Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Doping<.>)
Общее количество найденных документов : 96
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-60      
1.


   
    Incorporating rare-earth terbium(III) ions into Cs2AgInCl6:Bi nanocrystals toward tunable photoluminescence / Y. Liu, X. M. Rong, M. Z. Li [et al.] // Angew. Chem. - 2020. - Vol. 132, Is. 28. - P. 11731-11737, DOI 10.1002/ange.202004562. - Cited References: 43 . - ISSN 1521-3757
РУБ Chemistry, Multidisciplinary
Рубрики:
HALIDE DOUBLE PEROVSKITE
   LEAD-FREE

   LANTHANIDE

   STABILITY

   EMISSION

Кл.слова (ненормированные):
doping -- energy transfer -- perovskite nanocrystals -- photoluminescence -- terbium
Аннотация: The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare‐earth ions doping and intrinsic emission of lead‐free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first‐principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D4→7F6‐3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi‐doped Cs2Ag(In1−xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy‐transfer channel from self‐trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead‐free perovskite NCs and to expand their luminescence applications.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Univ Sci, Sch Materials Sciences, Beijing Municipal Key Lab New Energy Materials, Technology Beijing,Technologies,Engn, Beijing, P. R. China.
Shenzhen Univ, Coll Materials Sci, Guangdong Res Ctr Interfacial Engn Functional Mat, Shenzhen Key Lab Special Functional Materials, Shenzhen, P. R. China.
Kirensky Inst Phys, Fed Res Ctr KSC SB RASs, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Engn Phys, Radioelectronics, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
S China Univ Technology, Sch Materials Sci, State Key Lab Luminescent Materials, Guangdong Prov Key Lab Fiber Laser Materials, Guangzhou, P. R. China.

Доп.точки доступа:
Liu, Ying; Rong, Ximing; Li, Mingze; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zhao, Jing; Xia, Zhiguo
}
Найти похожие
2.


    Molokeev, M. S.
    A variety of ways to determine doping concentration by X-ray diffraction / Maxim Molokeev // 1st FunMAX Workshop 2020 : Book of Abstracts. - 2020. - P. 8

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics

Доп.точки доступа:
Молокеев, Максим Сергеевич; International Online Workshop on the properties of Functional MAX-materials(1 ; 2020 ; Aug ; 10-12 ; Krasnoyarsk)Институт физики им. Л.В. Киренского Сибирского отделения РАН
}
Найти похожие
3.


   
    Magnetoimpedance, Jahn-Teller transitions upon electron doping of manganese sulfide / S. S. Aplesnin, M. N. Sitnikov, A. M. Kharkov [et al.] // J. Magn. Magn. Mater. - 2020. - Vol. 513. - Ст. 167104, DOI 10.1016/j.jmmm.2020.167104. - Cited References: 42. - This study was supported by youth project_Reshetnev Siberian State University of Science and Technology . - ISSN 0304-8853
Кл.слова (ненормированные):
Impedance -- Prehistory of magnetic susceptibility -- Magnetoimpedance -- Fermi glass -- Orbital magnetic moment -- Electron paramagnetic resonance -- IR spectra -- JT transitions -- Conductivity
Аннотация: The effect of a magnetic field on the electrical and magnetic properties of manganese sulfide upon electron doping in the YbxMn1−xS (0.05 ˂ x ˂ 0.2) compound has been investigated. The change in the conductivity type from the Poole–Frenkel to Mott law have been established using the I–V characteristics and the change in the carrier type upon temperature and concentration variations has been observed. The effect of the sample prehistory on the conductivity, impedance, and magnetic susceptibility under the action of a magnetic field in a wide temperature range has been found. The trivalent state of ytterbium ions has been determined using the electron paramagnetic resonance study. The dynamic JT transitions temperature are found by IR method and by the electron paramagnetic resonance. Anomalies of carrier mobility and magneto-impedance were found in the vicinity of the Jahn-Teller transitions. The experimental data are explained by the localization of electrons with the formation of the interstitial orbital momenta and an orbital momentum into the site. The sample prehistory is related to the lifting of the orbital angular moments degeneracy and the direction of the axis of distortion of the octahedrons in a magnetic field.

