Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (2)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=hydrides<.>)
Общее количество найденных документов : 5
Показаны документы с 1 по 5
1.


    ZINENKO, V. I.
    CALCULATION OF LONG-WAVELENGTH PHONON FREQUENCIES, OF DIELECTRIC PERMITTIVITY, AND B1-B2 PHASE-TRANSITIONS IN ALKALI-METAL HYDRIDES BY THE DENSITY-FUNCTIONAL TECHNIQUE / V. I. ZINENKO, A. S. FEDOROV // Fiz. Tverd. Tela. - 1994. - Vol. 36, Is. 5. - P. 1357-1365. - Cited References: 17 . - ISSN 0367-3294
РУБ Physics, Condensed Matter
Рубрики:
PRESSURE
   ENERGY


WOS

Доп.точки доступа:
FEDOROV, A. S.
}
Найти похожие
2.


    Fedorov, A. S.
    Analysis of hydrogen adsorption in the bulk and on the surface of magnesium nanoparticles / A. S. Fedorov, M. V. Serzhantova, A. A. Kuzubov // J. Exp. Theor. Phys. - 2008. - Vol. 107, Is. 1. - P. 126-132, DOI 10.1134/S1063776108070121. - Cited References: 15. - This study was supported financially by the Russian Foundation for Basic Research ( project no. 06-02-16132). The authors are also grateful to the Institute of Computer Modeling of the Siberian Branch of the Russian Academy of Science for providing a cluster computer on which all quantum-chemistry calculations were performed. . - ISSN 1063-7761
РУБ Physics, Multidisciplinary
Рубрики:
MOLECULAR-DYNAMICS
   TRANSITION

   METALS

Кл.слова (ненормированные):
Adsorption -- Gas adsorption -- Hydrogen -- Light metals -- Magnesium -- Nonmetals -- Hydrogen adsorption -- Magnesium hydrides -- Magnesium printing plates
Аннотация: The stability of magnesium hydride (MgH (x) ) nanoparticles (x = 0.5,...,2) is investigated using ab initio calculations. It is shown that for a nanoparticle diameter of D similar to 5 nm, the internal pressure becomes lower than 3 kbar; for this reason, the structure of hydride nanoparticles coincides with the structure of this hydride in crystalline form. It is found that the phase of partly saturated MgH (x) hydrides (x < 2) must decompose into the phase of pure hcp magnesium and the alpha phase of MgH(2). The frequencies of jumps of hydrogen atoms within the hcp phase of magnesium and in the alpha phase of MgH(2) are calculated; it is shown that slow diffusion of hydrogen in magnesium is due to the large height of potential barriers for motion of hydrogen within MgH(2). To attain high diffusion rates, the structures of Mg(53)Sc and Mg(53)Ti crystals and their hydrides are calculated. It is found that the frequency of jumps of H atoms in Mg(53)ScH(108) near the Sc atoms does not noticeably change as compared to the frequency of jumps in the alpha phase of MgH(2), while the frequency of jumps in Mg(53)TiH(108) near Ti atoms is higher by approximately a factor of 2.5 x 10(6). This means that diffusion in manganese hydride with small admixtures of titanium atoms must be considerably eased. Chemical dissociation of hydrogen molecules on the (0001) surface of hcp magnesium, on the given surface with adjoined individual Ti atoms, and on the surface of a one-layer titanium cluster on the given surface of magnesium is investigated. It is found that dissociation of hydrogen at solitary titanium atoms, as well as on the surface of a Ti cluster, is facilitated to a considerable extent as compared to pure magnesium. This should also sharply increase the hydrogen adsorption rate in magnesium nanoparticles.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Fedorov, A. S.
Kuzubov, A. A.] Russian Acad Sci, Siberian Branch, Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
[Serzhantova, M. V.
Kuzubov, A. A.] Siberian Fed Univ, Krasnoyarsk 660028, Russia
ИФ СО РАН
Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Akademgorodok, Krasnoyarsk, 660028, Russian Federation

Доп.точки доступа:
Serzhantova, M. V.; Kuzubov, A. A.; Кузубов, Александр Александрович; Федоров, Александр Семенович
}
Найти похожие
3.


