Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Phosphors<.>)
Общее количество найденных документов : 106
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-60      
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen K., Gao P., Zhang Z., Ma Y., Luo Z., Molokeev M. S., Zhou Zh., Xia M.
Заглавие : Zero-thermal-quenching broadband yellow-emitting Bi3+-activated phosphors based on metal to metal charge transfer
Колич.характеристики :9 с
Место публикации : J. Alloys Compd. - 2024. - Vol. 986. - Ст.174112. - ISSN 09258388 (ISSN), DOI 10.1016/j.jallcom.2024.174112. - ISSN 18734669 (eISSN)
Примечания : Cited References: 52. - The authors would like to gratefully acknowledge funds from the National Natural Science Foundation of China (Grant No. 51974123), the Key R & D Projects in Hunan Province (2021SK2047 and 2022NK2044), the Wangcheng Science and Technology Plan (KJ221017) and the Science and Technology Innovation Program of Hunan Province (2022WZ1022). The work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: "Advanced Digital Technologies", contract no. 075-15-2020-935. Superior Youth Project of the Science Research Project of Hunan Provincial Department of Education (22B0211)
Аннотация: Bi3+-activated phosphors have been proven to have potential applications foreground in white light-emitting diodes (WLED), plant growth lamps and temperature sensing. Therefore, it is urgent to exploit high-efficiency Bi3+-activated phosphors. Herein, a novel broadband yellow-emitting phosphor Ba2GdGaO5:Bi3+ with high internal quantum efficiency (IQE = 77%) was obtained based on metal to metal charge transfer (MMCT) between Bi3+ ground state and Gd3+ excited states. The photoluminescence excitation (PLE) spectrum and photoluminescence (PL) spectrum range from 225 nm to 400 nm and 400 nm to 700 nm, respectively, which can avoid the reabsorption phenomenon efficiently. Besides, Ba2GdGaO5:Bi3+ has superior thermal stability and it shows zero-thermal-quenching at 150 °C. The K+ doping hardly changes the thermal stability and can improve the PL intensity to 133.1% when the K+ concentration is 2%. Finally, a phosphor-convert WLED (pc-WLED) was simply synthesized by Ba2GdGaO5:Bi3+ and BaMgAl10O17:Eu2+ (BAM:Eu2+) phosphors. The doping of Eu3+ can significantly enhance the color rendering index (CRI, from 88.1 to 91.5) and reduce the correlated color temperature (CCT, from 4911 K to 4014 K). The above experimental results demonstrated that the phosphor has great application prospect in WLED.
Смотреть статью,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ikonnikov D. A., Voronov V. N., Molokeev M. S., Aleksandrovsky A. S.
Заглавие : Upconversion luminescence of CsScF4 crystals doped with erbium and ytterbium
Коллективы : Russian Foundation for Basic Research [15-52-53080]; Russian President [SS-7612.2016.2, 0358-2015-0012, II.2P]
Место публикации : Opt. Mater.: Elsevier Science, 2016. - Vol. 60. - P.584-589. - ISSN 0925-3467, DOI 10.1016/j.optmat.2016.09.016. - ISSN 1873-1252(eISSN)
Примечания : Cited References:33. - The authors are grateful to D. L. Chertkova for excellent technical assistance. The work was partially supported by the Russian Foundation for Basic Research Grant 15-52-53080, by the Russian President Grant SS-7612.2016.2, and by Project No0358-2015-0012 of SB RAS Program NoII.2P.