Смотреть статью,
Читать в сети ИФ,
Scopus,
WOS
Держатели документа:
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 660037, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok, 50, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Aplesnin, S. S.; Аплеснин, Сергей Степанович; Sitnikov, M. N.; Kharkov, A. M.; Konovalov, S. O.; Vorotinov, A. M.; Воротынов, Александр Михайлович
}
Найти похожие
4.


    Su, Binbin.
    Unveiling Mn2+ dopant states in two-dimensional halide perovskite toward highly efficient photoluminescence / B. B. Su, M. S. Molokeev, Z. G. Xia // J. Phys. Chem. Lett. - 2020. - Vol. 11, Is. 7. - P. 2510-2517, DOI 10.1021/acs.jpclett.0c00593. - Cited References: 49. - This work is supported by the National Natural Science Foundation of China (51961145101, 51972118, and 51722202), Fundamental Research Funds for the Central Universities (D2190980), the Guangdong Provincial Science & Technology Project (2018A050506004), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project no. 19-52-80003. . - ISSN 1948-7185
   Перевод заглавия: Открытие легирующих состояний Mn2 + в двумерном галоидном перовските для высокоэффективной фотолюминесценции
РУБ Chemistry, Physical + Nanoscience & Nanotechnology + Materials Science, Multidisciplinary + Physics, Atomic, Molecular & Chemical
Рубрики:
LEAD BROMIDE PEROVSKITES
   ENERGY-TRANSFER

   EXCITON DYNAMICS

   DOPING MN2+

Аннотация: Doping is able to create novel optoelectronic properties of halide perovskites, and the involved mechanism of efficient emission is still a challenge. Herein Mn2+ substitution into 2D layered perovskites (C8H20N2)PbBr4 was investigated, demonstrating broad-band orange-red emission originating from the 4T1 → 6A1 transition of Mn2+ dopant. The photoluminescence quantum yield (PLQY) of Mn2+ emission is up to 60.8% related to the energy transfer in coupled states. We verify that an actual Mn2+ dopant as low as 0.476% reaches a high PLQY, whereas the nominal adding amount is 0.8 as the Mn2+/Pb2+ ratio. The small activation energy (∼6.72 meV) between the Mn2+ d state and the trap state accounts for this highly efficient energy transfer and photoluminescence. The proposed luminescence mechanism in Mn2+-doped 2D halide perovskites would provide unique insights into the doping design toward high-performance luminescence materials.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Fiber Laser Mat & Appl Tec, Sch Mat Sci & Technol, Guangzhou 510640, Guangdong, Peoples R China.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.

Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Xia, Zhiguo
}
Найти похожие
5.


   
    Incorporating rare-earth terbium(III) Ions into Cs2AgInCl6:Bi nanocrystals toward tunable photoluminescence / Y. Liu, X. M. Rong, M. Z. Li [et al.] // Angew. Chem. - Int. Edit. - 2020. - Vol. 59, Is. 28. - P. 11634-11640, DOI 10.1002/anie.202004562. - Cited References: 43. - This work is supported by the National Natural Science Foundation of China (51961145101, 51972118 and 51722202), Fundamental Research Funds for the Central Universities (FRFTP-18-002C1), Guangdong Provincial Science & Technology Project (2018A050506004) and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project No. 19-52-80003. . - ISSN 1433-7851. - ISSN 1521-3773
   Перевод заглавия: Включение редкоземельного тербия (III) в нанокристаллы Cs2AgInCl6: Bi для перестраиваемой фотолюминесценции
РУБ Chemistry, Multidisciplinary
Рубрики:
HALIDE DOUBLE PEROVSKITE
   LEAD-FREE

   LANTHANIDE

   STABILITY

   EMISSION

Кл.слова (ненормированные):
doping -- energy transfer -- perovskite nanocrystals -- photoluminescence -- terbium
Аннотация: The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare‐earth ions doping and intrinsic emission of lead‐free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first‐principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D4→7F6‐3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi‐doped Cs2Ag(In1−x Tbx )Cl6 NCs could be continuously tuned from green to orange, through the efficient energy‐transfer channel from self‐trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead‐free perovskite NCs and to expand their luminescence applications.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Univ Sci & Technol Beijing, Beijing Municipal Key Lab New Energy Mat & Techno, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
Shenzhen Univ, Shenzhen Key Lab Special Funct Mat, Shenzhen Engn Lab Adv Technol Ceram, Guangdong Res Ctr Interfacial Engn Funct Mat,Coll, Shenzhen 518060, Peoples R China.
Fed Res Ctr KSC SB RASs, Lab Crystal Phys, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Engn Phys & Radioelect, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Fiber Laser Mat & Appl Tec, Sch Mat Sci & Technol, Guangzhou 510641, Peoples R China.

