Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=LEDs<.>)
Общее количество найденных документов : 29
Показаны документы с 1 по 10
 1-10    11-20   21-29 
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ji H. P., Huang Z. H., Xia Z. G., Molokeev M. S., Atuchin V. V., Fang M. H., Huang S. F.
Заглавие : New yellow-emitting whitlockite-type structure Sr1.75Ca 1.25(PO4)2:Eu2+ phosphor for near-UV pumped white light-emitting devices
Место публикации : Inorg. Chem.: American Chemical Society, 2014. - Vol. 53, Is. 10. - P.5129-5135. - ISSN 0020-1669, DOI 10.1021/ic500230v. - ISSN 1520-510X
Примечания : Cited References: 31. - This work was supported by the National Natural Science Foundations of China (Grant Nos. 51032007, 51002146, 51272242), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130022110006), and the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950). V.V.A. gratefully acknowledges the Ministry of Education and Science of the Russian Federation for the financial support. S.H. would like to acknowledge the China Scholarship Council (CSC) for providing a doctoral scholarship for his Ph.D. study at the University of Auckland.
Предметные рубрики: LUMINESCENCE PROPERTIES
CRYSTAL-STRUCTURE
RED PHOSPHOR
DIODES
LEDS
SR
CA
ORTHOPHOSPHATE
CA-3(PO4)2
EUROPIUM
Аннотация: New compound discovery is of interest in the field of inorganic solid-state chemistry. In this work, a whitlockite-type structure Sr1.75Ca1.25(PO4)2 newly found by composition design in the Sr3(PO4)2–Ca3(PO4)2 join was reported. Crystal structure and luminescence properties of Sr1.75Ca1.25(PO4)2:Eu2+ were investigated, and the yellow-emitting phosphor was further employed in fabricating near-ultraviolet-pumped white light-emitting diodes (w-LEDs). The structure and crystallographic site occupancy of Eu2+ in the host were identified via X-ray powder diffraction refinement using Rietveld method. The Sr1.75Ca1.25(PO4)2:Eu2+ phosphors absorb in the UV–vis spectral region of 250–430 nm and exhibit an intense asymmetric broadband emission peaking at 518 nm under λex = 365 nm which is ascribed to the 5d–4f allowed transition of Eu2+. The luminescence properties and mechanism are also investigated as a function of Eu2+ concentration. A white LED device which is obtained by combining a 370 nm UV chip with commercial blue phosphor and the present yellow phosphor has been fabricated and exhibit good application properties.
Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Yu, Shixin, Xia, Zhiguo, Molokeev M. S., Miao, Hao, Atuchin V. V.
Заглавие : Synthesis and luminescence properties of blue-emitting phosphor Li3c2(PO4)3:Er2+
Место публикации : ECS J. Solid State Sci. Technol. - 2014. - Vol. 3, Is. 8. - P.R159-R163. - ISSN 2162-8769, DOI 10.1149/2.0071408jss. - ISSN 2162-8777
Примечания : Cited References: 33. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, No. 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635) and the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306). Z. G. Xia is also grateful for the financial support from University of Science and Technology Beijing. V.V.A. gratefully acknowledge the Ministry of Education and Science of the Russian Federation for the financial support.
Предметные рубрики: ENERGY-TRANSFER
PHOTOLUMINESCENCE PROPERTIES
INORGANIC-COMPOUNDS
EMISSION COLOR
FULL-COLOR
DIODES
Eu2+
IONS
LEDS
Tb
Аннотация: A new blue-emitting phosphor Li3Sc2(PO4)3:Eu2+ was synthesized by a high temperature solid-state reaction method, and the crystal structure and photoluminescence properties were investigated in detail. The preferred crystallographic position of the Eu2+ ions in the Li3Sc2(PO4)3 host were determined from the structural analysis and spectroscopic properties. The as-prepared phosphor gave an intense blue emission band centered at 439 nm with the CIE coordinate of (0.1540, 0.0317) upon the excitation of the near ultraviolet light. The critical quenching concentration of Eu2+ in Li3Sc2(PO4)3:Eu2+ was about 15 mol%, and the corresponding concentration quenching mechanism was verified to be the dipole-quadrupole interaction. The fluorescence lifetime of Eu2+ emission and the thermal stable luminescence property have been investigated. Li3Sc2(PO4)3:Eu2+ was found to be a promising candidate as a blue-emitting n-UV convertible phosphor for the application in white light emitting diodes (w-LEDs).