Предметные рубрики: MODULATED STRUCTURE
LANTHANIDE
NANOCRYSTALS
PHOSPHORS
Ключевые слова (''Своб.индексиров.''): fluoride crystals--erbium--ytterbium--up-conversion--luminescence--crystal structure--power dependence--pump wavelength dependence
Аннотация: Tetragonal CsScF4 crystals doped with (5 at.%) Er and Er/Yb (0.5 at.%/5 at.%) are grown and their crystal structure is determined to belong to Pmmn space group. Er and Yb ions are shown to occupy distorted octahedral Sc sites with the center of inversion. Bright visible upconversion luminescence was observed under 970-980 nm pumping with red (4F9/2), yellow (4S3/2) and green (2H11/2) bands of comparable intensity. UCL tuning curves maximize at 972 nm (CSF:Er) and at 969.7 nm (CSF:Er,Yb) pumping wavelengths. Different ratios between yellow-green and red luminescence intensities in CSF:Er and CSF:Er, Yb are explained by contribution of cross-relaxation in CSF:Er UCL UC in CSF:Er is a three stage process while UC in CSF:Er, Yb is a two stage process. The peculiarities of power dependences are explained by the power-dependent repopulation between starting levels of UC. (C) 2016 Elsevier B.V. All rights reserved.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Wei Y., Qu X., Li G., Cheng Z., Molokeev M. S., Lin C. C., Chan T. -S., Chang C. -K., Chuang Y. -C., Lin J.
Заглавие : Ultra-narrow band blue emission of Eu2+ in halogenated (Alumino)borate systems based on high lattice symmetry
Место публикации : J. Am. Ceram. Soc. - 2019. - Vol. 102. - P.2353– 2369. - ISSN 00027820 (ISSN) , DOI 10.1111/jace.16127
Примечания : Cited References: 63. - This work was supported by the National Natural Science Foundation of China (Grant Nos. 51672259, 51672265, 21521092, 51750110511), Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences (Wuhan) (No. NGM2016KF002), the Ministry of Science and Technology of Taiwan (Contract No. MOST 104-2113-M-027-007-MY3), the Key Research Program of Frontier Sciences, CAS (Grant No. YZDY-SSW-JSC018), and projects for science and technology development plan of Jilin province (20170414003GH), the Program for Jiangmen Innovative Reasearch Team (No.[2017]385),major program of basic research and applied research of Guangdong Province (2017KZDXM083) and the Russian Science Foundation (Grant No. 17-12-01047).
Ключевые слова (''Своб.индексиров.''): blue emission--high symmetry--phosphors--ultra-narrow band--wleds
Аннотация: Phosphor materials with ultra‐high color purity are highly desired in backlit display and WLEDs. How to achieve high‐purity three‐primary emission in rare earth ions activated inorganic phosphors has become a hot topic. Herein, we reported ultra‐narrow band and highly efficient blue‐violet‐emitting Eu2+‐doped Ba2B5O9X (fwhm = 31 nm) and NaBa4(AlB4O9)2X3 (X = Cl, Br) (fwhm = 43 nm) phosphors with peak positions around 424‐437 nm. Especially, the color purity of Ba2B5O9Cl:Eu sample even exceeded 97%, its internal quantum efficiency could achieve 87%. The EXANES analysis revealed that the Eu mainly existed in the form of +2. According to the Rietveld structural refinement, extraordinarily narrow band emission should be attributed to the highly symmetric lattice structures with the flower‐like polyhedrons in the studied (alumino)borate matrix. Significantly, the color gamut of as‐prepared blue phosphor combined with the standard green and red phosphors was almost close to that of Rec. 2020 display standard. In addition, cation substitution strategy in NaBa4(AlxB5‐xO9)2Cl3 (x = 0‐4) and NaBa4(GayB5‐yO9)2Cl3 (y = 0‐3) samples successfully achieved spectra adjustment, and the underlying mechanism was proposed. All these results demonstrate that the as‐prepared phosphors could be superior blue‐emitting candidates for backlit display as well as WLEDs.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Guojun, Jiang, Xingxing, Zhao, Jing, Molokeev M. S., Lin, Zheshuai, Liu, Quanlin, Xia, Zhiguo
Заглавие : Two-dimensional-layered perovskite ALaTa2O7:Bi3+ (A = K and Na) phosphors with versatile structures and tunable photoluminescence
Место публикации : ACS Appl. Mater. Interfaces. - 2018. - Vol. 10, Is. 29. - P.24648-24655. - ISSN 1944-8244, DOI 10.1021/acsami.8b08129
Примечания : Cited References: 48. - The authors acknowledge the support from the National Natural Science Foundation of China (Nos. 51722202, 91622125, and 51572023) and the Natural Science Foundations of Beijing (2172036) and RFBR (17-52-53031).