Доп.точки доступа:
Liu, Ying; Rong, Ximing; Li, Mingze; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zhao, Jing; Xia, Zhiguo
}
Найти похожие
6.


    Molokeev, M. S.
    A variety of ways to determine doping concentration by X-ray diffraction / M. S. Molokeev, S. A. Lyashchenko, O. A. Maksimova, S. N. Varnakov [et al.] ; чл. орг. ком.: M. Farle [et al.] ; секр. орг. ком. T. E. Smolyarova // International workshop on functional MAX-materials (1st FunMax). - 2020. - P. 8. - Cited references: 4. - The research was supported by the government of the Russian Federation (agreement No. 075-15-2019-1886)

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Lyashchenko, S. A.; Лященко, Сергей Александрович; Maksimova, O. A.; Varnakov, S. N.; Варнаков, Сергей Николаевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Farle, M.; Farle, M. \чл. орг. ком.\; Tarasov, A. S. \чл. орг. ком.\; Тарасов, Антон Сергеевич; Ovchinnikov, S. G. \чл. орг. ком.\; Smolyarova, T. E. \секр. орг. ком.\; Смолярова, Татьяна Евгеньевна; Молокеев, Максим Сергеевич; International workshop on functional MAX-materials(1 ; 2020 ; Aug. 10-12 ; Krasnoyarsk (on-line)); Kirensky Institute of Physics
}
Найти похожие
7.


   
    Interplay of magnetic and superconducting subsystems in Ho-doped YBCO / D. M. Gokhfeld, S. V. Semenov, K. Y. Terentyev [et al.] // J. Supercond. Nov. Magn. - 2021. - Vol. 34. Is. 10. - P. 2537-2543, DOI 10.1007/s10948-021-05954-3. - Cited References: 26. - This work was supported by the Russian Foundation for Basic Research and the Government of the Krasnoyarsk Territory, Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, project "Superconducting properties of YBCO incorporated by paramagnetic rare-earth elements" No. 20-42-240008 . - ISSN 1557-1939. - ISSN 1557-1947
РУБ Physics, Applied + Physics, Condensed Matter
Рубрики:
TEMPERATURE
   TRANSPORT

   PEAK

   DY

   SUSCEPTIBILITY

   TRANSITION

   BEHAVIOR

Кл.слова (ненормированные):
Peak effect -- Bulk superconductors -- Critical current -- Pinning -- X-ray diffraction -- YBCO -- Doping -- Paramagnetic magnetization
Аннотация: Superconducting and paramagnetic contributions to the magnetization of polycrystalline Y1−xHoxBa2Cu3O7−δ samples were investigated. The superconductivity is responsible for a partial screening of magnetic ions from an external magnetic field and for a possible sinking of antiferromagnetic correlations between these ions. Magnetic moments of Ho ions influence on a peak effect induced by the order–disorder transition of the Abrikosov vortex lattice. The critical current density and the critical temperature of YBCO are not changed by the Ho doping.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Gokhfeld, D. M.; Гохфельд, Денис Михайлович; Semenov, S. V.; Семёнов, Сергей Васильевич; Terentyev, K. Yu.; Терентьев, Константин Юрьевич; Yakimov, I. S.; Balaev, D. A.; Балаев, Дмитрий Александрович; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR); Government of the Krasnoyarsk Territory, Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, project "Superconducting properties of YBCO incorporated by paramagnetic rare-earth elements" [20-42-240008]
}
Найти похожие
8.