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ji H. P., Huang Z. H., Xia, Zhiguo, Molokeev M. S., Atuchin V. V., Huang S. F.
Заглавие : Cation substitution dependent bimodal photoluminescence in whitlockite structural Ca3-xSrx(PO4)2:Eu2+ (0 ≤ x ≤ 2) solid solution phosphors
Место публикации : Inorg. Chem.: American Chemical Society, 2014. - Vol. 53, Is. 20. - P.11119-11124. - ISSN 0020-1669, DOI 10.1021/ic501679f. - ISSN 1520-510X
Примечания : Cited References: 37. - This work was supported by the National Natural Science Foundations of China (Grant Nos. 51032007, 51002146, 51272242), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130022110006), the Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), and Beijing Youth Excellent Talent Program (YETP0635). V.V.A. acknowledges the Ministry of Education and Science of the Russian Federation for financial support.
Предметные рубрики: LIGHT-EMITTING-DIODES
EFFICIENT ENERGY-TRANSFER
EMISSION-TUNABLE PHOSPHOR
EXCITED WHITE LEDS
CRYSTAL-STRUCTURE
LUMINESCENCE PROPERTIES
Mn2+ PHOSPHOR
COLOR TONE
PHASE
Eu2+
Аннотация: Cation substitution dependent tunable bimodal photoluminescence behavior was observed in the Ca3-xSrx(PO4)2:Eu2+ (0 ≤ x ≤ 2) solid solution phosphors. The Rietveld refinements verified the phase purity and whitlockite type crystal structure of the solid solutions. The tunable photoluminescence evolution was studied as a function of strontium content, over the composition range 0.1 ≤ x ≤ 2. In addition to the emission band peak at 416 nm in Ca3(PO4)2:Eu2+, the substitution of Ca2+ by Sr2+ induced the emerging broad-band peak at 493-532 nm. A dramatic red shift of the emission peak located in the green-yellow region was observed on an increase of x in the samples with 0.75 ≤ x ≤ 2.00. The two emission bands could be related to the EuOn-Ca9 and EuOn-Ca9-xSrx emitting blocks, respectively. The values for the two kinds of emitting blocks in the solid solutions can be fitted well with the observed intensity evolution of the two emission peaks.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Wang Z. Y., Xia, Zhiguo, Molokeev M. S., Atuchin V. V., Liu Q. L.
Заглавие : Blue-shift of Eu2+ emission in (Ba,Sr)3Lu(PO4)3:Eu2+ eulytite solid-solution phosphors resulting from release of neighbouring-cation-induced stress
Место публикации : Dalton Trans.: Royal Society of Chemistry, 2014. - Vol. 43, Is. 44. - P.16800-16804. - ISSN 1477-9226, DOI 10.1039/c4dt02319f. - ISSN 1477-9234
Примечания : Cited References: 16. - The present work was supported by the National Natural Science Foundations of China (grant no. 51002146, no. 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635) and the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306). V.V.A. is partly supported by the Ministry of Education and Science of the Russian Federation.
