Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Nanoshell<.>)
Общее количество найденных документов : 2
Показаны документы с 1 по 2
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zakomirnyi V. I., Rasskazov I. L., Karpov S. V., Polyutov S. P.
Заглавие : New ideally absorbing Au plasmonic nanostructures for biomedical applications
Место публикации : J. Quant. Spectrosc. Radiat. Transf.: Elsevier, 2017. - Vol. 187. - P.54-61. - ISSN 0022-4073, DOI 10.1016/j.jqsrt.2016.08.015
Примечания : Cited References: 67. - The authors would like to thank the anonymous reviewers for their helpful and constructive comments that greatly contributed to improving the final version of the paper.This work was performed within the State contract of the RF Ministry of Education and Science for Siberian Federal University for scientific research in 2014-2016 (Reference number 1792) and SB RAS Program No II.2P (0358-2015-0010).
Ключевые слова (''Своб.индексиров.''): ideal absorption--nanomatryoshka--nanoshell--plasmonic photothermal therapy
Аннотация: In this paper a new set of plasmonic nanostructures operating at the conditions of an ideal absorption (Grigoriev et al., 2015 [1]) was proposed for novel biomedical applications. We consider spherical x/Au nanoshells and Au/x/Au nanomatryoshkas, where ‘x’ changes from conventional Si and SiO2 to alternative plasmonic materials (Naik and Shalaev, 2013 [2]), such as zinc oxide doped with aluminum, gallium and indium tin oxide. The absorption peak of proposed nanostructures lies within 700–1100 nm wavelength region and corresponds to the maximal optical transparency of hemoglobin and melanin as well as to the radiation frequency of available pulsed medical lasers. It was shown that the ideal absorption takes place in a given wavelength region for Au coatings with thickness less than 12 nm. In this case finite quantum size effects for metallic nanoshells play a significant role. The mathematical model for the search of the ideal absorption conditions was modified by taking into account the finite quantum size effects. © 2016
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Kostyukov A. S., Ershov A. E., Gerasimov V. S., Filimonov S. A., Rasskazov I. L., Karpov S. V.
Заглавие : Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials
Место публикации : J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 236. - Ст.106599. - ISSN 00224073 (ISSN), DOI 10.1016/j.jqsrt.2019.106599
Примечания : Cited References: 57. - The reported study was funded by the RF Ministry of Science and Higher Education , the State contract with Siberian Federal University for scientific research in 2017–2019 (Grant No. 3.8896.2017 ); Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (Grant No.18-42-243023); A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676 ).
Аннотация: New type of highly absorbing core-shell AZO/Au (aluminum doped zinc oxide/gold) and GZO/Au (gallium doped zinc oxide/gold) nanoparticles have been proposed for hyperthermia of malignant cells purposes. Comparative studies of pulsed laser hyperthermia were performed for Au nanoshells with AZO core and traditional SiO2 (quartz) core. We show that under the same conditions, the hyperthermia efficiency in the case of AZO increases by several orders of magnitude compared to SiO2 due to low heat capacity of AZO. Similar results have been obtained for GZO core which has same heat capacity. Calculations for pico-, nano- and sub-microsecond pulses demonstrate that reduced pulse duration results in strong spatial localization of overheated areas around nanoparticles, which ensures the absence of negative effects to the normal tissue. Moreover, we propose new alternative way for the optimization of hyperthermia efficiency: instead of maximizing the absorption of nanoparticles, we enhance the thermal damage effect on the membrane of malignant cell. This strategy allows to find the parameters of nanoparticle and the incident radiation for the most effective therapy.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)