Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>S=CHEMISTRY<.>)
Общее количество найденных документов : 14
Показаны документы с 1 по 10
 1-10    11-14 
1.


    Aleksandrov, K. S.
    Phase-transitions and distortions of the structure in the family of crystals related to alpha-k2so / K. S. Aleksandrov // Kristallografiya. - 1993. - Vol. 38, Is. 1. - P. 128-139 ; Crystallogr. Rep. - Cited References: 38 . - ISSN 0023-4761
Рубрики:
X-RAY
   EXPECTED STRUCTURES

   A2BX4 COMPOUNDS

   TEMPERATURE

   (NH4)2BEF4

   CHEMISTRY

   DISORDER

   SYMMETRY


WOS

Публикация на русском языке Александров, Кирилл Сергеевич. Фазовые переходы и искажения структуры в семействе кристаллов родственных α – K2SO4. [Текст] / К. С. Александров // Кристаллография. - 1993. - Т. 38 Вып. 1. - С. 128-139


Доп.точки доступа:
Александров, Кирилл Сергеевич

}
Найти похожие
2.


   
    Analytic gradient for the adaptive frozen orbital bond detachment in the fragment molecular orbital method / D. G. Fedorov [et al.] // Chem. Phys. Lett. - 2009. - Vol. 477, Is. 1-3. - P. 169-175, DOI 10.1016/j.cplett.2009.06.072. - Cited Reference Count: 49. - Гранты: We thank Professor M. Suenaga of Kyushu University for continuing his development of the modeling software FACIO and its FMO interface. D. G. F. and K. K. were supported by the a Grant-in- Aid for Scientific Research (JSPS, Japan) and the Next Generation SuperComputing Project, Nanoscience Program (MEXT, Japan). J.H.J. was supported by a Skou Fellowship from the Danish Research Agency (Forskningsradet for Natur og Univers). - Финансирующая организация: JSPS, Japan; Next Generation SuperComputing Project; MEXT, Japan; Danish Research Agency . - JUL 28. - ISSN 0009-2614
Рубрики:
DENSITY-FUNCTIONAL THEORY
   GEOMETRY OPTIMIZATIONS

   SEMICONDUCTOR NANOWIRES

   SILICON NANOWIRES

   METHOD FMO

   ENERGY

   SURFACES

   RECONSTRUCTION

   CHEMISTRY

   PROTEINS

Кл.слова (ненормированные):
Energy gradients -- Fragment molecular orbital methods -- Future applications -- Geometry optimization -- Numerical criteria -- Silicon Nanowires -- Molecular modeling -- Molecular orbitals
Аннотация: We have developed and implemented the analytic energy gradient for the bond detachment scheme in the fragment molecular orbital method (FMO) suitable to describe solids, and applied it to the geometry optimization of a silicon nanowire at several levels of theory. In addition, we have examined in detail the effects of the particular choice of the fragmentation upon the accuracy and introduced a number of numerical criteria to characterize the errors. The established route is expected to provide guidance for future applications of FMO to surfaces, solids and nanosystems. (C) 2009 Elsevier B. V. All rights reserved.

WOS,
Scopus,
eLibrary
Держатели документа:
Natl Inst Adv Ind Sci & Technol, RICS, Tsukuba, Ibaraki 3058568, Japan
SB RAS, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Siberian Fed Univ, Krasnoyarsk 660041, Russia
Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan

Доп.точки доступа:
Fedorov, D.G.; Kitaura, K.; Avramov, P. V.; Аврамов, Павел Вениаминович; Jensen, J.H.
}
Найти похожие
3.