Предметные рубрики: GENERALIZED GRADIENT APPROXIMATION
YELLOW-EMITTING PHOSPHOR
Ключевые слова (''Своб.индексиров.''): 2d-layered perovskite--bi3+ emission--ion exchange--photoluminescence tuning--white light leds
Аннотация: Topological chemical reaction methods are indispensable for fabricating new materials or optimizing their functional properties, which is particularly important for two-dimensional (2D)-layered compounds with versatile structures. Herein, we demonstrate a low-temperature (∼350 °C) ion exchange approach to prefabricate metastable phosphors ALa1–xTa2O7:xBi3+ (A = K and Na) with RbLa1–xTa2O7:xBi3+ serving as precursors. The as-prepared ALa0.98Ta2O7:0.02 Bi3+ (A = Rb, K, and Na) share the same Dion–Jacobson type 2D-layered perovskite phase, and photoluminescence analyses show that ALa0.98Ta2O7:0.02 Bi3+ (A = Rb, K, and Na) phosphors exhibit broad emission bands peaking at 540, 550, and 510 nm, respectively, which are attributed to the nonradiative transition of Bi3+ from excited state 3P1 or 3P0 to ground state 1S0. The various Bi3+ local environments at the crystallographic sites enable the different distributions of emission and excitation spectra, and the photoluminescence tuning of ALa0.98Ta2O7:0.02 Bi3+ (A = Rb, K, and Na) phosphors are realized through alkali metal ion exchange. Notably, the combination of superior trivalent bismuth emission and low-temperature ion exchange synthesis leads to a novel yellow-emitting K(La0.98Bi0.02)Ta2O7 phosphor which is successfully applied in a white LED device based on a commercially available 365 nm LED chip. Our realizable cases of this low-temperature ion exchange strategy could promote exploration into metastable phosphors with intriguing properties.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Xia Z., Liu G., Wen J., Mei Z., Balasubramanian M., Molokeev M. S., Peng L., Gu L., Miller D. J., Liu Q., Poeppelmeier K. R.
Заглавие : Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution
Место публикации : J. Am. Chem. Soc.: American Chemical Society, 2016. - Vol. 138, Is. 4. - P.1158-1161. - ISSN 00027863 (ISSN), DOI 10.1021/jacs.5b12788
Примечания : Cited References: 23. - Work performed by Z.X. and Q.L. was supported by the National Natural Science Foundation of China (51272242 and 51572023), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), and the Beijing Nova Program (Z131103000413047). Work performed by G.L., J.W., Z.M., M.B., and D.J.M. at Argonne National Laboratory was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) through Grant DE-AC02-06CH11357 for research on heavy elements chemistry and materials sciences. TEM was accomplished in part at the Center for Nanoscale Materials, a DOE Office of Science User Facility under Contract DE-AC02-06CH11357. Sector 20 operations at APS are supported by DOE and the Canadian Light Source, with additional support from the University of Washington. G.L. acknowledges travel support from the CAS/SAFEA International Partnership Program for Creative Research Teams. K.R.P. gratefully acknowledges support from the National Science Foundation (DMR-1307698).
Предметные рубрики: SPINODAL DECOMPOSITION
ENERGY-TRANSFER
EXSOLUTION
CLINOPYROXEN
NANOCRYSTALS
SEGREGATION
MECHANISMS
PYROXENESS
JERVISITE
PHOSPHORS
Аннотация: Controlled photoluminescence tuning is important for the optimization and modification of phosphor materials. Herein we report an isostructural solid solution of (CaMg)x(NaSc)1-xSi2O6 (0 < x < 1) in which cation nanosegregation leads to the presence of two dilute Eu2+ centers. The distinct nanodomains of isostructural (CaMg)Si2O6 and (NaSc)Si2O6 contain a proportional number of Eu2+ ions with unique, independent spectroscopic signatures. Density functional theory calculations provided a theoretical understanding of the nanosegregation and indicated that the homogeneous solid solution is energetically unstable. It is shown that nanosegregation allows predictive control of color rendering and therefore provides a new method of phosphor development. © 2016 American Chemical Society.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen M., Xia Z., Molokeev M. S., Wang T., Liu Q.
