Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=corrosion<.>)
Общее количество найденных документов : 3
Показаны документы с 1 по 3
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Yasinskiy A. S., Padamata S. K., Polyakov P. V., Shabanov A. V.
Заглавие : An update on inert anodes for aluminium electrolysis
Место публикации : Non-Ferrous Met. - 2020. - Vol. 48, Is. 1. - P.15-23. - ISSN 20720807 (ISSN), DOI 10.17580/nfm.2020.01.03
Примечания : Cited References: 62. - The work is performed as a part of the state assignment for the science of Siberian Federal University, project number FSRZ-2020-0013. Use of equipment of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” is acknowledged
Аннотация: This update includes the literature related to the inert anodes which were published in the past decade. The metallic anodes are widely regarded as promising candidates to replace the carbon anodes due to its attractive properties like good electrical conductivity, easy to manufacture and high resistance to high thermal shocks. The metals have been tested in pure state and alloy (binary, ternary) form. The oxide scale formed on the anode surface acts as a barrier between the electrolyte and the anode, which protects the anode from being dissolved. The layer of molten fluorides is formed between the scale and the metal anode after a certain time of polarization, and the oxide scale acts as a bipolar electrode. Metal like Cu is reduced at the internal side of the scale. This paper elaborates the effects of various parameters on the performance of the anode. Cu-based alloys (Cu – Ni – Fe and Cu – Al) have shown promising results and could perform well in low-temperature electrolytes. It has been well established that the Cu content in Cu – Ni – Fe and Cu – Al alloys plays a major role in the metal dissolution as the CuO/Cu2O scales formed on the outer layer act as a sacrificial one. The corrosion rate of an anode can be reduced by decreasing the operating temperature, which is possible by using the KF – AlF3 melts. The use of suspensions can increase the purity of the produced metal by stop-ping the anode products to come in contact with cathode metal. Many industries including RUSAL and ELYSIS are still conducting a considerable amount of research to develop an inert anode and are expecting to have a carbon-free cell in the nearest future.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Padamata, Sai Krishna, Yasinskiy, Andrey, Shabanov A. V., Bermeshev, Timofey, Yang, You-jian, Wang, Zhao-wen, Cao, Dao, Polyakov, Peter
Заглавие : Improving corrosion resistance of Cu-Al-based anodes in KF-AlF3-Al2O3 melts
Коллективы : State Assignment for the Science of Siberian Federal University, Russia [FSRZ-2020-0013]
Место публикации : Trans. Nonferrous Met. Soc. China. - 2022. - Vol. 32, Is. 1. - P.354-363. - ISSN 1003-6326, DOI 10.1016/S1003-6326(22)65800-X. - ISSN 2210-3384(eISSN)
Примечания : Cited References: 24. - The work is performed as a part of the State Assignment for the Science of Siberian Federal University, Russia (No. FSRZ-2020-0013) . Use of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS" is acknowledged
Предметные рубрики: NI-FE
ALUMINUM ELECTROLYSIS
INERT ANODES
NICKEL FERRITE
BEHAVIOR
Аннотация: The anodic behaviour of pre-oxidised and non-oxidised Cu−Al-based anodes (Cu−10Al and Cu−9.8Al−2Mn) in KF−AlF3−Al2O3 melts was studied through galvanostatic and potentiodynamic polarization techniques. The alloy compositions were oxidised for a short-term (8 h) at 700 °C, followed by galvanostatic polarization for 1 h at 800 °C with an applied current density of 0.4 A/cm2. The potentiodynamic curves were recorded with a sweep rate of 0.01 V/s. XRD analysis was conducted on frozen melt samples collected on the surface of the anode, and SEM observation was performed on the anode after the experiment to study the phases of the scales formed on the alloys. All the anode materials had a steady potential between 2.30 and 2.50 V(vs Al/AlF3). The corrosion rates of the anodes were calculated from the data acquired through potentiodynamic polarization. It was seen that pre-oxidised anodes possess a low corrosion rate compared to those without pre-oxidation treatment.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Shabalina A. V., Anikeev S. G., Kulinich S. A., Artyukhova N. V., Vlasov V. A., Kaftaranova M. I., Hodorenko V. N., Yakovlev E. V., Pesterev E. A., Lukyanenko A. V., Volochaev M. N., Pakholkina S., Mamazakirov O., Stolyarov V. V., Mokshin A. V., Gunther V. E.
Заглавие : Combined porous-monolithic TiNi materials surface-modified with electron beam for new-generation rib endoprostheses
Место публикации : J. Funct. Biomater. - 2023. - Vol. 14, Is. 5. - Ст.277. - ISSN 20794983 (eISSN), DOI 10.3390/jfb14050277
Примечания : Cited References: 57. - The study was supported by the Russian Science Foundation (grant no. 19-79-10045). https://rscf.ru/project/19-79-10045/
Аннотация: TiNi alloys are very widely used materials in implant fabrication. When applied in rib replacement, they are required to be manufactured as combined porous-monolithic structures, ideally with a thin, porous part well-adhered to its monolithic substrate. Additionally, good biocompatibility, high corrosion resistance and mechanical durability are also highly demanded. So far, all these parameters have not been achieved in one material, which is why an active search in the field is still underway. In the present study, we prepared new porous-monolithic TiNi materials by sintering a TiNi powder (0–100 μm) on monolithic TiNi plates, followed by surface modification with a high-current pulsed electron beam. The obtained materials were evaluated by a set of surface and phase analysis methods, after which their corrosion resistance and biocompatibility (hemolysis, cytotoxicity, and cell viability) were evaluated. Finally, cell growth tests were conducted. In comparison with flat TiNi monoliths, the newly developed materials were found to have better corrosion resistance, also demonstrating good biocompatibility and potential for cell growth on their surface. Thus, the newly developed porous-on-monolith TiNi materials with different surface porosity and morphology showed promise as potential new-generation implants for use in rib endoprostheses.
Смотреть статью,
Читать в сети ИФ
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)