Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (6)
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=oxide<.>)
Общее количество найденных документов : 194
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-60      
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Shvets P., Krylov A. S., Maksimova K., Goikhman A.
Заглавие : Raman spectroscopy of Wadsley phases of vanadium oxide
Колич.характеристики :14 с
Место публикации : J. Raman Spectrosc. - 2024. - Vol. 55, Is. 4. - P.445-458. - ISSN 03770486 (ISSN), DOI 10.1002/jrs.6644. - ISSN 10974555 (eISSN)
Примечания : Cited References: 133. - This work was prepared with support from the Ministry of Science and Higher Education of the Russian Federation (project FZWM-2020-0008)
Аннотация: We summarize the current knowledge on crystal structures, synthesis, applications, and Raman spectroscopy of Wadsley phases of vanadium oxide, including VO2 (B), V6O13, V4O9, V3O7, and V2O5. While these oxides have garnered significant attention for potential energy storage applications and have been studied for decades, there remains inconsistency in data regarding their characteristic Raman spectra. To address this, we synthesized a series of Wadsley phases by physical vapor deposition of amorphous vanadium oxide films and subsequent annealing in a controlled environment. X-ray diffraction studies confirmed the formation of VO2 (B), V6O13, V4O9, and V3O7. We meticulously measured the room-temperature Raman spectra of these phases, offering robust reference data for the easy identification of vanadium oxides in unknown samples. Finally, we studied low-temperature phase transitions in VO2 (B) and V6O13.
Смотреть статью,
Scopus
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Nikiforov A. A., Krylov A. S., Krylova S. N., Gorshkov V. S., Pelegov D. V.
Заглавие : Temperature Raman study of Li4Ti5O12 and ambiguity in the number of its bands
Колич.характеристики :10 с
Место публикации : J. Raman Spectrosc. - 2024. - Vol. 55, Is. 3. - P.406-415. - ISSN 03770486 (ISSN), DOI 10.1002/jrs.6641. - ISSN 10974555 (eISSN)
Примечания : Cited References: 51. - The research was funded by the Russian Science Foundation (project No 22-22-00350, https://rscf.ru/project/22-22-00350)
Аннотация: The two primary physical methods for identifying lithium titanate, a negative electrode material used commercially, are X-Ray diffraction and Raman spectroscopy. Although there are many publications on this topic, they are focused mainly on chemistry, so there are still some points that require clarification from a physical and methodological point of view. Difference of experimentally observed and theoretically predicted Raman spectra was explained through a combination of experiments and computations. The work comprises experiments and computations to explain why there are different numbers of predicted and observed Raman-active bands. Our low-temperature study and the analysis of thermal shifts during heating led us to conclude that the approach with surplus bands is advantageous and we recommend using major F2g band shifts to estimate the sample heating.
Смотреть статью,
Scopus,
WOS
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Karpov I.V., Fedorov L. Yu, Abkaryan A.K., Zharkov S. M., Molokeev M. S., Ivanenko A. A., Nemtsev I. V., Irtyugo L.A.
Заглавие : Resistive switching properties of a nanostructured layer of mixed ZrO2 phases obtained in low-pressure arc discharge plasma
Колич.характеристики :9 с
Место публикации : Vacuum. - 2024. - Vol. 227. - Ст.113375. - ISSN 0042207X (ISSN), DOI 10.1016/j.vacuum.2024.113375. - ISSN 18792715 (eISSN)
Примечания : Cited References: 34. - The work was performed with a support of the grant of the Russian Science Foundation (Project No. 24-29-00374, https://rscf.ru/project/24-29-00374/)
Аннотация: The controlled vacuum-arc synthesis of zirconium dioxide (ZrO2) nanoparticles is considered, which makes it possible to regulate the percentage ratio of the monoclinic and tetragonal phases. The samples were characterized using XRD analysis, SEM, HRTEM analysis, FT-IR analysis, TG/DTA analysis and EPR spectroscopy. It has been established that the formation of the tetragonal phase is associated with the formation of a large number of oxygen vacancies formed due to high-speed quenching of nanoparticles. Reducing the operating gas pressure in a vacuum chamber from 180 Pa to 30 Pa makes it possible to obtain nanoparticles up to 2 nm in size. The synthesized ZrO2 nanoparticles do not contain foreign impurities and when heated, the weight loss is up to 7 %. The process of local resistive switching in the contact of an atomic force microscope (AFM) probe to a nanostructured ZrO(2-x) layer on a conducting substrate has been studied. Cyclic current-voltage characteristics demonstrate the existence of stable states of high and low resistance, switched by changing the polarity of the applied voltage. The coexistence of the m- and t-ZrO2 phases (and the resulting oxygen nonstoichiometry in the interboundary regions) provides conditions for the formation/destruction of a filament from oxygen vacancies, which determine the conductivity of the dielectric in the LRS state.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Bondarenko L., Baimuratova R., Dzeranov A., Pankratov D., Kicheeva A., Sushko E., Kudryasheva N., Valeev R., Tropskaya N., Dzhardimalieva G., Kydralieva K.