Заглавие : Tuning of photoluminescence and local structures of substituted cations in xSr2Ca(PO4)2-(1 - x)Ca10Li(PO4)7:Eu2+ phosphors
Место публикации : Chem. Mater.: American Chemical Society, 2017. - Vol. 29, Is. 3. - P.1430-1438. - ISSN 08974756 (ISSN), DOI 10.1021/acs.chemmater.7b00006
Примечания : Cited References: 37. - The present work was supported by the National Natural Science Foundation of China (Grants 91622125 and 51572023), Natural Science Foundations of Beijing (2172036), and Fundamental Research Funds for the Central Universities (FRF-TP-15-003A2).
Ключевые слова (''Своб.индексиров.''): calcium--energy transfer--europium--light emission--lithium--luminescence--phosphors--photoionization--photoluminescence--single crystals--composition ranges--crystal-field splitting--luminescence measurements--non-linear variation--photoionization process--polyhedra distortion--rare earth doped solids--temperature dependent--solid solutions
Аннотация: Local structure modification in solid solution is an essential part of photoluminescence tuning of rare earth doped solid state phosphors. Herein we report a new solid solution phosphor of Eu2+-doped xSr2Ca(PO4)2-(1 - x)Ca10Li(PO4)7 (0 ≤ x ≤ 1), which share the same β-Ca3(PO4)2 type structure in the full composition range. Depending on the x parameter variation in xSr2Ca(PO4)2-(1 - x)Ca10Li(PO4)7:Eu2+, the vacancies generated in the M(4) site enable the nonlinear variation of cell parameters and volume, and this increases the magnitude of M(4)O6 polyhedra distortion. The local structure modulation around the Eu2+ ions causes different luminescent behaviors of the two-peak emission and induces the photoluminescence tuning. The shift of the emission peaks in the solid solution phosphors with different compositions has been discussed. It remains invariable at x ≤ 0.5, but the red-shift is observed at x 0.5 which is attributed to combined effect of the crystal field splitting, Stokes shift, and energy transfer between Eu2+ ions. The temperature-dependent luminescence measurements are also performed, and it is shown that the photoionization process is responsible for the quenching effect.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lim C. S., Aleksandrovsky A. S., Molokeev M. S., Oreshonkov A. S., Ikonnikov D. A., Atuchin V. V.
Заглавие : Triple molybdate scheelite-type upconversion phosphor NaCaLa(MoO4)3:Er3+/Yb3+: Structural and spectroscopic properties
Место публикации : Dalton Trans.: Royal Society of Chemistry, 2016. - Vol. 45, Is. 39. - P.15541-15551. - ISSN 14779226 (ISSN), DOI 10.1039/c6dt02378a
Примечания : Cited References: 71
Ключевые слова (''Своб.индексиров.''): light emission--optical properties--phosphors--sol-gel process--sol-gels--tungstate minerals--after-heat treatment--crystallized particles--homogeneous morphology--photoluminescence emission--spectroscopic property--triple molybdates--up-conversion emission--upconversion phosphors--optical emission spectroscopy
Аннотация: Triple molybdate NaCaLa(1-x-y)(MoO4)3:xEr3+,yYb3+ (x = y = 0, x = 0.05 and y = 0.45, x = 0.1 and y = 0.2, x = 0.2 and y = 0) phosphors were successfully synthesized for the first time by the microwave sol-gel method. Well-crystallized particles formed after heat treatment at 900 °C for 16 h showed a fine and homogeneous morphology with particle sizes of 2-3 ?m. The structures were refined by the Rietveld method in the space group I41/a. The optical properties were examined comparatively using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the NaCaLa0.7(MoO4)3:0.1Er3+,0.2Yb3+ and NaCaLa0.5(MoO4)3:0.05Er3+,0.45Yb3+ particles exhibited a strong 525 nm emission band, a weaker 550 nm emission band in the green region, and three weak 655 nm, 490 nm and 410 nm emission bands in the red, blue and violet regions. The pump power dependence and Commission Internationale de L'Eclairage chromaticity of the upconversion emission intensity were evaluated in detail. © 2016 The Royal Society of Chemistry.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lim C. S., Aleksandrovsky A. S., Molokeev M. S., Oreshonkov A. S., Atuchin V. V.