   
    Crystal structure, spectroscopic and thermal properties of the coordination compounds M(1,3-diethyl-2-thiobarbiturate) M = Rb+, Cs+, Tl+ and NH4+ / M. S. Molokeev [et al.] // Polyhedron. - 2015. - Vol. 98. - P. 113-119, DOI 10.1016/j.poly.2015.05.048. - Cited References: 43. - The study was carried out within the public task of the Ministry of Education and Science of the Russian Federation for research engineering of the Siberian Federal University in 2015. V.V.A. is grateful to the Ministry of Education and Science of the Russian Federation for financial support of the investigation. . - ISSN 0277-5387
   Перевод заглавия: Кристаллическая структура, спектроскопические и тепловые свойства координационных соединений M(1,3-diethyl-2-thiobarbiturate) M = Rb+, Cs+, Tl+ and NH4+
РУБ Chemistry, Inorganic & Nuclear + Crystallography
Рубрики:
2-THIOBARBITURIC ACID
   THIOBARBITURIC ACID

   1,3-DIETHYL-2-THIOBARBITURIC ACID

   HYDROGEN-BOND

   COMPLEXES

   DIFFRACTION

   CHEMISTRY

   NETWORKS

   LIGAND

   SERIES

Кл.слова (ненормированные):
1,3-Diethyl-2-thiobarbituric acid -- Alkali ion thallium(I) and ammonium cations -- Coordination compounds -- Thermal analysis -- X-ray diffraction
Аннотация: Four new compounds of 1,3-diethyl-2-thiobarbituric acid (C8H11N2O2S, Hdetba) with Rb+, Cs+, Tl+ and NH4+ ions were prepared by Hdetba neutralization with the metal carbonates or ammonium hydroxide in aqueous solution. The colorless crystals have been investigated using X-ray diffraction techniques, differential scanning calorimetry, thermogravimetry and infrared spectroscopy. The coordination compounds of MDetba with M = Rb, Cs and Tl crystallize in the orthorhombic space group P212121, but compound NH4Detba crystallizes in the triclinic space group P1¯. The MDetba structures were compared at the molecular and supramolecular levels. The Detba- ion in the NH4+ compound forms conformer (A) with two diethyl groups on one side of the ion ring, whereas the Detba- ion in the Rb(I), Cs(I) and Tl(I) compounds forms conformer (B) with two diethyl groups on different sides of the ring. The results of IR spectroscopy and thermal analysis are consistent with the X-ray data. © 2015 Elsevier Ltd.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, bld. 38 Akademgorodok 50, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, 47 Serysheva Str., Khabarovsk, Russian Federation
Department of Chemistry, Siberian Federal University, 79 Svobodny Aven., Krasnoyarsk, Russian Federation
Institute of Chemistry and Chemical Technology, SB RAS, bld. 24 Akademgorodok 50, Krasnoyarsk, Russian Federation
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 13 Lavrentiev Aven., Novosibirsk, Russian Federation
Functional Electronics Laboratory, Tomsk State University, 36 Lenin Aven., Tomsk, Russian Federation
Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, Russian Federation

Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Golovnev, N. N.; Головнёв, Николай Николаевич; Vereshchagin, S. N.; Верещагин С. Н.; Atuchin, V. V.; Атучин, Виктор Валерьевич
}
Найти похожие
4.


   
    Effect of calcination temperature on activity of Fe2O3-Al2O3 nanocomposite catalysts in CO oxidation / A. M. Kremneva, A. V. Fedorov, O. A. Bulavchenko [et al.] // Catal. Lett. - 2020. - Vol. 150. - P. 3377-3385, DOI 10.1007/s10562-020-03250-8. - Cited References: 31. - This work was supported by the Russian Science Foundation (Grant No. 17-73-20157). The experiments were performed using facilities of the shared research center "National center of investigation of catalysts" at Boreskov Institute of Catalysis. The authors thank A.Yu. Gladky for the TPR measurements and Z.S. Vinokurov for the XRD measurements. . - ISSN 1011-372X. - ISSN 1572-879X
РУБ Chemistry, Physical
Рубрики:
MOSSBAUER
   SPECTROSCOPY

