Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Quenching<.>)
Общее количество найденных документов : 11
Показаны документы с 1 по 10
 1-10    11-11 
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ji H., Huang Z., Xia, Zhiguo, Molokeev M. S., Chen M., Atuchin V. V., Fang M., Liu Y., Wu, Xiaowen
Заглавие : Phase transformation in Ca3(PO4)2:Eu2+ via the controlled quenching and increased Eu2+ content: Identification of new cyan-emitting α-Ca3(PO4)2:Eu2+ phosphor
Место публикации : J. Am. Ceram. Soc. - 2015. - Vol. 98, Is. 10. - P.3280-3284. - ISSN 0002-7820, DOI 10.1111/jace.13787
Примечания : Cited References: 23. - This work was partly supported by the National Natural Science Foundations of China (grant nos. 51272242, 51472222, 51511130035), the Research Fund for the Doctoral Program of Higher Education of China (grant no. 20130022110006), and the Russian Foundation for Basic Research (grant no. 15-52-53080 GFEN_a). VVA was partly supported by the Ministry of Education and Science of the Russian Federation.
Предметные рубрики: NEUTRON POWDER DIFFRACTION
SOLID-SOLUTION PHOSPHORS
CRYSTAL-STRUCTURE
DIODES
PHOTOLUMINESCENCE
LUMINESCENCE
TRANSITION
ALPHA
Аннотация: A case of phosphor is reported where the cooling rate parameter significantly influences the luminescence property. By quenching the sample after the higherature solid-state reaction at 1250°C, we successfully prepared the Eu2+-doped α form Ca3(PO4)2 (α-TCP:Eu2+) as a new kind of bright cyan-emitting phosphor. The unusual emission color variation (from cyan to blue) depends on the cooling rate after sintering and Eu2+ doping level as it was observed in the TCP-based phosphors. By the Rietveld analysis, it is revealed that the cyan- and blue-emitting phosphors are two different TCP forms crystallizing in the monoclinic (space group P21/a, α-TCP) and the rhombohedral structure (space group R3c, β-TCP), respectively. Upon 365 nm UV light excitation, α-TCP:Eu2+ exhibits an asymmetric broad-band cyan emission peaking at 480 nm, while β-TCP:Eu2+ displays a relatively narrow-band blue emission peaking at 416 nm. The Eu2+-doping in Ca3(PO4)2 shifts the upper temperature limit of the stable structural range of β form from 1125°C to ≥1250°C. Moreover, the crystal structures of α/β-TCP:Eu2+ were compared in the aspects of compactness and cation site sets. The emission thermal stability of α/β-TCP:Eu2+ was comparatively characterized and the difference was related to the specific host structural features. © 2015 The American Ceramic Society.
Смотреть статью,
WOS,
Scopus,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Konkolovich A. V., Presnyakov V. V., Zyryanov V. Y., Loiko V. A., Shabanov V. F.
Заглавие : Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal
Место публикации : JETP Letters. - 2000. - Vol. 71, Is. 12. - P.486-488. - ISSN 0021-3640
Примечания : Cited References: 8
Аннотация: A theoretical study of light transmission through a polymer with a monolayer ensemble of bipolar nematic droplets under applied electric film is performed. The possibility of interference quenching of monochromatic coherent light directly transmitted through the film is predicted theoretically and realized in the experiment. (C) 2000 MAIK "Nauka/Interperiodica".
WOS,
Scopus,
Читать в сети ИФ
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ji H., Wang L., Cho Y., Hirosaki N., Molokeev M. S., Xia Z., Huang Z., Xie R.-J.
Заглавие : New Y2BaAl4SiO12:Ce3+ yellow microcrystal-glass powder phosphor with high thermal emission stability
Место публикации : J. Mater. Chem. C: Royal Society of Chemistry, 2016. - Vol. 4, Is. 41. - P.9872-9878. - ISSN 20507534 (ISSN), DOI 10.1039/c6tc03422e
Примечания : Cited References: 32. - This study was partially supported by the National Natural Science Foundation of China (Grant No. 51272259, 51572232 and 51561135015). R. X. was also partially supported by the JSPS KAKENHI (No. 15K06448). M. M. and Z. X. were also partially supported by the Russian Foundation for Basic Research (No. 15-52-53080). H. J. thanks the China Scholarship Council (CSC) for scholarship support.