Заглавие : The modulated structure and frequency upconversion properties of CaLa2(MoO4)4:Ho3+/Yb3+ phosphors prepared by microwave synthesis
Место публикации : Phys. Chem. Chem. Phys.: Royal Society of Chemistry, 2015. - Vol. 17, Is. 29. - P.19278-19287. - ISSN 1463-9076, DOI 10.1039/c5cp03054d
Примечания : Cited References: 63. - This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014-046024). VVA, ASA and ASO are partially supported by the Ministry of Education and Science of the Russian Federation.
Аннотация: CaLa2−x(MoO4)4:Ho3+/Yb3+ phosphors with the doping concentrations of Ho3+ and Yb3+ (x = Ho3+ + Yb3+, Ho3+ = 0.05; Yb3+ = 0.35, 0.40, 0.45 and 0.50) have been successfully synthesized by the microwave sol–gel method. The modulated and averaged crystal structures of CaLa2−x(MoO4)4:Ho3+/Yb3+ molybdates have been found by the Rietveld method, and the upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after the heat-treatment at 900 °C for 16 h, showed a highly crystallized state. Under the excitation at 980 nm, CaLa2−x(MoO4)4:Ho3+/Yb3+ particles exhibited strong 545 and 655 nm emission bands in the green and red regions. When the Yb3+:Ho3+ ratios are 9:1 and 10:1, the UC intensity of CaLa1.5(MoO4)4:Yb0.45/Ho0.05 and CaLa1.45(MoO4)4:Yb0.50/Ho0.05 particles is the highest for different bands. The CIE coordinates calculated for CaLa2−x(MoO4)4:Ho3+/Yb3+ phosphors are related to the yellow color field. The Raman spectrum of undoped CaLa2(MoO4)4 has revealed about 13 narrow lines. The strongest band observed at 906 cm−1 was assigned to the ν1 symmetric stretching vibration of MoO4 tetrahedra. The spectra of the samples doped with Ho and Yb, as obtained under the 514.5 nm excitation, were dominated by Ho3+ luminescence over the wavenumber range of 700 cm−1 preventing the recording of the Raman spectra.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Jiang C., Brik M. G., Li L., Li L., Peng J., Wu J., Molokeev M. S., Wong K. -L., Peng M.
Заглавие : The electronic and optical properties of a narrow-band red-emitting nanophosphor K2NaGaF6:Mn4+ for warm white light-emitting diodes
Место публикации : J. Mater. Chem. C. - 2018. - Vol. 6, Is. 12. - P.3016-3025. - ISSN 20507534 (ISSN), DOI 10.1039/c7tc05098d
Примечания : Cited References: 55. - We acknowledge the financial support received from the Program for Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R38), the Key Program of Guangzhou Scientific Research Special Project (Grant No. 201607020009), the National Natural Science Foundation of China (Grant No. 51672085, 51322208, 3160440), and the Fundamental Research Funds for the Central Universities. M. G. Brik acknowledges the supports received from the Recruitment Program of High-end Foreign Experts (Grant No. GDW20145200225), the Programme for the Foreign Experts offered by Chongqing University of Posts and Telecommunications, Ministry of Education and Research of Estonia, (Project PUT430) and European Regional Development Fund (Project TK141), and the Guest Professorship at Kyoto University (Prof. S. Tanabe laboratory). The first-principles calculations were carried out using the resources provided by the Wroclaw centre for Networking and Supercomputing (http://wcss.pl; Grant No. WCSS#10117290).