   CHEMISTRY

   IRON

   XPS

   ADSORPTION

   OXYGEN

   FE

Кл.слова (ненормированные):
Environmental catalysis -- Nanostructure -- Gasification -- Oxidation -- Mossbauer spectroscopy
Аннотация: Nanocomposite Fe–Al oxide catalysts were prepared by the melting of iron and aluminum nitrates with the subsequent calcination in air at different temperatures. It was found that the catalysts calcined at 450 °C are more active in the oxidation of CO than the catalysts calcined at 700 °C. X-ray diffraction and X-ray photoelectron spectroscopy showed that all the catalysts consist of hematite, α-Fe2O3 nanoparticles, and Al2O3 in an amorphous state. Iron oxide is the active component, which provides the oxidation of CO, while alumina is a texture promoter. The increase in the calcination temperature leads to a minor increase in the average size of hematite nanoparticles and an insignificant decrease in the specific surface area. Kinetic measurements showed that the oxidation of CO over the Fe–Al catalysts calcined at 450 and 700 °C proceeds with the activation energy of 61–69 and 91 kJ/mol, respectively. This means that the low-temperature and high-temperature catalysts contain different active species. Temperature-programmed reduction with CO indicated that the decrease in the calcination temperature improves the reducibility of the Fe-Al nanocomposites. According to 57Fe Mössbauer spectroscopy, the low-temperature catalysts contain hydrated iron oxides (acagenite and ferrihydrite) and a significant amount of highly defective hematite, which is absent in the high-temperature catalyst. These species can provide the enhanced activity of the low-temperature catalysts in the oxidation of CO.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Boreskov Inst Catalysis, Novosibirsk 630090, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kremneva, A. M.; Fedorov, A. V.; Bulavchenko, O. A.; Knyazev, Yu. V.; Князев, Юрий Владимирович; Saraev, A. A.; Yakovlev, V. A.; Kaichev, V. V.; Russian Science FoundationRussian Science Foundation (RSF) [17-73-20157]; National center of investigation of catalysts" at Boreskov Institute of Catalysis
}
Найти похожие
5.


   
    First outer-sphere 1,3-diethyl-2-thiobarbituric compounds [M(H2O)6](1,3-diethyl-2-thiobarbiturate)2·2H2O (M = Co2+, Ni2+): Crystal structure, spectroscopic and thermal properties / N. N. Golovnev [et al.] // Chem. Phys. Lett. - 2016. - Vol. 653. - P. 54-59, DOI 10.1016/j.cplett.2016.04.059. - Cited References: 50. - The study was carried out within the public task of the Ministry of Education and Science of the Russian Federation for research engineering of the Siberian Federal University in 2015-2016. V.V. A. is grateful to the Ministry of Education and Science of the Russian Federation for the financial support of the investigation. X-ray data were obtained with use the analytical equipment of Krasnoyarsk Center of collective use of SB RAS. . - ISSN 0009-2614
   Перевод заглавия: Первые соединения с внешнесферным 1,3-диэтил-2-тиобарбитуратом [M(H2O)6](1,3-диэтил-2-2тиобарбитурат)2·2H2O (M=Co2+, Ni2+): кристаллическая структура, спектроскопия и тепловые свойства
РУБ Chemistry, Physical + Physics, Atomic, Molecular & Chemical
Рубрики:
Thiobarbituric acid complexes
   Transition-metal-complexes; 2-thiobarbituric acid; hydrogen-bond