Предметные рубрики: TUNABLE COLOR TONE
EXCITED WHITE LEDS
CRYSTAL-STRUCTURE
TEMPERATURE
IONS
Аннотация: A series of iso-structural eulytite-type (Ba,Sr)(3)Lu(PO4)(3):Eu2+ solid-solution phosphors with different Sr/Ba ratios were synthesized by a solid-state reaction. Crystal structures of (Ba,Sr)(3)Lu(PO4)(3):Eu2+ were resolved by the Rietveld method, which shows an eulytite-type cubic Bi-4(SiO4)(3) structure with cations disordered in a single C-3 site while the oxygen atoms were distributed over two partially occupied sites. The emission peaks of Ba(3-x)SrxLu(PO4)(3):Eu2+ (0
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Jun, Xia, Zhiguo, Chen, Mingyue, Molokeev M. S., Liu, Quanlin
Заглавие : New insight into phase formation of MxMg2Al4+xSi5-xO18:Eu2+ solid solution phosphors and its luminescence properties
Место публикации : Sci. Rep. - 2015. - Vol. 5. - Ст.12149. - ISSN 2045-2322, DOI 10.1038/srep12149
Примечания : Cited References:17. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, No. 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306), and Fundamental Research Funds for the Central Universities (FRF-TP-14-005A1).
Предметные рубрики: CRYSTAL-STRUCTURE
ENERGY-TRANSFER
WHITE LEDS
CORDIERITE
Eu2+
Mg2Al4Si5O18
EMISSION
Аннотация: Here we reported the phase formation of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) solid solution phosphors, where M+ ions were introduced into the void channels of Mg2Al4Si5O18 via Al3+/Si4+ substitution to keep the charge balance. XRD results revealed that the as-prepared phosphors with different M+ contents were iso-structural with Mg2Al4Si5O18 phase. The combined analysis of the Rietveld refinement and high resolution transmission electron microscopy (HRTEM) results proved that M+ ions were surely introduced into the intrinsic channels in Mg2Al4Si5O18. The emission peaks of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) phosphors with various x values performed a systematic red-shift tendency, which was ascribed to the elongation of [MgO6] octahedra. The temperature stable photoluminescence and internal quantum efficiency (QE) of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) phosphors were enhanced owing to the filling of M+ in the void channels suggesting a new insight to design the solid solution phosphors with improved photoluminescence properties.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Guo Q., Liao L., Molokeev M. S., Mei L., Liu H.
Заглавие : Color tunable emission and energy transfer of Ce3+ and Tb3+ co-doped novel La6Sr4(SiO4)6F2 phosphors with apatite structure
Место публикации : Mater. Res. Bull.: Elsevier, 2015. - Vol. 72. - P.245-251. - ISSN 0025-5408, DOI 10.1016/j.materresbull.2015.07.029
Примечания : Cited References: 37. - This present work is supported by the National Natural Science Foundations of China (Grant No. 41172053).
Предметные рубрики: LIGHT-EMITTING-DIODES
LUMINESCENCE PROPERTIES
PHOTOLUMINESCENCE PROPERTIES
EU2+
LEDS
Ключевые слова (''Своб.индексиров.''): inorganic compounds--luminescence--phosphors--optical properties--crystal structure
Аннотация: Single-phase La6Sr4(SiO4)6F2: Ce3+, Tb3+ samples with apatite-like structure have been synthesized via solid-state reaction method. The phase structure, luminescence properties, lifetime, the PL thermal stability, as well as the fluorescence decay curves of the samples were investigated to characterize the resulting samples. Effective energy transfer occurs from Ce3+ to Tb3+ in La6Sr4(SiO4)6F2, which shows more intense Blue-Green light under UV light excitation. In addition, a possible mechanism of the energy-transfer from Ce3+ to Tb3+ ion is also proposed. The critical distance RC of Ce3+ to Tb3+ ions in La6Sr4(SiO4)6F2 host was calculated to be 11.878 Å. All the results indicate that La6Sr4(SiO4)6F2:Ce3+, Tb3+ phosphors have potential applications to be used as near UV-convertible phosphors for white light-emitting diodes. © 2015 Elsevier Ltd. All rights reserved.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Cheng F., Xia, Zhiguo, Molokeev M. S., Jing X.
Заглавие : Effects of composition modulation on the luminescence properties of Eu3+ doped Li1-xAgxLu(MoO4)2 solid-solution phosphors
Место публикации : Dalton Trans.: Royal Society of Chemistry, 2015. - Vol. 44, Is. 41. - P.18078-18089. - ISSN 1477-9226, DOI 10.1039/c5dt02760h
Примечания : Cited References: 42. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51272242, 51572023, 51511130035), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (RERU2015022), and the excellent tutor section of the Fundamental Research Funds for the Central Universities of China University of Geosciences, Beijing (2-9-2015-028). This work was also partly supported by the Russian Foundation for Basic Research (Grant No. 15-52-53080 GFEN_a).