Ключевые слова (''Своб.индексиров.''): energy efficiency--gallium compounds--light emission--light emitting diodes--manganese--manganese compounds--optical properties--phosphors--precipitation (chemical)--quenching--rietveld refinement--sodium compounds
Аннотация: Recently, as a key red component in the development of warm white light-emitting diodes (WLEDs), Recently, as a key red component in the development of warm white light-emitting diodes (WLEDs), Mn4+-doped fluorides with narrow red emission have sparked rapidly growing interest because they improve color rendition and enhance the visual energy efficiency. Herein, a red nanophosphor, K2NaGaF6:Mn4+, with a diameter of 150-250 nm has been synthesized using a simple co-precipitation method. Rietveld refinement reveals that it crystallizes in the space group Fm3m with the cell parameter a = 8.25320(4) Å. The exchange charge model (ECM) has been used to calculate the energy levels of Mn4+ ions in K2NaGaF6, which match well with the experimental spectra. The as-synthesized phosphor exhibits a narrow red emission at around 630 nm (spin-forbidden 2Eg → 4A2 transition of Mn4+ ions) when excited at 365 nm (4A2g → 4T1g) and 467 nm (4A2g → 4T2g), with a quantum efficiency (QE) of 61% and good resistance to thermal quenching. Based on the structure, the formation mechanism of ZPL has been discussed. In addition, the concentration-dependent decay curves of Mn4+ in K2NaGaF6 were fitted using the Inokuti-Hirayama model, suggesting that the dipole-dipole interactions determine the concentration quenching. Finally, encouraged by the good performance, a warm LED with a CRI of 89.4 and CCT of 3779 K was fabricated by employing the title nanophosphor as the red component. Our findings suggest that K2NaGaF6:Mn4+ can be a viable candidate for the red phosphor used in warm WLEDs.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen C. -T., Lin T. -J., Molokeev M. S., Liu W. -R.
Заглавие : Synthesis, luminescent properties and theoretical calculations of novel orange-red-emitting Ca2Y8(SiO4)6O2:Sm3+ phosphors for white light-emitting diodes
Место публикации : Dyes Pigm. - 2018. - Vol. 150. - P.121-129. - ISSN 01437208 (ISSN), DOI 10.1016/j.dyepig.2017.10.047
Примечания : Cited References: 61. - This research was supported by Minister of Science and Technology under contract no. MOST 105-2622-E-033-003-CC2 and MOST 104-2628-E-033-002-MY3.
Ключевые слова (''Своб.индексиров.''): ca2y8(sio4)6o2--photoluminescence--phosphor--solid state reaction
Аннотация: The novel orange-red-emitting Ca2Y8(SiO4)6O2:Sm3+ phosphors (CYSO:Sm3+) were synthesized via conventional a solid state reaction. The crystal structure and atomic coordinates of CYSO:Sm3+ was characterized by Rietveld refinement. Luminesce properties of as-synthesized CYSO:Sm3+ phosphors are carried out by PL/PLE, decay life time, thermal quenching as well as reflectance spectrometer and LED fabrications. The results indicates that composition-optimized CYSO:1%Sm3+ exhibits orange-red emission peaks located on 564, 601, 608 and 648 nm attributed to the transitions of 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2, respectively. The decay lifetime of CYSO:Sm3+ phosphors was in the range of 0.37–1.10 ms. The temperature-dependent photoluminescence is decreased to 80% from room temperature to 150 °C, which is superior to that of commercial red phsophpr-Y2O3:Eu3+. The results of LED fabrication by combing 405 chips and blue/green phosphors are demonstrated in this study. Finally, from viewpoint of theoretical calculations, band structure and density of state for CYSO and CYSO:Sm3+ are studied by first principles calculations. All the results indicate that CYSO:Sm3+ phosphors could be a potential material for white light-emitting diodes.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-60      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)