   2-thiobarbituric acid

   Hydrogen-bond

   Chemistry

   Transformation

   Diffraction

   Ligand

   Series

   Copper

Кл.слова (ненормированные):
1,3-Diethyl-2-thiobarbituric acid -- Nickel(II) -- Cobalt(II) -- Coordination compound -- X-ray diffraction -- Infrared spectroscopy -- Thermal analysis
Аннотация: Two new d-element compounds, [Co(H2O)6](Detba)2·2H2O (1) and [Ni(H2O)6](Detba)2·2H2O (2) (HDetba - 1,3-diethyl-2-thiobarbituric acid) were synthesized and characterized by single-crystal and powder X-ray diffraction analysis, TG-DSC and FT-IR. Structural analysis revealed that (1) and (2) are discrete structures, in which M2+ ion (M = Co, Ni) is six-coordinated by water molecules and it forms an octahedron. The outer-sphere Detba- ions and H2O molecules participate in O-H?(O/S) intermolecular hydrogen bonds which form the 2D layer. Thermal decomposition includes the stage of dehydration and the following stage of oxidation of Detba- with a release of CO2, SO2, H2O, NH3 and isocyanate gases. © 2016 Elsevier B.V. All rights reserved.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Chemistry, Siberian Federal University, 79 Svobodny Aven., Krasnoyarsk, Russian Federation
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, bld. 38, Akademgorodok 50, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, 47 Seryshev Str., Khabarovsk, Russian Federation
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 13 Lavrentiev Aven., Novosibirsk, Russian Federation
Functional Electronics Laboratory, Tomsk State University, 36 Lenin Aven., Tomsk, Russian Federation
Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, Russian Federation

Доп.точки доступа:
Golovnev, N. N.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Lesnikov, M. K.; Atuchin, V. V.
}
Найти похожие
6.


   
    Raman spectroscopy of natural cordierite at high water pressure up to 5?GPa / A. Y. Likhacheva [et al.] // J. Raman Spectrosc. - 2012. - Vol. 43, Is. 4. - P. 559-563, DOI 10.1002/jrs.3060. - Cited References: 38. - We greatly appreciate the critical comments of Prof. R. Kaindl and an anonymous reviewer on this work, and we thank Dr G. Lepezin for providing the cordierite sample. This work was supported by RFBR grant 11-05-01121-a. . - ISSN 0377-0486
РУБ Spectroscopy
Рубрики:
SINGLE-CRYSTAL STRUCTURE
   X-RAY

   CHANNEL H2O

   BEHAVIOR

   SPECTRA

   CO2

   POLYMORPHISM

   DIFFRACTION

   CHEMISTRY

   CAVITIES

Кл.слова (ненормированные):
cordierite -- Raman spectroscopy -- high pressure -- phase transition
Аннотация: The high-pressure behaviour of cordierite, a widespread ring aluminosilicate with channels incorporating fluid compounds (H2O, CO2), is characterized by the absence of phase transitions up to 2.5 GPa. However, the distortion of the ring tetrahedra observed previously at 2.3 GPa is supposed to introduce a phase transition at higher pressure, which has not been checked so far. This work presents a high-pressure Raman spectroscopic study of natural cordierite compressed in water medium up to 4.7 GPa in a diamond anvil cell. At P > 4 GPa, a disordering of both the framework and intrachannel H2O subsystem is apparent from significant broadening of Raman peaks and the evolution of short-range order parameters. This is followed by abrupt shifts of the framework and O–H stretching modes at about 4.5 GPa, indicating a first-order phase transition. Its reversibility is seen from the recovery of the initial spectrum at P < 3 GPa. The shift amplitudes of different framework modes indicate the predominance of distortion over contraction of the framework polyhedra upon this transition. The disordering of the H2O subsystem in the high-pressure phase is likely a consequence of distortion of the channel-forming framework elements, which is supposed to be a driving force of this transition. Copyright © 2011 John Wiley & Sons, Ltd.

Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ
Держатели документа:
[Likhacheva, Anna Yu.
Goryainov, Sergey V.
Bul'bak, Taras A.] RAS, SB, Sobolev Inst Geol Mineral, Novosibirsk 630090 90, Russia
[Krylov, Aleksandr S.] RAS, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
[Prasad, Pinnelli S. R.] Natl Geophys Res Inst, Council Sci & Ind Res, Hyderabad 500007, Andhra Pradesh, India

Доп.точки доступа:
Likhacheva, A. Y.; Goryainov, S. V.; Krylov, A. S.; Крылов, Александр Сергеевич; Bul'bak, T. A.; Prasad, PSR
}
Найти похожие
7.


