Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полныйинформационный краткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Soils<.>)
Общее количество найденных документов : 76
Показаны документы с 1 по 20
1.

Музалевский К. В. Широкополосный рефлектометрический метод измерения влажности и степени шероховатости поверхности почвы/К. В. Музалевский // Журнал радиоэлектроники, 2022,N № 12.- Ст.6
2.

Косолапова Л. Г. Температурные зависимости диэлектрической проницаемости влажных почв. эксперименты и моделирование/Л. Г. Косолапова // Решетневские чтения. -Красноярск, 2012. т.Ч. 1.-С.214-215
3.

Миронов В. Л. Спектроскопическая многорелаксационная диэлектрическая модель талых и мерзлых арктических почв, учитывающая зависимости от температуры и содержания органического вещества/В. Л. Миронов, И. В. Савин // Исследование Земли из космоса, 2019,N № 1.-С.62-73
4.

Миронов В. Л. Применимость концепции незамерзшей воды при моделировании диэлектрической проницаемости мерзлых почв/В. Л. Миронов, А. Ю. Каравайский, Ю. И. Лукин // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева, 2013,N № 5.-С.97-100
5.

Музалевский К. В. Особенности радиотеплового излучения мёрзлых тундровых почв в L-диапазоне частот/К. В. Музалевский // Журнал радиоэлектроники, 2018,N № 12.- Ст.13
6.

Музалевский К. В. Особенности радиометрического зондирования влажности тундровых почв в P-диапазоне частот/К. В. Музалевский // Журнал радиоэлектроники, 2023,N № 12;Journal of Radio Electronics
7.

Обобщенная рефракционная диэлектрическая модель влажных почв, учитывающая ионную релаксацию почвенной воды/В. Л. Миронов [и др.] // Известия высших учебных заведений. Физика, 2013. т.Т. 56,N № 3.-С.75-79
8.

Область примения диэлектрической модели Шмагге для влажных почв/В. Л. Миронов, А. Ю. Анисимова [и др.] // Решетневские чтения. -Красноярск, 2009. т.Т. 1,N Ч. 1.-С.187-188
9.

Каравайский А. Ю. Модель комплексной диэлектрической проницаемости органо-минеральных почв, учитывающая минеральный состав и содержание органического вещества/А. Ю. Каравайский, С. В. Фомин, Ю. И. Лукин // Журнал радиоэлектроники, 2024,N № 1.- Ст.6;Journal of Radio Electronics
10.

Использование метода ядерного магнитного резонанса в измерении соотношения масс различных типов воды в почвах/А. А. Суховский [и др.] // Решетневские чтения. -Красноярск, 2012. т.Ч. 1.-С.221-222
11.

Музалевский К. В. Измерение температуры деятельного слоя почвы арктической тундры на основерадиометрических наблюдений в L-диапазоне/К. В. Музалевский, В. Л. Миронов, А. А. Швалева // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева, 2013. т.№ 5.-С.6-9
12.

Музалевский К. В. Измерение влажности и температуры почвы на основе интерференционного приёма линейно-поляризованных сигналов ГЛОНАСС и GPS/К. В. Музалевский, М. И. Михайлов // Современные проблемы дистанционного зондирования Земли из космоса, 2018. т.Т. 15,N № 4.-С.155-165
13.

Музалевский К. В. Зависимость отражательных свойств агропочв в сверхширокой полосе частот от типа, степени шероховатости поверхности и профилей влажности агропочв/К. В. Музалевский, С. В. Фомин, А. Ю. Каравайский // Журнал радиоэлектроники, 2022,N № 11.- Ст.6;Journal of Radio Electronics
14.

Савин И. В. Зависимость количества связанной воды в арктических почвах от содержания органического вещества и температуры, полученная методом диэлектрической спектроскопии/И. В. Савин, В. Л. Миронов // Известия высших учебных заведений. Физика, 2017. т.Т. 60,N № 12/2. Солнечно-земная физика и физическая экология.-С.117-121
15.

Каравайский А. Ю. Диэлектрический метод измерения содержания незамерзшей воды в минеральной почве/А. Ю. Каравайский, Ю. И. Лукин, Е. И. Погорельцев // Криосфера Земли, 2023. т.Т. 27,N № 1.-С.23-34;Earth’s Cryosphere
16.

Диэлектрическая модель талых и мерзлых органических почв на частоте 1,4 ГГц/С. В. Фомин [и др.] // Известия высших учебных заведений. Физика, 2017. т.Т. 60,N № 12/2:Физика взаимодействия электромагнитного излучения с веществом. Тематический выпуск.-С.121-125
17.

Музалевский К. В. Дистанционное измерение профилей влажности в пахотном слое почвы на основе поляриметрических наблюдений коэффициента отражения в P- и C-диапазонах частот. Эксперимент/К. В. Музалевский // Современные проблемы дистанционного зондирования Земли из космоса, 2020. т.Т. 17,N № 3.-С.145-148
18.

Влияние неравномерного пространственного распределения органических и минеральных типов почв, а также водных объектов на погрешность измерения температуры почвы с использованием радиометрических наблюдений в l-диапазоне/К. В. Музалевский [и др.] // Известия высших учебных заведений. Физика:Томский государственный университет, 2015. т.Т. 58,N № 10/3.-С.22-24
19.

The Web Site for Retreaving the Microwave Complex Permittivity Spectra of Moist Soils/V. L. Mironov, S. V. Fomin, L. G. Kosolapova, A. M. Epikhin // Progress In Electromagnetics Research Symposium Proceedings, 2011.-С.581-584
20.

Bobrov P. P. The effect of dielectric relaxation processes on the complex dielectric permittivity of soils at frequencies from 10 kHz to 8 GHz—Part II: Broadband analysis/P. P. Bobrov, E. S. Kroshka, K. V. Muzalevskiy // IEEE Transactions on Geoscience and Remote Sensing, 2024. т.Vol. 62.- Ст.2000411
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)