   
    Structural, optical, and electronic properties of Cu-doped TiNxOy grown by ammonothermal atomic layer deposition / F. A. Baron, Y. L. Mikhlin, M. S. Molokeev [et al.] // ACS Appl. Mater. Interfaces. - 2021. - Vol. 13, Is. 27. - P. 32531-32541, DOI 10.1021/acsami.1c08036. - Cited References: 69. - This research was funded by the RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (project code 20-42-240013) and by the grant of the Government of the Russian Federation for Creation of World Tier Laboratories (contract no. 075-15-2019-1886) . - ISSN 1944-8244. - ISSN 1944-8252
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
OXYNITRIDE THIN-FILMS
   TITANIUM-NITRIDE

   CONFORMAL TIN

Кл.слова (ненормированные):
atomic layer deposition -- titanium oxynitride -- copper doping -- surface segregation -- thin film
Аннотация: Copper-doped titanium oxynitride (TiNxOy) thin films were grown by atomic layer deposition (ALD) using the TiCl4 precursor, NH3, and O2 at 420 °C. Forming gas was used to reduce the background oxygen concentration and to transfer the copper atoms in an ALD chamber prior to the growth initiation of Cu-doped TiNxOy. Such forming gas-mediated Cu-doping of TiNxOy films had a pronounced effect on their resistivity, which dropped from 484 ± 8 to 202 ± 4 μΩ cm, and also on the resistance temperature coefficient (TCR), which decreased from 1000 to 150 ppm °C–1. We explored physical mechanisms causing this reduction by performing comparative analysis of atomic force microscopy, X-ray photoemission spectroscopy, X-ray diffraction, optical spectra, low-temperature transport, and Hall measurement data for the samples grown with and without forming gas doping. The difference in the oxygen concentration between the films did not exceed 6%. Copper segregated to the TiNxOy surface where its concentration reached 0.72%, but its penetration depth was less than 10 nm. Pronounced effects of the copper doping by forming gas included the TiNxOy film crystallite average size decrease from 57–59 to 32–34 nm, considerably finer surface granularity, electron concentration increase from 2.2(3) × 1022 to 3.5(1) × 1022 cm–3, and the electron mobility improvement from 0.56(4) to 0.92(2) cm2 V–1 s–1. The DC resistivity versus temperature R(T) measurements from 4.2 to 300 K showed a Cu-induced phase transition from a disordered to semimetallic state. The resistivity of Cu-doped TiNxOy films decreased with the temperature increase at low temperatures and reached the minimum near T = 50 K revealing signatures of the quantum interference effects similar to 2D Cu thin films, and then, semimetallic behavior was observed at higher temperatures. In TiNxOy films grown without forming gas, the resistivity decreased with the temperature increase as R(T) = – 1.88T0.6 + 604 μΩ cm with no semimetallic behavior observed. The medium range resistivity and low TCR of Cu-doped TiNxOy make this material an attractive choice for improved matching resistors in RF analog circuits and Si complementary metal–oxide–semiconductor integrated circuits.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
KSC SB RAS, Inst Chem & Chem Technol, Fed Res Ctr, Krasnoyarsk 660036, Russia.
KSC SB RAS, Kirensky Inst Phys, Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia.

Доп.точки доступа:
Baron, F. A.; Барон, Филипп Алексеевич; Mikhlin, Yurii L.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Rautskiy, M. V.; Рауцкий, Михаил Владимирович; Tarasov, I. A.; Тарасов, Иван Анатольевич; Volochaev, M. N.; Волочаев, Михаил Николаевич; Shanidze, L. V.; Шанидзе, Лев Викторович; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Smolyarova, T. E.; Смолярова, Татьяна Евгеньевна; Konovalov, Stepan O.; Zelenov, Fyodor, V; Tarasov, A. S.; Тарасов, Антон Сергеевич; Volkov, N. V.; Волков, Никита Валентинович; RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science [20-42-240013]; Government of the Russian Federation for Creation of World Tier Laboratories [075-15-2019-1886]
}
Найти похожие
9.