   
    Rhodium(III) speciation in concentrated nitric acid solutions / D. Vasilchenko [et al.] // Eur. J. Inorg. Chem. - 2016. - Vol. 2016, Is. 23. - P. 3822-3828, DOI 10.1002/ejic.201600523. - Cited References:31. - This work was supported by the Russian Foundation for Basic Research (grant number 16-03-00549 A). D. V. thanks the Ministry for Education and Science of the Russian Federation for the award of a President of the Russian Federation for Young Scientists Fellowship. . - ISSN 1434-1948. - ISSN 1099-0682
РУБ Chemistry, Inorganic & Nuclear
Рубрики:
MAGNETIC-RESONANCE
   FISSION PLATINOIDS

   AQUEOUS-SOLUTIONS

   PT-195 NMR

   RH(III)

   SPECTROSCOPY

   CHEMISTRY

   DISSOCIATION

   PLATINUM(IV)

   COMPLEXES

Кл.слова (ненормированные):
Rhodium -- NMR spectroscopy -- Nitrates
Аннотация: The interaction of rhodium(III) aqua ions with nitrate ions in 3–16 m nitric acid solutions has been studied by 103Rh and 15N NMR and Raman spectroscopy. The mononuclear complexes [Rh(H2O)6–n(NO3)n]3–n (n = 1–4) were found to be the only form of rhodium(III) existing in the solutions with the metal concentration in the range 0.2–1.3 m. The dynamics of the H2O → NO3– substitution process was studied at 80 °C. An increase in the average number of nitrate groups bonded to rhodium with increasing concentration of nitric acid was also determined. The fine crystalline salt Rb4trans-[Rh(H2O)2(NO3)4][Rh(NO3)6] was obtained by solvothermal concentration of the rhodium nitric acid solution on addition of rubidium nitrate. The structure of the salt was solved by the powder X-ray diffraction method, with monodentate coordination of nitrato ligands found for both the [Rh(NO3)6]3– and trans-[Rh(H2O)2(NO3)4]– anions.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Russian Acad Sci, Nikolaev Inst Inorgan Chem, Siberian Branch, Novosibirsk 630090, Russia.
Novosibirsk State Univ, Novosibirsk 630090, Russia.
RAS, Inst Chem & Chem Technol, SB, Krasnoyarsk 660049, Russia.
RAS, Kirensky Inst Phys, SB, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Vasilchenko, D.; Vorob'eva, S.; Tkachev, S.; Baidina, I. A.; Belyaev, A.; Korenev, S.; Solovyov, L.; Vasiliev, A. D.; Васильев, Александр Дмитриевич; Russian Foundation for Basic Research [16-03-00549 A]; Ministry for Education and Science of the Russian Federation
}
Найти похожие
8.


   
    Simultaneous ion exchange recovery of platinum and rhodium from chloride solutions / O. N. Kononova [et al.] // Hydrometallurgy. - 2011. - Vol. 105, Is. 3-4. - P. 341-349, DOI 10.1016/j.hydromet.2010.11.009. - Cited Reference Count: 46 . - JAN. - ISSN 0304-386X
Рубрики:
GROUP-METALS PGM
   SEPARATION