Ключевые слова (''Своб.индексиров.''): aluminum--crystal structure--crystallization--glass--laser applications--light emission--microcrystals--phosphors--precipitation (chemical)--quenching--silicon--silicon oxides--single crystals--structural design--crystalline nature--crystallization behavior--emission intensity--microcrystal glass--morphology structures--phase formation behavior--structure analysis--temperature increase--cerium
Аннотация: To decrease the rare earth element usage and synthesis cost of Y3Al5O12:Ce phosphor, the Y2BaAl4SiO12 compound is developed as a new host for Ce3+ employing the solid solution design strategy. The design uses polyhedron substitution where YO8/AlO4 are partially replaced by BaO8/SiO4, respectively. Structure analysis of Y2BaAl4SiO12 proves that it successfully preserves the garnet structure, crystallizing in the cubic Iad space group with a = b = c = 12.00680(5) Å. Barium (Ba) atoms occupy the Y site and silicon (Si) atoms occupy the Al site in the AlO4 tetrahedrons. An expanded study on Y2MAl4SiO12 (M = Ba, Ca, Mg, Sr) series shows a cation size (of M)-dependent phase formation behavior. The lattice stability can be related with the M type in the M–Si pair and substitution level of M–Si for Y–Al. Doping Ce3+ into Y2BaAl4SiO12 yields bright yellow photoluminescence peaking at around 537 nm upon excitation by 460 nm light. The emission intensity is quite stable against thermal quenching whereas the peak wavelength shows a slight red-shift as the ambient temperature increases. The crystallization behavior of Y2BaAl4SiO12 is suggested as melt-assisted precipitation/growth based on cathodoluminescence analysis. The highly crystalline nature of the microcrystals explains the stable emission against thermal quenching. This study may provide an inspiring insight into preparing phosphor with new morphology-structure of “microcrystal-glass powder phosphor”, which distinguishes it from conventional “ceramic powder phosphor” or “single-crystal phosphor”.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Jiang C., Brik M. G., Li L., Li L., Peng J., Wu J., Molokeev M. S., Wong K. -L., Peng M.
Заглавие : The electronic and optical properties of a narrow-band red-emitting nanophosphor K2NaGaF6:Mn4+ for warm white light-emitting diodes
Место публикации : J. Mater. Chem. C. - 2018. - Vol. 6, Is. 12. - P.3016-3025. - ISSN 20507534 (ISSN), DOI 10.1039/c7tc05098d
Примечания : Cited References: 55. - We acknowledge the financial support received from the Program for Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R38), the Key Program of Guangzhou Scientific Research Special Project (Grant No. 201607020009), the National Natural Science Foundation of China (Grant No. 51672085, 51322208, 3160440), and the Fundamental Research Funds for the Central Universities. M. G. Brik acknowledges the supports received from the Recruitment Program of High-end Foreign Experts (Grant No. GDW20145200225), the Programme for the Foreign Experts offered by Chongqing University of Posts and Telecommunications, Ministry of Education and Research of Estonia, (Project PUT430) and European Regional Development Fund (Project TK141), and the Guest Professorship at Kyoto University (Prof. S. Tanabe laboratory). The first-principles calculations were carried out using the resources provided by the Wroclaw centre for Networking and Supercomputing (http://wcss.pl; Grant No. WCSS#10117290).
