroism
Аннотация: Greigite (Fe3S4) nanoparticles (NPs) were fabricated by the thermal decomposition method using two different surfactants: oleylamine (OLA) and 1-hexadecylamine (HDA). In both cases, the synthesized NPs were characterized as the Fe3S4 nanocrystals with minor inclusions of Fe9S11 phase. FT-IR spectroscopy and thermo-gravimetric analysis allow concluding about OLA or HDA shells covering magnetic core of NPs. Mossbauer spectra has revealed deviations of iron ions distribution among crystal positions from that presented in literature for pure greigite. In accordance with these deviations, the pronounce changes are observed in the magnetic circular dichroism (MCD) spectra which manifest themselves as the spectrum shift to higher energies of electromagnetic waves and redistribution of the MCD maximum intensities. These effects are associated with a change in the density of electronic states in the samples due to the redistribution of iron ions between octahedral and tetrahedral positions in nanocrystals under the influence of surfactants.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, FRC KSC SB RASKrasnoyarsk 660036, Russian Federation
Department of Applied Physics, National Pingtung University, Pingtung City, Pingtung County 90003, Taiwan
Siberian Federal UniversityKrasnoyarsk 660041, Russian Federation

Доп.точки доступа:
Ivantsov, R. D.; Иванцов, Руслан Дмитриевич; Lin, C. -R.; Ivanova, O. S.; Иванова, Оксана Станиславовна; Altunin, R. R.; Knyazev, Yu. V.; Князев, Юрий Владимирович; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zharkov, S. M.; Жарков, Сергей Михайлович; Chen, Y. -Z.; Lin, E. -S.; Chen, B. -Y.; Shestakov, N. P.; Шестаков, Николай Петрович; Edelman, I. S.; Эдельман, Ирина Самсоновна
}
Найти похожие
3.


   
    Photoluminescence of pefloxacindi-ium manganese(II) and zinc(II) tetrahalides / N. N. Golovnev, M. A. Gerasimova, M. S. Molokeev [et al.] // J. Mol. Struct. - 2022. - Vol. 1248. - Ст. 131468, DOI 10.1016/j.molstruc.2021.131468. - Cited References: 42. - The research was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-43-240007. Authors thank the Centre for Equipment Joint User of School of Petroleum and Natural Gas Engineering of Siberian Federal University, Institute of Chemistry and Chemical Technology SB RAS for their technical support . - ISSN 0022-2860
   Перевод заглавия: Фотолюминесценция тетрагалогенидов марганца(II) и цинка(II) пефлоксацина
Кл.слова (ненормированные):
Manganese and zinc halides -- Pefloxacin -- Ionic compounds -- Photoluminescence -- X-ray diffraction -- Thermal decomposition
Аннотация: Mn2+-based hybrid materials have become the hotspot of current research studies owing to their high photoluminescence quantum yield (PLQY), low-cost, environmental friendliness and stability. For the first time, we report the hydrothermal synthesis of two lead-free zero-dimensional luminescent organic-inorganic hybrid compounds, PefH2[MnBr4] (1) and PefH2[MnCl4] (2) (Pef = pefloxacin). They were characterized by elemental analysis, TG-DSC, single-crystal and powder XRD. Compounds 1–2 exhibit a distorted tetrahedral geometry around the manganese(II) metal center, which is isolated from the same centers by bulky pefloxacindi-ium (PefH22+) ions with a Mn···Mn distance of 7.3 Å. Their structures are stabilized by N—H···O, O—H···X (X = Br, Cl), C—H···O and C—H···X hydrogen bands and π–π stacking interaction. Thermal decomposition starts at T › 230°С for 1 and T › 210°С for 2 and proceeds for several stages. Upon UV excitation compounds exhibit a bright green emission with a moderate PLQY of 45% for 1 and 30% for 2. The influence of the halide ion and metal ion on the photoluminescence properties of isostructural compounds PefH2[MX4] (M = Mn, Zn and X = Br, Cl) is discussed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, bld. 38 Akademgorodok 50, Krasnoyarsk, 660036, Russian Federation
Department of Physics, Far Eastern State Transport University, 47 Seryshev Str., Khabarovsk, 680021, Russian Federation
Research and Development Department, Kemerovo State University, 6 Krasnaya Str., Kemerovo, 650000, Russian Federation

Доп.точки доступа:
Golovnev, N. N.; Gerasimova, M. A.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Plyaskin, M. E.; Baronin, M. E.
}
Найти похожие
4.