   CATALYST

   ANION

   ADSORPTION

   EXTRACTION

   CHEMISTRY

   RESIN

Кл.слова (ненормированные):
platinum -- rhodium -- sorption -- anion exchangers -- chloride solutions -- anion exchangers -- chloride solutions -- platinum -- rhodium -- sorption -- ammonium thiocyanate -- anion exchangers -- basic parameters -- chemical structure -- chloride solutions -- diffusion coefficients -- distribution coefficient -- exchange capacities -- kinetic properties -- noble metals -- purolite -- rhodium chloride -- separation factors -- sorption ability -- work focus -- ammonium compounds -- chlorine compounds -- desorption -- hydrochloric acid -- ion exchange -- ion exchange resins -- ions -- platinum -- platinum compounds -- potassium hydroxide -- precious metals -- recovery -- rhodium -- sulfuric acid -- thioureas -- urea -- rhodium compounds
Аннотация: This work focuses on the sorption recovery of platinum (II, IV) and rhodium (III) simultaneously present in chloride solutions, freshly prepared and stored over 3 months, on commercial anion exchangers with different physical and chemical structure. The sorption was carried out from solutions with 0.001-4.0 mol/L HCl. The initial platinum and rhodium concentrations in contacting solutions were 0.25-2.5 mmol/L Sorption and kinetic properties of the chosen anion exchangers were investigated and the basic parameters of exchange capacity, recovery, distribution coefficients, separation factors, process rate, diffusion coefficients and half-exchange times were calculated. It is shown that anion exchangers investigated possess high sorption ability to platinum and rhodium chloride complexes, which does not deteriorate in case of stored solutions. Desorption of platinum and rhodium from the resins investigated was carried out with hydrochloric acid (2 mol/L), thiourea (1 mol/L) in sulfuric acid (2 mol/L) or in potassium hydroxide (2 mol/L) as well as by ammonium thiocyanate (2 mol/L). It was shown that complete separation of platinum and rhodium can be carried out with 2 mol/L HCl on anion exchanger Purolite S 985, whereas 2 mol/L NH(4)SCN as an elution agent leads to complete separation of noble metals on anion exchangers Purolite S 985, Purolite A 500 and AM-2B. (C) 2010 Elsevier B.V. All rights reserved.

WOS,
Scopus,
eLibrary
Держатели документа:
Siberian Fed Univ, Dept Chem, Krasnoyarsk 660041, Russia
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Dept, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kononova, O.N.; Melnikov, A.M.; Borisova, T.V.; Krylov, A. S.; Крылов, Александр Сергеевич
}
Найти похожие
9.


   
    Synthesis and crystal structure of a new hexagonal perovskite 7H-Ba7Li1.75Mn3.5O15.75 with Mn4+/Mn5+ charge distribution / N. V. Tarakina [et al.] // Dalton Trans. - 2015. - Vol. 44, Is. 42. - P. 18527-18535, DOI 10.1039/c5dt01528f. - Cited References: 40. - The authors regret a spelling mistake in the surname of one of authors. The surname given as ‘Vasilev’ should be ‘Vasiliev’. - N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. X-ray powder diffraction studies were carried out at the Center for collective use "X-ray structure analysis" at the Institute of Solid State Chemistry, Ural Branch of RAS (Ekaterinburg, Russia) . - ISSN 1477-9226
   Перевод заглавия: Синтез и кристаллическая структура нового гексагонального перовскита 7H-Ba7Li1.75Mn3.5O15.75 с зарядовым распределением Mn4+/Mn5+
РУБ Chemistry, Inorganic & Nuclear
Рубрики:
Magnetic-properties
   Chemistry

   Phases

Аннотация: Ba7Li1.75Mn3.5O15.75 is a new hexagonal perovskite whose crystal structure has elements typical for the layered hexagonal perovskites and quasi-one-dimensional oxides, hence representing a new polytype. It has been synthesized via a solid-state microwave route. The crystal structure was solved using a combination of X-ray and neutron diffraction data, which show that Ba7Li1.75Mn3.5O15.75 crystallizes in a hexagonal unit cell with parameters a = 5.66274(2) A and c = 16.7467(1) A (V = 465.063(4) A3), with one formula unit, and can be described as columns of face-shared octahedra occupied by Mn4+ and Li+ cations and vacancies along the c axis separated in the ab plane by barium atoms. Every sixth layer, the coordination of Mn5+ and Li+ changes to tetrahedral. Additional local ordering of manganese and lithium atoms among cationic sites leading to the formation of a rhombohedral supercell has been observed by scanning transmission electron microscopy.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
The NanoVision Centre, School of Engineering and Materials Science, Queen Mary University of London Mile End, London, United Kingdom
Experimentelle Physik III, Physikalisches Institut and Wilhelm Conrad, Rontgen-Research Centre for Complex Material Systems, Universitat Wurzburg Am Hubland, Wurzburg, Germany
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya, Ekaterinburg, Russian Federation
L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Tarakina, N. V.; Tyutyunnik, A. P.; Bazuev, G. V.; Vasiliev, A. D.; Васильев, Александр Дмитриевич; Gould, C.; Nikolaenko, I. V.; Berger, I. F.
}
Найти похожие
10.