   
    Magnetotransport effects and electronic phase separation in manganese sulfides with electron-hole doping / O. B. Romanova, S. S. Aplesnin, M. N. Sitnikov, L. V. Udod // J. Exp. Theor. Phys. - 2021. - Vol. 132, Is. 5. - P. 831-842, DOI 10.1134/S106377612103016X. - Cited References: 38. - This study was supported by the Russian Foundation for Basic Research and the Belarussian Republic Foundation for Basic Research (project no. 20-52-00005) . - ISSN 1063-7761. - ISSN 1090-6509
РУБ Physics, Multidisciplinary
Рубрики:
MAGNETIC-PROPERTIES
   TRANSITION

   MAGNETORESISTANCE

Аннотация: We analyze the effect of electron and hole doping with a low substituent concentration (x = 0.01) on the magnetic and electron subsystems in disordered semiconductors MexMn1-xS (Me = Ag and Tm) in a wide range of temperatures (77–1000 K) and magnetic fields up to 12 kOe. Using magnetic measurements, we have established the domains of ferron (polaron) formation in the vicinity of the magnetic phase transition. We have detected the magnetoimpedance and magnetoresistance, the magnitude and sign of which depend on the electric field, temperature, and the type of the substituent element. We have determined the temperatures of thermopower peaks associated with deformation of the crystalline structure. We have established the phonon and magnon contributions to charge carrier relaxation using the method of impedance spectroscopy and the Jahn–Teller mode of oscillations from the IR spectra for the system containing silver. We have determined the diffusion contribution to the conductivity from the impedance hodograph in TmxMn1-xS semiconductors. The experimental results are described using the models of supermagnetic clusters, ferroelectric domains, and the Debye model.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Магнитотранспортные эффекты и электронное фазовое расслоение в сульфидах марганца с электронно-дырочным допированием [Текст] / О. Б. Романова, С. С. Аплеснин, М. Н. Ситников, Л. В. Удод // Журн. эксперим. и теор. физ. - 2021. - Т. 159 Вып. 5. - С. 938-951

Держатели документа:
Russian Acad Sci, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia.

Доп.точки доступа:
Romanova, O. B.; Романова, Оксана Борисовна; Aplesnin, S. S.; Аплеснин, Сергей Степанович; Sitnikov, M. N.; Udod, L. V.; Удод, Любовь Викторовна; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR); Belarussian Republic Foundation for Basic Research [20-52-00005]
}
Найти похожие
10.


   
    Li/Na substitution and Yb3+ co-doping enabling tunable near-infrared emission in LiIn2SbO6:Cr3+ phosphors for light-emitting diodes / G. Liu, T. Hu, M. S. Molokeev, Z. Xia // iScience. - 2021. - Vol. 24, Is. 4. - Ст. 102250, DOI 10.1016/j.isci.2021.102250. - Cited References: 45. - The present work was supported by the National Natural Science Foundation of China of China (Grant Nos. 51972118 and 51961145101), the Fundamental Research Funds for the Central Universities (D2190980), the Guangzhou Science & Technology Project (202007020005), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Pro-gram (2017BT01X137), and RFBR according to the research project No. 19-52-80003 . - ISSN 2589-0042
   Перевод заглавия: Замещение Li/Na и содопирование Yb3+, позволяющее настраивать излучение в ближней инфракрасной области в люминофорах LiIn2SbO6: Cr3+ для светоизлучающих диодов
Кл.слова (ненормированные):
Inorganic Chemistry -- Optical Materials -- Photonics
Аннотация: Near-infrared (NIR) phosphor-converted light-emitting diode (pc-LED) has great potential in non-invasive detection, while the discovery of tunable broadband NIR phosphor still remains a challenge. Here, we report that Cr3+-activated LiIn2SbO6 exhibits a broad emission band ranging from 780 to 1400 nm with a full width at half maximum (FWHM) of 225 nm upon 492 nm excitation. The emission peaks are tuned from 970 to 1020 nm together with considerable broadening of FWHM (∼285 nm) via Li/Na substitution. Depending on Yb3+ co-doping, a stronger NIR fluorescence peak of Yb3+ appears with improved thermal resistance, which is ascribed to efficient energy transfer from Cr3+ to Yb3+. An NIR pc-LED package has been finally designed and demonstrated a remarkable ability to penetrate pork tissues (∼2 cm) so that the insertion depth of a needle can be observed, indicating that the phosphor can be applied in non-destructive monitoring.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation

Доп.точки доступа:
Liu, G.; Hu, T.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Xia, Z.
}
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-60      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)