Предметные рубрики: RED PHOSPHORS
PHOTOLUMINESCENCE PROPERTIES
ENERGY-TRANSFER
WHITE LEDS
IONS
NA
POLYMORPHISM
TUNGSTATES
RELAXATION
MOLYBDATES
Аннотация: Double molybdate scheelite-type solid-solution phosphors Li1−xAgxLu1−y(MoO4)2:yEu3+ were synthesized by the solid state reaction method, and their crystal structures and luminescence properties were investigated in detail. The composition modulation and structural evolution of this series of samples were studied and the selected AgEu(MoO4)2, AgLu(MoO4)2, LiLu(MoO4)2 and LiEu(MoO4)2 phases were analyzed based on the Rietveld refinement. Depending on the variation of the Li/Ag ratio in Li1−xAgxLu1−y(MoO4)2:yEu3+ phosphors, the difference in the luminescence properties of Li1−xAgxLu1−y(MoO4)2:yEu3+ phosphors was ascribed to two factors, one reason could be assigned to the coupling effect and the nonradiative transition between the energy levels of LixAg1−xLu(MoO4)2 matrices and the activator Eu3+, another could be due to the near ultraviolet energy absorption and transmission efficiency between the charge-transfer (CT) band of O2−–Mo6+ and the 4f → 4f emissive transitions of Eu3+. The ultraviolet-visible diffuse reflection spectra (UV-vis DRS) and Raman spectra analysis were also used to verify the above mechanism.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lim, Chang Sung, Atuchin V. V., Aleksandrovsky A. S., Molokeev M. S., Oreshonkov A. S.
Заглавие : Microwave sol–gel synthesis of CaGd2(MoO4)4:Er3+/Yb3+ phosphors and their upconversion photoluminescence properties
Место публикации : J. Am. Ceram. Soc.: Wiley-Blackwell, 2015. - Vol. 98, Is. 10. - P.3223-3230. - ISSN 0002, DOI 10.1111/jace.13739. - ISSN 15512916(eISSN)
Примечания : Cited References:69. - This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014-046024). VVA and ASA are partially supported by the Ministry of Education and Science of the Russian Federation.
Предметные рубрики: RED-EMITTING PHOSPHORS
VIBRATIONAL PROPERTIES
LUMINESCENCE PROPERTIES
WHITE LEDS
SPECTROSCOPIC PROPERTIES
HYDROTHERMAL SYNTHESIS
CRYSTAL-STRUCTURE
ROOM-TEMPERATURE
ENERGY-TRANSFER
SR
Аннотация: CaGd2(MoO4)4:Er3+/Yb3+ phosphors with the doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0.05, 0.1, 0.2, and Yb3+ = 0.2, 0.45) have been successfully synthesized by the microwave sol–gel method, and the crystal structure refinement and upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after heat-treatment at 900°C for 16 h, showed a well-crystallized morphology. Under the excitation at 980 nm, CaGd2(MoO4)4:Er3+/Yb3+ particles exhibited strong 525 and 550-nm emission bands in the green region and a weak 655-nm emission band in the red region. The Raman spectrum of undoped CaGd2(MoO4)4 revealed about 15 narrow lines. The strongest band observed at 903 cm−1 was assigned to the ν1 symmetric stretching vibration of MoO4 tetrahedrons. The spectra of the samples doped with Er and Yb obtained under 514.5 nm excitation were dominated by Er3+ luminescence preventing the recording Raman spectra of these samples. Concentration quenching of the erbium luminescence at 2H11/2→4I15/2 and 4S3/2→4I15/2 transitions in the CaGd2(MoO4)4:Er3+/Yb3+ crystal structure was established to be approximately at the 10 at.% doping level.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhu J., Xia, Zhiguo, Zhang Y., Molokeev M. S., Liu Q.