Заглавие : Fenton reaction-driven pro-oxidant synergy of ascorbic acid and iron oxide nanoparticles in MIL-88B(Fe)
Колич.характеристики :19 с
Место публикации : New J. Chem. - 2024. - Vol. 48, Is. 22. - P.10142-10160. - ISSN 11440546 (ISSN), DOI 10.1039/D4NJ00963K. - ISSN 13699261 (eISSN)
Примечания : Cited References: 94
Аннотация: MIL-88B, a promising Fe-based 3D porous metal–organic framework (MOF) catalyst for the Fenton reaction, requires modifications to enhance its pro-oxidant activity and enable magnetic control of the sample. This study reports the successful modification of MIL-88B with iron oxide (Fe3O4) and ascorbic acid (AA). The characterization of the crystal structure and morphology of the Fe3O4–AA MOF sample using X-ray diffraction, Raman and Mossbauer spectroscopy, and scanning electron microscopy revealed that AA facilitated the formation of magnetite with a composition approaching a stoichiometry of Fe2.96O4 while preserving the MOF structure. Specifically, in the presence of hydrogen peroxide (H2O2), Fe3O4–AA–MOF exhibited a 3-fold increase in the Fenton reaction rate for methylene blue degradation compared to the conventional homogeneous system at pH 4.5. Furthermore, Fe3O4–AA–MOF retained the antibacterial properties of AA, as evidenced by its ability to increase reactive oxygen species in luminescent marine bacterium Photobacterium phosphoreum at low concentrations while exhibiting moderate cytotoxicity. The enhanced pro-oxidant activity of the Fe3O4–AA–MOF/H2O2 system is attributed to an AA-promoted surface Fe2+/Fe3+ cycle. A possible mechanism for this system is proposed.
Смотреть статью,
WOS
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Volkova I. R., Tyryshkina L. E., Volochaev M. N., Zaloga A. N., Shabanova K. A., Ovchinnikov A. V., Lyamkin A. I.
Заглавие : The effect of aluminum-oxide powders on the structure and properties of copper electrodeposited composite coatings
Место публикации : Prot. Met. Phys. Chem. Surf. - 2023. - Vol. 59, Is. 1. - P.71-75. - ISSN 20702051 (ISSN), DOI 10.1134/S2070205122700022. - ISSN 2070206X (eISSN)
Примечания : Cited References: 9
Аннотация: Copper electrodeposited composite coatings containing two types of aluminum-oxide powders with different dispersities (alumina Al2O3-1 and electroexplosive aluminum-oxide nanopowder Al2O3-2) are obtained during the work. The studies show that introducing the powders leads to a change in the microstructure of the composites and a change in the grain growth principles during the formation of the coatings. Refinement and ordering of the grain structure of the coatings occurs and twinning defects and texture are formed. The change in the formation of the microstructure of the composites leads to a change in some operational characteristics: an increase in the microhardness (by 10% in the composites with the addition of alumina and by more than 30% in the coatings with electroexplosive aluminum oxide) and ultimate tensile strength (by 20% in the composites with Al2O3-1 and almost 1.5-fold in the samples with Al2O3-2).