Ключевые слова (''Своб.индексиров.''): energy efficiency--gallium compounds--light emission--light emitting diodes--manganese--manganese compounds--optical properties--phosphors--precipitation (chemical)--quenching--rietveld refinement--sodium compounds
Аннотация: Recently, as a key red component in the development of warm white light-emitting diodes (WLEDs), Recently, as a key red component in the development of warm white light-emitting diodes (WLEDs), Mn4+-doped fluorides with narrow red emission have sparked rapidly growing interest because they improve color rendition and enhance the visual energy efficiency. Herein, a red nanophosphor, K2NaGaF6:Mn4+, with a diameter of 150-250 nm has been synthesized using a simple co-precipitation method. Rietveld refinement reveals that it crystallizes in the space group Fm3m with the cell parameter a = 8.25320(4) Å. The exchange charge model (ECM) has been used to calculate the energy levels of Mn4+ ions in K2NaGaF6, which match well with the experimental spectra. The as-synthesized phosphor exhibits a narrow red emission at around 630 nm (spin-forbidden 2Eg → 4A2 transition of Mn4+ ions) when excited at 365 nm (4A2g → 4T1g) and 467 nm (4A2g → 4T2g), with a quantum efficiency (QE) of 61% and good resistance to thermal quenching. Based on the structure, the formation mechanism of ZPL has been discussed. In addition, the concentration-dependent decay curves of Mn4+ in K2NaGaF6 were fitted using the Inokuti-Hirayama model, suggesting that the dipole-dipole interactions determine the concentration quenching. Finally, encouraged by the good performance, a warm LED with a CRI of 89.4 and CCT of 3779 K was fabricated by employing the title nanophosphor as the red component. Our findings suggest that K2NaGaF6:Mn4+ can be a viable candidate for the red phosphor used in warm WLEDs.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Guojun, Liu, Zhiyang, Molokeev M. S., Xiao, Zewen, Xia, Zhiguo, Zhang, Xian-Ming
Заглавие : Manipulation of Cl/Br transmutation in zero-dimensional Mn2+-based metal halides toward tunable photoluminescence and thermal quenching behaviors
Место публикации : J. Mater. Chem. C. - 2021. - Vol. 9, Is. 6. - P.2047-2053. - ISSN 2050-7526, DOI 10.1039/d0tc05137c. - ISSN 2050-7534(eISSN)
Примечания : Cited References: 56. - The present work was financially supported by the Natural Science Foundation of China (21871167), and 1331 Project of Shanxi Province and the Postgraduate Innovation Project of Shanxi Normal University (2019XBY018), and funded by RFBR according to the research project no. 19-52-80003
Аннотация: Low-dimensional-networked metal halides are attractive for the screening of emitters applied in solid-state lighting and displays, but the lead toxicity and poor stability are obstacles that must be overcome in industrial applications. Herein, we aim at the discovery of bright and stable photoluminescence in zero-dimensional (0D) Mn2+-based metal halides. By manipulation of Cl/Br transmutation, the nature of the halogen can be confirmed as a pivotal factor to tune the PL behaviors, and the optimum Mn2+ emission with a high PLQY of 99.8% and a short lifetime of 0.372 ms can be achieved in (C24H20P)2MnBr4. The thermal quenching behaviors have been discussed in depth, indicating that the synergistic effect of good chemical stability of organic groups, a long Mn⋯Mn distance of 10.447 Å and a relatively large activation energy (ΔE = 0.277 eV) provides a platform for achieving excellent thermal stability in (C24H20P)2MnBr4. Moreover, the as-fabricated white LED device with a high luminous efficacy of 118.9 lm W−1 and a wide color gamut of 105.3% National Television System Committee (NTSC) shows that (C24H20P)2MnBr4 can be employed as a desirable narrow-band green emitter for LED displays. This work provides a new understanding of fine tailoring halogens, and proposes a feasible approach to achieving high thermal stability emitters toward the targeted practical applications.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Однотомное издание
Шифр издания :
Автор(ы) : Loiko V. A., Konkolovich A. V., Miskevich A. A., Krakhalev M. N., Prishchepa O. O., Shabanov A. V., Zyryanov V. Ya.
Заглавие : Electro-optical response of a monolayer polymer dispersed nematic liquid crystal film doped with surfactant
Место публикации : Liquid Crystal Polymer Nanocomposites: Woodhead Publishing, 2022. - Chapter 7. - P.163-211. - , DOI 10.1016/B978-0-12-822128-0.00006-6
Примечания : Cited References: 86
Аннотация: Light scattering and transmission by a monolayer polymer dispersed liquid crystal film containing liquid crystal droplets with inhomogeneous anchoring of liquid crystal molecules at the polymer-droplet interface is considered theoretically and experimentally. The developed optical model is based on the anomalous diffraction and interference approximations of the theory of scattering of waves. It is applied to describe the interference quenching effect for the coherently transmitted light and electrically controllable symmetry breaking effect in small-angle structure of light scattered by film containing droplets with inhomogeneous anchoring. The analysis of transmittance and reflectance of the one-dimensional photonic crystals composed of monolayers is carried out. The formation of the photonic band gaps is analyzed.