   
    Ni-doping effect of Mg(0 0 0 1) surface to use it as a hydrogen storage material / A. V. Kuklin [et al.] // J. Alloys Compd. - 2014. - Vol. 609. - P. 93-99, DOI 10.1016/j.jallcom.2014.04.160. - Cited References: 38 . - ISSN 0925-8388. - ISSN 1873-4669
РУБ Chemistry, Physical + Materials Science, Multidisciplinary + Metallurgy & Metallurgical Engineering
Рубрики:
INITIO MOLECULAR-DYNAMICS
   AUGMENTED-WAVE METHOD

   MINIMUM ENERGY PATHS

   ELASTIC BAND METHOD

   METAL-HYDRIDES

   SADDLE-POINTS

   MAGNESIUM

   Mg

   TRANSITION

   Pd

Кл.слова (ненормированные):
Hydrogen absorbing materials -- Intermetallics -- Diffusion -- DFT -- Mg-based hydride
Аннотация: A detailed study of Ni-doped Mg(0 0 0 1) surface performed by PAW method and the gradient corrected density functional GGA-PBE within the framework of generalized Kohn–Sham density functional theory (DFT) is presented in this work. Structural and electronic properties of magnesium surface interaction with nickel for the purpose of such compounds use for creation of hydrogen storage matrixes were investigated here. Choice of the PBE functional was caused by the good accordance of its prediction of the cell parameters with experimental results. It was shown that Ni atoms prefer to substitute for Mg atoms. Using NEB method, the diffusion barrier was calculated, and the most probable reaction path was established. In particular, when the Ni atom dopes the magnesium surface, it can migrate to the bulk and substitute for Mg in subsurface layers. Also a possibility of nickel cluster formation on clean surface of magnesium was examined. The kinetic factors hinder the movement of the nickel atoms to each other and make problematic the formation of clusters. The studies presented here showed that the diffusion barriers of the nickel atom migration from the cluster on the surface to the bulk of magnesium are 1.179 eV and 1.211 eV for the forward and reverse reactions, respectively. Therefore an improvement of the hydrogenation properties of Ni-doped magnesium surface depends on deposition not of the individual atoms, but their clusters. Hydrogenation of Ni cluster doping the magnesium surface was investigated. Initially Kubas complexes arise on the Ni cluster with hydrogen–hydrogen bond lengths equal to 0.80–0.87 Å. Next the cluster needs to be saturated by hydrogen atoms to allow them later to migrate from cluster to magnesium.

Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia
Kirensky Inst Phys SB RAS, Krasnoyarsk 660036, Russia
Siberian State Technol Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Kuklin, A. V.; Куклин, Артем Валентинович; Kuzubov, A. A.; Кузубов, Александр Александрович; Krasnov, P. O.; Краснов, Павел Олегович; Lykhin, A. O.; Tikhonova, L. V.
}
Найти похожие
4.


   
    Effect of magnetic impurities on superconductivity in LaH10 / D. V. Semenok, I. A. Troyan, A. V. Sadakov [et al.] // Adv. Mater. - 2022. - Vol. 34, Is. 42. - Ст. 2204038, DOI 10.1002/adma.202204038. - Cited References: 106. - In situ X-ray diffraction experiments at high pressure were performed on SPring-8, station BL10XU, Sayo, Japan (proposal No. 2020A0576). This work was supported by JSPS KAKENHI Grant Number 20H05644. Low-pressure studies were carried out on a synchrotron source of the Kurchatov institute (KISI-Kurchatov), station RKFM. The high-pressure experiments were supported by the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the FSRC Crystallography and Photonics of the RAS. I.A.T. was supported by the Russian Science Foundation, project No. 22-12-00163. A.R.O. thanks the Russian Science Foundation (grant 19-72-30043). D.V.S. thanks the Russian Foundation for Basic Research (project 20-32-90099). I.A.K. thanks the Russian Science Foundation (grant No. 21-73-10261) for the financial support of the anharmonic phonon density of states calculations and molecular dynamics simulations. SEM, XRF, and XRD studies of the initial alloys were performed using the equipment of the Shared Research Center FSRC Crystallography and Photonics of the RAS. I.A.T. and A.G.I. acknowledge the use of the facilities of the Center for Collective Use “Accelerator Center for Neutron Research of the Structure of Substance and Nuclear Medicine” of the INR RAS for high-pressure cell preparation. The research used resources of the LPI Shared Facility Center. V.M.P acknowledge the support of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (Project No. 0023-2019-0005) and A.V.S. and O.A.S. acknowledge the support of the Russian Science Foundation, grant 22-22-00570. K.S.P. thanks the Russian Foundation for Basic Research (project 19-02-00888). I.A.K. thanks the Russian Science Foundation (grant No. 19-73-00237) for the financial support of the development of T-USPEX method and anharmonic phonon density of states calculation algorithm. S.W.T was supported by NSF Cooperative Agreement No. DMR-1157490/1644779 and by the State of Florida. A.D.G. was supported by T.H. and T.F. funding. The authors acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL). The authors also thank Igor Grishin (Skoltech) for proofreading the manuscript, and Dr. C. Tantardini (University of Tromsø) for calculations using the virtual crystal approximation, and Dr. E. Talantsev (IMP RAS) for useful discussions . - ISSN 0935-9648. - ISSN 1521-4095
Кл.слова (ненормированные):
Anderson's theorem -- high pressure -- hydrides -- superconductivity
Аннотация: Polyhydrides are a novel class of superconducting materials with extremely high critical parameters, which is very promising for sensor applications. On the other hand, a complete experimental study of the best so far known superconductor, lanthanum superhydride LaH10, encounters a serious complication because of the large upper critical magnetic field HC2(0), exceeding 120–160 T. It is found that partial replacement of La atoms by magnetic Nd atoms results in significant suppression of superconductivity in LaH10: each at% of Nd causes a decrease in TC by 10–11 K, helping to control the critical parameters of this compound. Strong pulsed magnetic fields up to 68 T are used to study the Hall effect, magnetoresistance, and the magnetic phase diagram of ternary metal polyhydrides for the first time. Surprisingly, (La,Nd)H10 demonstrates completely linear HC2(T) ∝ |T – TC|, which calls into question the applicability of the Werthamer–Helfand–Hohenberg model for polyhydrides. The suppression of superconductivity in LaH10 by magnetic Nd atoms and the robustness of TC with respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem gives new experimental evidence of the isotropic (s-wave) character of conventional electron–phonon pairing in lanthanum decahydride.