   
    The cis-trans isomer transformation, spectroscopic and thermal properties of Li, Na, K 1,3-diethyl-2-thiobarbiturate complexes / N. N. Golovnev [et al.] // Polyhedron. - 2015. - Vol. 85. - P. 493-498, DOI 10.1016/j.poly.2014.09.011. - Cited References:42. - The study has been carried out within the public task of the Ministry ofEducation and Science of the Russian Federation for research engineeringat the Siberian Federal University in 2014. V.V.A. is partly supportedby the Ministry of Education and Science of the Russian Federation. . - ISSN 0277-5387
   Перевод заглавия: Трансформация цис-транс изомеров, спектроскопические и термические свойства Li, Na, K 1,3-диэтил-2-тиобарбитуратных комплексов
РУБ Chemistry, Inorganic & Nuclear + Crystallography
Рубрики:
CRYSTAL-STRUCTURE
   2-THIOBARBITURIC ACID

   STRUCTURAL-CHARACTERIZATION

   HYDROGEN-BOND

   DIFFRACTION

   THIOBARBITURATE

   CHEMISTRY

   NETWORKS

   SPECTRA

   SERIES

Кл.слова (ненормированные):
1,3-Diethyl-2-thiobarbituric acid -- Alkali ions -- X-ray diffraction -- Infrared spectroscopy -- Thermal analysis
Аннотация: Three new complexes of 1,3-diethyl-2-thiobarbituric acid (C8H11N2O2S, HDETBA) with Li+, Na+, K+ alkali ions were synthesized. The complexes have been prepared by neutralization of 1,3-diethyl-2-thiobarbituric acid with the corresponding metal hydroxide in aqueous solution. The colorless crystals have been investigated using X-ray single crystal and powder techniques and characterized by differential scanning calorimetry, thermogravimetry and infrared spectroscopy. The compounds of MDETBA with M = Li and M = Na crystallize in the monoclinic lattice with a = 10.678(1) Å, b = 7.2687(9) Å, c = 13.202(2) Å, β = 108.841(2)°, Z = 4, V = 969.8(2) Å3, S.G. P21/n and a = 10.534(2) Å, b = 7.604(1) Å, c = 14.186(1) Å, β = 108.964(4)°, Z = 4, V = 1074.6(3) Å3, S.G. P21/n, respectively. Сompound KDETBA crystallizes in the orthorhombic lattice with a = 4.2541(6) Å, b = 14.739(2) Å, c = 16.635(3) Å, Z = 4, V = 1043.1(3) Å3, S.G. P212121. In Li(I) and Na(I) complexes, the DETBA− ion is in cis-configuration and, in the K(I) complex, this ion is in trans-configuration. The reason for the transformation from cis- to trans-configuration has been rationalized.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Fed Univ, Dept Chem, Krasnoyarsk 660041, Russia
SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia
SB RAS, Inst Chem & Chem Technol, Lab Catalyt Convers Small Mol, Krasnoyarsk 660036, Russia
SB RAS, Irkutsk Favorsky Inst Chem, Phys Chem Lab, Irkutsk 664033, Russia
Inst Semicond Phys, Lab Opt Mat & Struct, Novosibirsk 630090, Russia
Tomsk State Univ, Funct Elect Lab, Tomsk 634050, Russia
Novosibirsk State Univ, Lab Semicond & Dielect Mat, Novosibirsk 630090, Russia

Доп.точки доступа:
Golovnev, N. N.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Vereshchagin, Sergey N.; Sterkhova, I. V.; Atuchin, V. V.; Ministry of Education and Science of the Russian Federation
}
Найти похожие
 1-10    11-14 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)