    Golovnev, N. N.
    Structure of potassium and cesium barbiturates / N. N. Golovnev, M. S. Molokeev, M. K. Lesnikov // Russ. J. Inorg. Chem. - 2018. - Vol. 63, Is. 10. - P. 1315-1321, DOI 10.1134/S0036023618100078. - Cited References: 25. - This work was performed within the state task from the Ministry of Education and Science to the Siberian Federal University in 2017-2019 (4.7666.2017/BCh). . - ISSN 0036-0236. - ISSN 1531-8613
РУБ Chemistry, Inorganic & Nuclear
Рубрики:
CRYSTAL-STRUCTURE
   THERMAL-PROPERTIES

   1,3-DIETHYL-2-THIOBARBITURATE

Кл.слова (ненормированные):
potassium and cesium barbiturates -- synthesis -- structure -- thermal decomposition
Аннотация: The structures of catena-[K(μ6-Hba−O,O,O,O′,O′,O″)] (I) and catena-[Cs(μ6-Hba–O,O,O′,O′,O″,O″)] (II), where Н2ba is barbituric acid C4H4N2O3, were characterized by powder X-ray diffraction. Crystallographic data: a = 14.1603 (4) Å, b = 3.68977 (9) Å, c = 10.9508 (3) Å, β = 82.226 (1)°, V = 566.90 (3) Å3, space group P21/n, Z = 4 for I; a = 14.652 (1) Å, b = 11.7275 (7) Å, c = 3.8098 (3) Å, β = 79.140 (6)°, V = 642.90 (8) Å3, space group C2/m, Z = 4 for II. The structural topologies of alkali metal complexes with barbituric acid and some its derivatives were compared. The thermal stability of complexes I and II in an air atmosphere was studied.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Головнев Н. Н. Структура барбитуратов калия и цезия [Текст] / Н. Н. Головнев, М. С. Молокеев, М. К. Лесников // Журн. неорг. химии. - 2018. - Т. 63 № 10. - С. 1299–1305

Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Kirenskii Inst Phys, Krasnoyarsk 660036, Russia.
Far Eastern State Transport Univ, Khabarovsk 680021, Russia.

Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Lesnikov, M. K.; Ministry of Education and Science [4.7666.2017/BCh]
}
Найти похожие
5.


    Golovnev, N. N.
    Structure and Thermal Decomposition of Nd(III), Gd(III) and Tb(III) 2-Thiobarbiturates / N. N. Golovnev, M. S. Molokeev, I. V. Sterkhova // Russ. J. Inorg. Chem. - 2019. - Vol. 64, Is. 9. - P. 1146-1151, DOI 10.1134/S0036023619090134. - Cited References: 21. - The work was performed as part of the State Assignment of the Ministry of Education and Science of the Russian Federation to the Siberian Federal University in 2017-2019. (4.7666.2017/BCh). The powder X-ray diffraction studies were performed using the equipment at the Baikal and Krasnoyarsk Centers for Collective Use of the Siberian Branch of the Russian Academy of Sciences. . - ISSN 0036-0236. - ISSN 1531-8613
РУБ Chemistry, Inorganic & Nuclear
Рубрики:
CRYSTAL-STRUCTURE
   TRANSFORMATION

Кл.слова (ненормированные):
lanthanide(III) 2-thiobarbiturates -- structure -- thermal stability
Аннотация: Complexes [Ln2(H2O)6(μ2-Htba−O,O')4(Htba−O)2]n (Ln = Tb (I), Gd (II), Nd (III); and H2tba is thiobarbituric acid) have been synthesized. According to single-crystal X-ray diffraction, monoclinic crystals of I–III are isostructural. They contain three independent Htba– ions (one terminal and two bridging) and two independent Ln3+ ions. Six Htba– ligands (two terminal and four O,O'-bridging) and two water molecules are coordinated to one Ln3+ ion, and four O,O'-bridging Htba– ions and four water molecules are coordinated to the other Ln3+ ion to form square antiprisms. The antiprisms are bound by Htba– bridging ions into layers. Numerous hydrogen bonds and π–π interactions stabilize the structures of the compounds. Thermal decomposition of complexes I and II performed in air results in mixtures of oxides and oxysulfates, whereas complex III forms Nd2O2SO4.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Головнев Н. Н. Структура и термическое разложение 2-тиобарбитуратов Nd(III), Gd(III) и Tb(III) [Текст] / Н. Н. Головнев, М. С. Молокеев, И. В. Стерхова // Журн. неорг. химии. - 2019. - Т. 64 № 9. - С. 965-970

Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia.
Far Eastern State Transport Univ, Khabarovsk 680021, Russia.
Russian Acad Sci, Favorsky Inst Chem, Siberian Branch, Irkutsk 664033, Russia.

Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Sterkhova, I., V; Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [4.7666.2017/BCh]
}
Найти похожие
6.


   
    Hydrates of lanthanide(III) 2-thiobarbiturates: synthesis, structure, and thermal decomposition / N. N. Golovnev, M. S. Molokeev, M. K. Lesnikov, A. S. Samoilo // Russ. J. Inorg. Chem. - 2020. - Vol. 65, Is. 7. - P. 999-1005, DOI 10.1134/S0036023620070098. - Cited References: 22. - This study was financially supported by the Russian Foundation for Basic Research within scientific project no. 19-52-80003 . - ISSN 0036-0236
Кл.слова (ненормированные):
lanthanides(III) -- thiobarbiturates -- hydrates -- structure -- stability
Аннотация: The hydrates Ln(Htba)3 ∙ 3H2O (Ln = Yb (I), Er (II), Ho (III); Н2tba = 2-thiobarbituric acid), Ln(Htba)3 ∙ 2H2O and Ln(Htba)3 ∙ 8H2O were crystallized from aqueous solutions. According to single-crystal X-ray diffraction analysis data, the structure of monoclinic crystals of isostructural complexes I–III was [Ln2(H2O)6(μ2-Htba-О,O')4(Htba-О)2]n. The formation of isostructural Ln(Htba) ∙ 2H2O (Ln = La, Ce, Eu, Yb, Lu), Ln(Htba)3 ∙ 8H2O (Ln = Eu, Tb, Ho, Yb) and Y(Htba)3 ∙ nH2O (n = 2, 8) was confirmed by the comparison of X-ray diffraction patterns, and their composition was determined by elemental and thermal analyses. The stability of crystal hydrates under heating in an air atmosphere and in contact with their saturated solutions was studied.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Гидраты 2-тиобарбитуратов лантаноидов(III): синтез, структура и термическое разложение [Текст] / Н. Н. Головнев, М. С. Молокеев, М. К. Лесников, А. С. Самойло // Журн. неорг. химии. - 2020. - Т. 65 № 7. - С. 915-921

Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Kirenskii Institute of Physics, Federal Research Center “Krasnoyarsk Scientific Center,” Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation

Доп.точки доступа:
Golovnev, N. N.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Lesnikov, M. K.; Samoilo, A. S.
}
Найти похожие
7.