Смотреть главу,
Scopus
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen J., Zou X., Li W., Zhang H., Zhang X., Molokeev M. S., Liu Y., Lei B.
Заглавие : Strategy to construct high thermal-stability narrow-band green-emitting Si-CDs@MAs phosphor for wide-color-gamut backlight displays
Место публикации : Adv. Opt. Mater. - 2022. - Vol. 10, Is. 21. - Ст.2200851. - ISSN 21951071 (ISSN), DOI 10.1002/adom.202200851
Примечания : Cited References: 47. - The work was supported by the Ministry of Science and Technology of China (No. G2021030022L), the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (No. 2021KJ122), the National Natural Science Foundations of China (No. 52102042), the Independent Research and Development Projects of Maoming Laboratory (No. 2021ZZ004), the Key Realm R&D Program of Guangdong Province (No. 2021B0707010003), the Guangzhou Science & Technology Project (Nos. 202007020005 and 202103000059), the Guangdong Provincial Science and Technology Project (Nos. 2021A0505050006 and 2022A1515010229), and the Project of GDUPS (2018) for B.L.
Аннотация: Developing innovative narrow-band green-emitting phosphors featuring low thermal quenching and eco-friendliness for white light-emitting diode (WLED) backlights is a pivotal challenge. Benefitting from narrowband and low toxicity of green-emitting silanized carbon dots (Si-CDs), an efficient confinement and protection strategy through embedding Si-CDs in mesoporous aluminas (MAs) is proposed to construct MAs and Si-CDs composites (Si-CDs@MAs) with superior luminescence properties. Si-CDs@MAs phosphor exhibits green emission at 526 nm with narrow full width at half maximum of 51 nm, zero-thermal quenching even up to 423 K (104.1%@423 K of the emission peak intensity at 298 K), and the internal quantum efficiency of 64.46%. Compared with broad-band yellow-emitting solid-state Si-CDs (S-Si-CDs), the thermal stability, photostability, and water stability of Si-CDs@MAs phosphor are remarkably improved due to surface protection. The WLED backlight is fabricated with optimized Si-CDs@MAs phosphor, which shows high luminous efficacy of 117.43 lm W?1 and wide color gamut (107% NTSC). Furthermore, this work provides the design principles of realizing stable narrow-band solid-state fluorescence carbon dots, suggesting its great potential for wide-color-gamut display application.
Смотреть статью,
Scopus
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Gao P., Li Q., Zhou C., Chen K., Luo Z., Zhang S., Molokeev M. S., Wang J., Zhou Z., Xia M.
Заглавие : High-efficiency continuous-luminescence-controllable performance and antithermal quenching in Bi3+-activated phosphors
Место публикации : Inorg. Chem. - 2022. - Vol. 61, Is. 33. - P.13104-13114. - ISSN 00201669 (ISSN), DOI 10.1021/acs.inorgchem.2c01784
Примечания : Cited References: 52. - The authors gratefully acknowledge funds from the National Natural Science Foundation of China (Grant 51974123), the Distinguished Youth Foundation of Hunan Province (Grant 2020JJ2018), the Key R&D Projects in Hunan Province (2020WK2016, 2020SK2032, 2021SK2047, and 2022NK2044), the Natural Science Foundation of Hunan Province, China (Grant 2021JJ40261), the Hunan High Level Talent Gathering Project (2020RC5007), Changsha Science and Technology Plan (KH2005114 and KH2201428), Hunan Graduate Scientific Research Innovation Project (2022XC017), and the College Students’ Innovative Training (s202210537079x)
Аннотация: Recently, Bi3+-activated phosphors have been widely researched for phosphor-converted light-emitting diode (pc-LED) applications. Herein, novel full-spectrum A3BO7:Bi3+ (A = Gd, La; B = Sb, Nb) phosphors with a luminescence-tunable performance were achieved by a chemical substitution strategy. In the La3SbO7 host material, a new luminescent center was introduced, with Gd3+ replacing La3+. The photoluminescence (PL) spectra show a large blue shift from 520 to 445 nm, thus achieving regulation from green to blue lights. Moreover, a series of solid solution-phase phosphors La3Sb1-xNbxO7:Bi3+ were prepared by replacing Sb with Nb, and a PL spectral tunability from green (520 nm) to orange-red (592 nm) was realized. Temperature-dependent PL spectra show that La3-xGdxSbO7:Bi3+ phosphors have excellent thermal stability. Upon 350 nm excitation, the PL intensity of La3-xGdxSbO7:Bi3+ phosphors at 150 °C remained at more than 93% at room temperature. With Gd3+ doping, the thermal stability gradually improved, and LaGd2SbO7:0.03Bi3+ represents splendid antithermal quenching (135.2% at 150 °C). Finally, a full-visible spectrum for pc-LED with a high color-rendering index (Ra = 94.4) was obtained. These results indicated that chemical substitution is an effective strategy to adjust the PL of Bi3+, which is of great significance in white-light illumination and accurate plant lighting.