Смотреть статью,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Samoshkina Yu. E., Rautskii M. V., Neznakhin D. S., Stepanova E. A., Edelman I. S., Chou, Hsiung
Заглавие : Particles–matrix bond in ZnCoO:H and ZnCoAlO:H films: Issues of magnetism and spin injection
Место публикации : Materials. - 2023. - Vol. 16, Is. 10. - Ст.3659. - ISSN 19961944 (eISSN), DOI 10.3390/ma16103659
Примечания : Cited References: 45. - This work was supported by the Russian Science Foundation [grant number 21-72-00061]
Аннотация: ZnCoO:H and ZnCoAlO:H films were synthesized by radio frequency magnetron sputtering in a (1 − x)Ar + xH2 mixed atmosphere with x = 0.2–0.5. The films contain different amounts of metallic Co particles (from 7.6% and higher) ~4–7 nm in size. The magnetic and magneto-optical (MO) behavior of the films was analyzed in combination with their structural data. The samples exhibit high values of magnetization (up to 377 emu/cm3) and MO response at room temperature. Two situations are considered: (1) the film magnetism is associated only with isolated metal particles and (2) magnetism is present both in the oxide matrix and in metal inclusions. It has been established that the formation mechanism of the magnetic structure of ZnO:Co2+ is due to the spin-polarized conduction electrons of metal particles and zinc vacancies. It was also found that in the presence of two magnetic components in the films, these components are exchange-coupled. In this case, the exchange coupling generates a high spin polarization of the films. The spin-dependent transport properties of the samples have been studied. A high value of the negative magnetoresistance of the films at room temperature (~4%) was found. This behavior was explained in terms of the giant magnetoresistance model. Thus, the ZnCoO:H and ZnCoAlO:H films with high spin polarization can be considered as sources of spin injection.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Patrin G. S., Kobyakov A. V., Yushkov V. I., Anisimov I. O., Zharkov S. M., Semenov S. V., Moiseenko, Evgeniy T.
Заглавие : Influence of a thin V2O3 spacer on interlayer interactions in Fe-Ni/V2O3/FeNi film structures
Колич.характеристики :10 с
Место публикации : Processes. - 2023. - Vol. 11, Is. 7. - Ст.2084. - ISSN 22279717 (eISSN), DOI 10.3390/pr11072084
Примечания : Cited References: 25. - The research was conducted according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation and the Federal State Autonomous Educational Institution of Higher Education Siberian Federal University (No. FSRZ-2023-0008)
Аннотация: In this paper, we explore the suggestions of the results of experimental studies on low-dimensional layered systems in FeNi/V2O3/FeNi film structures. The multifunctional material V2O3 is used as an interlayer between the magnetically active FeNi layers. The films were obtained by ultrahigh vacuum magnetron sputtering on a glass substrate with a base size of 10−10 Torr. It has been found that for V2O3 films, the decrease in the metal–semiconductor transition temperature increases significantly. Magnetic characteristics were studied on the MPMS-XL SQUID magnetometer. The exchange effect occurs both in the region where the oxide has a magnetic order and in the paramagnetic region. The latter is due to the effect of the magnetic panel in the oxide package. The phenomenon of oscillation of the exchange field occurs depending on the phenomenon of intermediate observation observed experimentally.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Balaev D. A., Dubrovskii A. A., Knyazev Yu. V., Semenov S. V., Kirillov V. L., Martianov O. N.
Заглавие : The manifestation of surface and size effects in the magnetic properties of ε-Fe2O3 nanoparticles. (Brief overview)
Колич.характеристики :9 с
Коллективы : Nanophysics and Nanoelectronics, International Symposium
Место публикации : Phys. Solid State. - 2023. - Vol. 65, Is. 6. - P.938-946. - ISSN 10637834 (ISSN), DOI 10.21883/PSS.2023.06.56105.12H. - ISSN 10906460 (eISSN)
Примечания : Cited References: 66
Аннотация: Polymorphic modification of iron oxide, known as ε-Fe2O3, exists only in the form of nanoparticles with characteristic sizes up to several tens of nanometers. Particles of these sizes exhibit a large coercive force, about 20 kOe at room temperature. In the temperature range of 80–150 K, a magnetic transition occurs in ε-Fe2O3, accompanied by a sharp decrease in the coercive force. At the same time, there are significant differences in the magnetic behavior of "large" (~20 nm) particles and ultra-small particles (up to 6 nm). A number of experimental facts indicate the manifestation of size effects that lead to a change in the magnetic structure in particles of these sizes. In addition, a surface effect is also manifested for such particles - a significant contribution to the magnetic behavior is governed by surface magnetic anisotropy. In this paper, a brief review of the manifestation of these size and surface effects in the magnetic properties of ε-Fe2O3 nanoparticles is carried out.