   
    Магнетизм бериллиевой керамики со структурой перовскита BeTiO3 / А. В. Павлов, Л. И. Квеглис, А. В. Джес [и др.] // Фундамент. пробл. совр. материаловед. - 2022. - Т. 19, № 1. - С. 115-124 ; Basic Probl. Mater. Sci., DOI 10.25712/ASTU.1811-1416.2022.01.013. - Библиогр.: 24 . - ISSN 1811-1416
   Перевод заглавия: Magnetism of beryllium ceramics with the perovskite structure BeTiO3
Кл.слова (ненормированные):
бериллиевая керамика -- магнитный гистерезис -- электронная структура -- икосаэдрические кластеры -- martensitic transformations -- orientation relations -- Pitch deformation -- polar decomposition of the tensor -- martensite nanocrystals
Аннотация: Известно, что введение в ВеО-керамику добавки TiO2 после термообработки в восстановительной атмосфере сопровождается значительным увеличением электропроводности и способностью поглощать электромагнитное излучение в широком диапазоне частот. До сих пор механизм этого влияния до конца не установлен. С использованием методов Лоренцевой электронной микроскопии в сканирующем электронном микроскопе, а также вибрационного магнитометра, установлено проявление ферромагнетизма. Такая особенность бериллиевой керамики способствует поглощению электромагнитной энергии в объемных образцах, содержащих наночастицы TiO2. Установлено, что присутствие наночастиц способствует формированию структуры перовскита в зонах спекания BeO + TiO2. В структуре перовскита возможна поляризация молекул за счет формирования поляронов, что приводят к деформации решетки и смещению атомов. В результате такого смещения происходит изменение ближнего порядка в структуре перовскита и к образованию икосаэдрической фазы из исходной фазы со структурой кубоктаэдра. Малый размер атома бериллия позволяет организоваться тетраэдрической плотной упаковке в форме икосаэдра из атомов кислорода вокруг центрального атома бериллия. В результате повышается атомная плотность и плотность электронных состояний на уровне Ферми. Предлагаются модели для объяснения причины появления ферромагнетизма и электропроводности, которые обнаружены в бериллиевой керамике. С помощью метода спин-поляризованных электронов проведены расчеты электронной структуры нанокластеров с различным ближним порядком.
It is known that the introduction of TiO2 additives into BeO ceramics after heat treatment in a reducing atmosphere is accompanied by a significant increase in electrical conductivity and the ability to absorb electromagnetic radiation in a wide frequency range. Until now, the mechanism of this influence has not been fully established. Using the methods of Lorentzian electron microscopy in a scanning electron microscope, as well as a vibration magnetometer, the manifestation of ferromagnetism was established. This feature of beryllium ceramics promotes the absorption of electromagnetic energy in bulk samples containing TiO2 nanoparticles. It was found that the presence of nanoparticles promotes the formation of the perovskite structure in the BeO + TiO2 sintering zones. In the structure of perovskite, polarization of molecules is possible due to the formation of polarons, which leads to deformation of the lattice and displacement of atoms. As a result of this displacement, a change in the short-range order in the perovskite structure occurs and to the formation of an icosahedral phase from the initial phase with a cuboctahedral structure. The small size of the beryllium atom makes it possible to organize a tetrahedral close packing in the form of an icosahedron of oxygen atoms around the central beryllium atom. As a result, the atomic density and the density of electronic states at the Fermi level increase. Models are proposed to explain the reasons for the appearance of ferromagnetism and electrical conductivity found in beryllium ceramics. Using the spin-polarized electron method, the electronic structure of nanoclusters with different short-range orders has been calculated.

Смотреть статью,
РИНЦ,
Читать в сети ИФ
Держатели документа:
Сибирский федеральный университет, пр. Свободный, 79, 660041, Красноярск, Россия
Восточно-Казахстанский университет им. С. Аманжолова, ул. 30-ой Гвардейской дивизии, 34, 070002, Усть-Каменогорск, Республика Казахстан
Восточно-Казахстанский технический университет им. Д. Серикбаева, ул. Протозанова, 69, 070004, Усть-Каменогорск, Республика Казахстан
Национальный исследовательский Томский государственный университет, пр. Ленина, 36, 634050, Томск, Россия
Институт физики им. Л.В. Киренского, Академгородок, 50, стр. 38, 660036, Красноярск, Россия

Доп.точки доступа:
Павлов, А. В.; Квеглис, Людмила Иосифовна; Kveglis L. I.; Джес, А. В.; Сапрыкин, Д. Н.; Насибуллин, Р. Т.; Великанов, Дмитрий Анатольевич; Velikanov, D. A.; Немцев, Иван Васильевич; Nemtsev, I. V.; Шалаев, П. О.

}
Найти похожие
8.


   
    Modification of polycaproamide composites based on 1H,1H,13H-rihydroperfluorotridecan-1-ol and montmorillonite / S. V. Kudashev, A. A. Kondrasenko, A. N. Maiulev [et al.] // Fibre Chem. - 2022. - Vol. 53, Is. 5. - P. 291-295, DOI 10.1007/s10692-022-10287-5. - Cited References: 24 . - ISSN 0015-0541
Кл.слова (ненормированные):
Decomposition -- Nuclear magnetic resonance spectroscopy -- Macromolecular chain -- Macroradicals -- NMR-spectroscopy -- Organoclays -- Paramagnetic centers -- Polycaproamides -- Polymer composite -- Possible mechanisms -- Stabilizing effects -- X ray structure analysis -- Clay minerals
Аннотация: Modification of polycaproamide by 1H,1H,13H-trihydroperfluorotridecan-1-ol immobilized on montmorillonite produced an F-containing polymer composite. The structure of the resulting composite was investigated using x-ray structure analysis and solid-state 19F NMR spectroscopy. The polymorphous composition of this heterochain polymer was shown to reorganize to enhance its thermal stability and diminish its flammability. Possible mechanisms for the stabilizing effect of the used modifier that were related to the involvement of organo-clay paramagnetic centers in the binding of macroradicals formed during thermal decomposition of macromolecular chains were discussed.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Volgograd State Technical University, Volgograd, Russian Federation
Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Sebryakovskii Filial, Volgograd State Technical University, Volgograd Region, Mikhailovka, Russian Federation
L. V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation

Доп.точки доступа:
Kudashev, S. V.; Kondrasenko, A. A.; Кондрасенко, Александр Александрович; Maiulev, A. N.; Мацулев, Александр Николаевич; Babkin, V. A.; Belousova, V. S.; Andreev, D. S.; Zheltobryukhov, V. F.; Kuznetsova, N. V.
}
Найти похожие
9.


   
    Effect of surfactants on the structure, phase composition, and magnetic properties of FexSy nanoparticles synthesized by thermal decomposition / R. D. Ivantsov, C.-R. Lin, Y.-Z. Chen [et al.] // Nanobiotechnol. Rep. - 2022. - Vol. 17, Is. 3. - P. 336-344, DOI 10.1134/S2635167622030089. - Cited References: 27. - This study was supported by the Russian Foundation for Basic Research with Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, the research project no. 19-42-240005: “Features of the Electronic Structure, Magnetic Properties, and Optical Excitations in Nanocrystals of Multifunctional Magnetic Chalcogenides Fe3S4 and FeSe” and the Russian Foundation for Basic Research and the Ministry of Science and Technology of Taiwan, joint projects nos. 19-52-52002 and 109-2112-M-153-003 and 108-2923-M-153-001-MY3. - The electron-microscopy study was carried out at the Laboratory of Electron Microscopy of the Center for Collective Use of the Siberian Federal University within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (research code FSRZ-2020-0011). The magnetic measurements were carried out on a vibrating sample magnetometer at the Krasnoyarsk Regional Center for Collective Use, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences . - ISSN 2635-1676
Кл.слова (ненормированные):
Agglomeration -- Crystal impurities -- Fourier transform infrared spectroscopy -- High resolution transmission electron microscopy -- Magnetic properties -- Magnetite -- Magnetization -- Nanomagnetics -- Sulfur compounds -- Synthesis (chemical) -- Thermogravimetric analysis -- Thermolysis -- Electron diffraction analysis -- Greigites -- Hexadecylamine -- Inverse spinel structures -- Iron sulfide -- Isostructural -- Octadecyl amine -- Organic shells -- Structures phase -- Synthesised -- Surface active agents
Аннотация: The effect of surfactants on the structure, morphology, and magnetic properties of FexSy iron-sulfide nanoparticles synthesized by thermal decomposition is studied. Oleylamine, hexadecylamine, and octadecylamine are used as surfactants. It is established by X-ray and electron-diffraction analysis combined with Mossbauer spectroscopy that, in samples 1 and 2 prepared using oleylamine and hexadecylamine, respectively, the Fe3S4 greigite phase dominates, with an inverse spinel structure isostructural to the iron oxide Fe3O4 magnetite with minor Fe9S11 impurities. Deviations in the distribution of iron cations over the tetrahedral and octahedral sites relative to the bulk greigite crystals are observed. The nanoparticles synthesized using octadecylamine (sample 3) are found to be multiphase with a greigite fraction of ~20%. In all three cases, as showed the results of transmission electron microscopy and Fourier transform infrared spectroscopy together with thermogravimetry analysis, the magnetic nanoparticles have an organic shell chemically bonded to their magnetic core, which prevents the agglomeration of the particles. This shell is much more massive in samples 2 and 3. The magnetization values for samples 1 and 2 are similar to those of greigite nanoparticles reported in publications, while the magnetization of sample 3 is several times lower, in accordance with the greigite fraction in it. The combination of fairly high magnetization with a massive organic shell allows one to consider hexadecylamine to be a promising surfactant for the synthesis of iron-sulfide nanoparticles protected from external impact and agglomeration.