Смотреть статью,
Scopus
Держатели документа:
Materials Discovery Laboratory, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30/1, Moscow, 121205, Russian Federation
Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 59 Leninsky Prospekt, Moscow, 119333, Russian Federation
V.L. Ginzburg Center for High-Temperature Superconductivity and Quantum Materials, P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991, Russian Federation
Center for Fundamental and Applied Research, Dukhov Research Institute of Automatics (VNIIA), st. Sushchevskaya, 22, Moscow, 127055, Russian Federation
Laboratory of Computational Materials Discovery, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny, 141700, Russian Federation
Crystal Physics Laboratory, NRC “Kurchatov Institute” PNPI, 1, mkr. Orlova roshcha, Gatchina, 188300, Russian Federation
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russian Federation
Synchrotron radiation source “KISI-Kurchatov”, National Research Center “Kurchatov Institute”, Moscow, 123182, Russian Federation
Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, 01328, Germany
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States
Brazilian Synchrotron Light Laboratory (LNLS/Sirius), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-100, Brazil
KYOKUGEN, Graduate School of Engineering Science, Osaka University, Machikaneyamacho 1-3, Osaka, Toyonaka, 560-8531, Japan
HSE Tikhonov Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, 20 Myasnitskaya ulitsa, Moscow, 101000, Russian Federation

Доп.точки доступа:
Semenok, D. V.; Troyan, I. A.; Sadakov, A. V.; Zhou, D.; Galasso, M.; Kvashnin, A. G.; Ivanova, A. G.; Kruglov, I. A.; Bykov, A. A.; Terent'ev, K. Yu.; Терентьев, Константин Юрьевич; Cherepakhin, A. V.; Черепахин, Александр Владимирович; Sobolevskiy, O. A.; Pervakov, K. S.; Seregin, A. Y.; Helm, T.; Forster, T.; Grockowiak, A. D.; Tozer, S. W.; Nakamoto, Y.; Shimizu, K.; Pudalov, V. M.; Lyubutin, I. S.; Oganov, A. R.
}
Найти похожие
5.


    Nekrasov, I.
    Hydrides under high pressure / I. Nekrasov, S. Ovchinnikov // J. Supercond. Nov. Magn. - 2022. - Vol. 35, Is. 4 : Road to Room Temperature Superconductivity. - P. 959-963, DOI 10.1007/s10948-021-06087-3. - Cited References: 44. - This work was partially supported by RFBR grant No. 20-02-00011 . - ISSN 1557-1939
Кл.слова (ненормированные):
Room-temperature superconductors -- High temperature superconductors -- Superconducting hydrades under high pressure -- BCS theory -- Metallic hydrogen -- Superconducting hydrogen
Аннотация: The experimental discovery of the highest, up to 0 degree Celsius, superconducting transition temperatures Tc in the class of so-called hydrides under high pressure is undoubtedly the striking event in modern physics. In this paper, we give a short overview of the some history of the room-temperature conventional superconductivity. A theoretical description of such high Tc, as was shown and even predicted in a number of ab initio works, can be unambiguously given in the framework of the electron–phonon mechanism of Cooper pairing. Thus, the basic equation to calculate Tc will be the one proposed in 1957 by Bardeen, Cooper, and Schriefer. It is known that in this case the value of Tc is directly determined by a number of effective parameters: the Debye frequency, the density of electronic states at the Fermi level, and the electron–phonon interaction constant. Within the framework of the modern development of the density functional theory, all these quantities can be obtained using standard packages for band structure calculations.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, Amundsena 106, Ekaterinburg, 620016, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny Pr., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)