Смотреть статью,
Scopus
Найти похожие
9.

Вид документа : Статья из сборника (однотомник)
Шифр издания :
Автор(ы) : Zyryanov V. Ya., Gunyakov V. A., Myslivets S. A., Arkhipkin V. G., Kamaev G. N., Shabanov V. F.
Заглавие : Interference quenching of defect modes in multilayer photonic crystals
Коллективы : IInternational LC Conference
Место публикации : 22nd International LC Conference: Abstracts. - 2008. - Vol. 1. - P.154
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Gao, Huabo, Molokeev M. S., Chen, Qi, Min, Xin, Ma, Bin
Заглавие : Novel AMoO4:Eu3+ (A = Ca and Ba) optical thermometer: Investigation of effect of local ionic coordination environment on optical performance and temperature measurement sensitivity
Место публикации : Ceram. Int. - 2023. - Vol. 49, Is. 16. - P.26803-26810. - ISSN 02728842 (ISSN), DOI 10.1016/j.ceramint.2023.05.217. - ISSN 18733956 (eISSN)
Примечания : Cited References: 52. - The work was supported by the program of Science and Technology International Cooperation Project of Qinghai province (No. 2022-HZ-807) and the National Natural Science Foundation of China (Grant No. 51802172), and was carried out within the framework of the Strategic Academic Leadership Program “Priority-2030′′ for the Siberian Federal University
Аннотация: A range of Eu3+-doped AMoO4 (A = Ca and Ba) phosphors were successfully synthetized, and their crystal structures, optical performance, and temperature measurement sensitivities were investigated in detail. Peak doping concentration of CaMoO4:Eu3+ phosphor was 0.18, while peak doping concentration of BaMoO4:Eu3+ phosphor may be greater than 0.18. Then, temperature-dependent photoluminescence emission spectra of representative CaMoO4:0.09Eu3+ and BaMoO4:0.03Eu3+ phosphors were recorded. CaMoO4:0.09Eu3+ phosphor exhibited abnormal thermal quenching, which was attributed to defects caused by heterovalent substitution of ions and increase in the temperature, and good thermal stability. Finally, the possibility of using both phosphors as optical thermometers was discussed, which exhibited good temperature sensitivity. However, CaMoO4:0.09Eu3+ phosphor exhibited two peak absolute (Sa, 1.28 %K−1 and 1.39 %K−1) and relative sensitivities (Sr, 1.21 %K−1 and 1.20 %K−1). In addition, variation trend of Sr value with temperature was considerably peculiar. Two optimum Sa and Sr values were attributed to abnormal thermal quenching of CaMoO4:0.09Eu3+ phosphor. Peak Sa and Sr values of BaMoO4:0.03Eu3+ phosphor was 12.39 %K−1 and 0.89 %K−1, respectively. In addition, Sa of AMoO4:Eu3+ phosphor was negatively related to Eu3+ central asymmetry, while peak Sr value was more inclined to appropriate ionic central asymmetry.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
 1-10    11-11 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)