Смотреть статью,
Читать в сети ИФ
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Vazhenina I. G., Stolyar S. V., Tyumentsev A. V., Volochaev M. N., Iskhakov R. S., Komogortsev S. V., Pyankov V. F., Nikolaeva E. D.
Заглавие : Study of magnetic iron oxide nanoparticles coated with silicon oxide by ferromagnetic method
Колич.характеристики :5 с
Коллективы : Nanophysics and Nanoelectronics, International Symposium
Место публикации : Phys. Solid State. - 2023. - Vol. 65, Is. 6. - P.884-888. - ISSN 10637834 (ISSN), DOI 10.21883/PSS.2023.06.56095.01H. - ISSN 10906460 (eISSN)
Примечания : Cited References: 20. - The study was supported by grant No. 22-14-20020 provided by the Russian Science Foundation, Krasnoyarsk Regional Science Foundation
Аннотация: agnetic nanoparticles of magnetite with a size of ~8 nm synthesized with a different type of coating were studied by ferromagnetic resonance in the temperature range from 7 to 300 K. The features of the experimental temperature dependences of the parameters of the ferromagnetic resonance curve (the magnitude of the resonant field, line width and intensity) and their approximation allowed us to estimate the values of characteristic temperatures. Firstly, the value of the Vervey temperature and the dependence of its value on the type of coating were determined. Secondly, the temperature of transition of nanoparticles to the superparamagnetic state (blocking temperature) and the temperature range within which the magnetic structure of the outer shell of the magnetic nanoparticle is in the spin glass state are established.
Смотреть статью,
Читать в сети ИФ
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Moshkina E. M., Krylov A. S., Kokh D., Shabanova K., Molokeev M. S., Bovina A. F., Plyaskin M., Rostovtsev N., Bezmaternykh L. N.
Заглавие : Multicomponent flux growth and composition control of Cu2MnBO5:Ga ludwigites
Место публикации : CrystEngComm. - 2022. - Vol. 24, Is. 19. - P.3565-3575. - ISSN 14668033 (ISSN), DOI 10.1039/d2ce00258b
Примечания : Cited References: 26. - This study was supported by the Russian Science Foundation (Grant No. 21-72-00130). The Raman, X-ray, and EDX data were obtained using the analytical equipment of the Krasnoyarsk Regional Center of Research Equipment of the Federal Research Center “Krasnoyarsk Science Center SB RAS”
Аннотация: To reach the concentration phase boundary between antiferromagnetic Cu2GaBO5 and ferrimagnetic Cu2MnBO5 ludwigites, solid solutions Cu2Mn1−xGaxBO5 (x = 0.05, 0.1, 0.15, 0.175) were grown by the flux technique using a multi-component solvent based on Bi2Mo3O12 with the addition of Na2B4O7 which significantly influenced the crystal formation and cation composition of the studied compounds. The content of the flux system was corrected taking into account the earlier established relationship of the partition coefficients of Mn2O3 and Ga2O3. The influence of the solvent components on the ludwigite crystallization was analyzed. The maximum size of the grown crystal was 1 × 1 × 4 mm3. The structure and cation composition of the grown compounds were studied using X-ray (X-ray diffraction, EDX (energy-dispersive X-ray spectroscopy)) and vibrational (Raman) spectroscopy techniques. The phase boundary of Cu2MnBO5–Cu2GaBO5 was found to be in the concentration range of x = 0.15–0.175, corresponding to a change in the monoclinic axis direction and a leap in the lattice parameters. The symmetry evolution of metal–oxygen octahedra for four nonequivalent cation positions was analyzed, and the unique crystal structure of Cu2MnBO5 demonstrated high rigidity relative to the introduction of Ga3+ cations. The polarized Raman spectra of monoclinic ludwigites were obtained and studied for the first time. A comparison of the spectra of the studied samples in both phases and orthorhombic ludwigites was made. A number of spectral features due to the monoclinic distortions in the crystal were found. In agreement with the Raman experiment, the concentration phase boundary was close to 0.15.
Смотреть статью,
Scopus
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-60      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)