Смотреть статью,
Scopus

Публикация на русском языке Влияние ПАВ на структуру, фазовый состав и магнитные свойства наночастиц FexSy, полученных методом термического разложения [Текст] / Р. Д. Иванцов, Ч. Р. Лин, Ю. Ж. Чэнь [и др.] // Рос. нанотехнол. - 2022. - Т. 17 № 3. - С. 358-367

Держатели документа:
Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Department of Applied Physics, National Pingtung University, Pingtung City, 90003, Taiwan
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Ivantsov, R. D.; Иванцов, Руслан Дмитриевич; Lin, C. -R.; Chen, Y. -Z.; Ivanova, O. S.; Иванова, Оксана Станиславовна; Altunin, R. R.; Knyazev, Yu. V.; Князев, Юрий Владимирович; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zharkov, S. M.; Жарков, Сергей Михайлович; Shestakov, N. P.; Шестаков, Николай Петрович; Sukhachev, A. L.; Сухачев, Александр Леонидович; Edelman, I. S.; Эдельман, Ирина Самсоновна
}
Найти похожие
10.


   
    Exploration of the structural, spectroscopic and thermal properties of double sulfate monohydrate NaSm(SO4)2·H2O and its thermal decomposition product NaSm(SO4)2 / Y. G. Denisenko, A. E. Sedykh, S. A. Basova [et al.] // Adv. Powder Technol. - 2021. - Vol. 32, Is. 11. - P. 3943-3953, DOI 10.1016/j.apt.2021.08.009. - Cited References: 81. - This work was partly supported by the Russian Science Foundation (21-19-00046) and Russian Foundation for Basic Research (Grant 19-33-90258\19). The use of the equipment of Krasnoyarsk Regional Center of Research Equipment of the Federal Research Center “Krasnoyarsk Science Center SB RAS” is acknowledged . - ISSN 0921-8831
   Перевод заглавия: Исследование структурных, спектроскопических и термических свойств двойного сульфатного моногидрата NaSm(SO4)2·H2O и продукта его термического разложения NaSm(SO4)2
Кл.слова (ненормированные):
Sulfate -- Thermal decomposition -- Crystal structure -- Raman -- Photoluminescence
Аннотация: Samarium-sodium double sulfate crystalline hydrate NaSm(SO4)2·H2O was obtained by the crystallization from an aqueous solution containing equimolar amounts of ions. The anhydrous salt of NaSm(SO4)2 was formed by a thermally induced release of the equivalent of water from NaSm(SO4)2·H2O. The kinetic parameters of thermal decomposition were determined (Ea = 102 kJ/mol, A = 9·106). The crystal structures of both compounds were refined from the X-ray powder diffraction data. Sulfate hydrate NaSm(SO4)2·H2O crystallizes in the trigonal symmetry, space group P3121 (a = 6.91820(3) and c = 12.8100(1) Å, V = 530.963(7) Å3). The anhydrous salt crystallizes in the triclinic symmetry, space group P-1 (a = 6.8816(2), b = 6.2968(2) and c = 7.0607(2) Å, α = 96.035(1), β = 99.191(1) and γ = 90.986(1)°, V = 300.17(1) Å3). The vibrational properties of compounds are mainly determined by the sulfate group deformations. The luminescence spectra of both sulfates are similar and are governed by the transitions of samarium ions 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2 and 11/2). The anhydrous sulfate is stable up to 1100 K and undergoes an almost isotropic expansion when heated. After 1100 K, the compound decomposes into Sm2(SO4)3 and Na2SO4.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of General and Special Chemistry, Industrial University of Tyumen, Tyumen, 625000, Russian Federation
Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, Giessen, 35392, Germany
Department of Inorganic and Physical Chemistry, Tyumen State University, Tyumen, 625003, Russian Federation
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, 630090, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation
Department of Applied Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far-Eastern State Transport University, Khabarovsk, 680021, Russian Federation
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Photonics and Laser Technology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Research Department, Northern Trans-Ural State Agricultural University, Tyumen, 625003, Russian Federation
Laboratory of the Chemistry of Rare Earth Compounds, Institute of Solid State Chemistry, UB RAS, Ekaterinburg, 620137, Russian Federation
Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, Giessen, 35392, Germany

Доп.точки доступа:
Denisenko, Y. G.; Sedykh, A. E.; Basova, S. A.; Atuchin, V. V.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Krylov, A. S.; Крылов, Александр Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Khritokhin, N. A.; Sal'nikova, E. I.; Andreev, O. V.; Muller-Buschbaum, K.
}
Найти похожие
 1-10    11-20   21-25 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)