Заглавие : Structural phase transitions and photoluminescence properties of Eu3+ doped Ca(2-x)BaxLaNbO6 phosphors
Место публикации : Dalton Trans.: Royal Society of Chemistry, 2015. - Vol. 44, Is. 42. - P.18536-18543. - ISSN 1477-9226, DOI 10.1039/c5dt03430b
Примечания : Cited References: 27. - The present work was supported by the National Natural Science Foundation of China (Grant No. 51272027, 51472028 and 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), and the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306)
Предметные рубрики: Double-perovskite
Luminescence properties
Thermal-stability
Crystal-chemistry
Red phosphors
White LEDs
Symmetry
Band
Ta
Ln
Аннотация: Crystal structures of the series of double perovskites Ca(2-x)BaxLaNbO6:Eu3+ phosphors have been examined by powder X-ray diffraction and Rietveld refinements. Ca2LaNbO6 has a monoclinic (P21/n) and Ba2LaNbO6 has a monoclinic (C2/m) structure. The structural phases of Ca(2-x)BaxLaNbO6:Eu3+ samples are divided into three sections depending on different Ca/Ba ratios: (1) monoclinic phase (P21/n) as Ca2LaNbO6 in the range of x = 0-0.1, (2) mixed phases containing Ca2LaNbO6 and Ba2LaNbO6 between 0.15 and 1.2, and (3) monoclinic phase (C2/m) as Ba2LaNbO6 for x = 1.4-2. Eu3+ ions act as the structural probes to study the structural phase transitions, and the evolution of the photoluminescence properties and thermal stability behaviours has been also comparatively investigated depending on different structural symmetries from Ca2LaNbO6 to Ba2LaNbO6 phase. The strong red emission from 5D0-7F2 peaking at 618 nm can be found in Ca2LaNbO6:Eu3+ phosphors, which is attributed to the low crystal field effect of the activator ions located in the highly distorted [Lao8] polyhedra sites. The composition-optimized phosphors can find applications in white light emitting diodes (LEDs).
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Xia Y., Chen J., Liu Y.-G., Molokeev M. S., Guan M., Huang Z., Fang M.
Заглавие : Crystal structure evolution and luminescence properties of color tunable solid solution phosphors Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu2+
Место публикации : Dalton Trans.: Royal Society of Chemistry, 2016. - Vol. 45, Is. 3. - P.1007-1015. - ISSN 14779226 (ISSN), DOI 10.1039/c5dt03786g
Примечания : Cited References: 42. - This work was sponsored by National Natural Science Foundation of China (Grant No. 51472223), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0951) and the Fundamental Research Funds for the Central Universities (Grant No. 2652015020).
Предметные рубрики: LIGHT-EMITTING-DIODES
WHITE-LIGHT
ENERGY-TRANSFER
SILICATE GLASS
SINGLE-PHASE
EU2+
LEDS
PHOTOLUMINESCENCE
EMISSION
UV
Аннотация: A series of apatite solid solution phosphors Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu2+ (x = 0,2,4,6) were synthesized by a conventional higherature solid-state reaction. The phase purity was examined using XRD, XPS and XRF. The crystal structure information, such as the concentration, cell parameters and occupation rate, was analyzed using a Rietveld refinement, demonstrating that the Eu2+ activated the Ca2La8(SiO4)6O2 and Ca8La2(PO4)6O2 to form continuous solid solution phosphors. Different behaviors of luminescence evolution in response to structural variation were verified among the series of phosphors. Two kinds of Eu2+ ion sites were proved using low temperature PL spectra (8k) and room temperature decay curves. The substitution of large La3+ ions by small Ca2+ ions induced a decreased crystal field splitting of the Eu2+ ions, which caused an increase in emission energy from the 5d excited state to the 4f ground state and a resultant blue-shift from 508 nm to 460 nm. Therefore, with the crystal structure evolution, the emitted color of the series of phosphors could be tuned from green to blue by adjusting the ratio of Ca/La. © 2016 The Royal Society of Chemistry.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
 1-10    11-20   21-29 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)