Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>S=ENERGY-TRANSFER<.>)
Общее количество найденных документов : 30
Показаны документы с 1 по 20
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Su, Binbin, Molokeev M. S., Xia, Zhiguo
Заглавие : Unveiling Mn2+ dopant states in two-dimensional halide perovskite toward highly efficient photoluminescence
Место публикации : J. Phys. Chem. Lett. - 2020. - Vol. 11, Is. 7. - P.2510-2517. - ISSN 1948-7185, DOI 10.1021/acs.jpclett.0c00593
Примечания : Cited References: 49. - This work is supported by the National Natural Science Foundation of China (51961145101, 51972118, and 51722202), Fundamental Research Funds for the Central Universities (D2190980), the Guangdong Provincial Science & Technology Project (2018A050506004), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project no. 19-52-80003.
Предметные рубрики: LEAD BROMIDE PEROVSKITES
ENERGY-TRANSFER
EXCITON DYNAMICS
DOPING MN2+
Аннотация: Doping is able to create novel optoelectronic properties of halide perovskites, and the involved mechanism of efficient emission is still a challenge. Herein Mn2+ substitution into 2D layered perovskites (C8H20N2)PbBr4 was investigated, demonstrating broad-band orange-red emission originating from the 4T1 → 6A1 transition of Mn2+ dopant. The photoluminescence quantum yield (PLQY) of Mn2+ emission is up to 60.8% related to the energy transfer in coupled states. We verify that an actual Mn2+ dopant as low as 0.476% reaches a high PLQY, whereas the nominal adding amount is 0.8 as the Mn2+/Pb2+ ratio. The small activation energy (∼6.72 meV) between the Mn2+ d state and the trap state accounts for this highly efficient energy transfer and photoluminescence. The proposed luminescence mechanism in Mn2+-doped 2D halide perovskites would provide unique insights into the doping design toward high-performance luminescence materials.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Xia Z., Liu G., Wen J., Mei Z., Balasubramanian M., Molokeev M. S., Peng L., Gu L., Miller D. J., Liu Q., Poeppelmeier K. R.
Заглавие : Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution
Место публикации : J. Am. Chem. Soc.: American Chemical Society, 2016. - Vol. 138, Is. 4. - P.1158-1161. - ISSN 00027863 (ISSN), DOI 10.1021/jacs.5b12788
Примечания : Cited References: 23. - Work performed by Z.X. and Q.L. was supported by the National Natural Science Foundation of China (51272242 and 51572023), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), and the Beijing Nova Program (Z131103000413047). Work performed by G.L., J.W., Z.M., M.B., and D.J.M. at Argonne National Laboratory was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) through Grant DE-AC02-06CH11357 for research on heavy elements chemistry and materials sciences. TEM was accomplished in part at the Center for Nanoscale Materials, a DOE Office of Science User Facility under Contract DE-AC02-06CH11357. Sector 20 operations at APS are supported by DOE and the Canadian Light Source, with additional support from the University of Washington. G.L. acknowledges travel support from the CAS/SAFEA International Partnership Program for Creative Research Teams. K.R.P. gratefully acknowledges support from the National Science Foundation (DMR-1307698).
Предметные рубрики: SPINODAL DECOMPOSITION
ENERGY-TRANSFER
EXSOLUTION
CLINOPYROXEN
NANOCRYSTALS
SEGREGATION
MECHANISMS
PYROXENESS
JERVISITE
PHOSPHORS
Аннотация: Controlled photoluminescence tuning is important for the optimization and modification of phosphor materials. Herein we report an isostructural solid solution of (CaMg)x(NaSc)1-xSi2O6 (0 < x < 1) in which cation nanosegregation leads to the presence of two dilute Eu2+ centers. The distinct nanodomains of isostructural (CaMg)Si2O6 and (NaSc)Si2O6 contain a proportional number of Eu2+ ions with unique, independent spectroscopic signatures. Density functional theory calculations provided a theoretical understanding of the nanosegregation and indicated that the homogeneous solid solution is energetically unstable. It is shown that nanosegregation allows predictive control of color rendering and therefore provides a new method of phosphor development. © 2016 American Chemical Society.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Liu, Chengyin, Xia, Zhiguo, Molokeev M. S., Liu, Quanlin
Заглавие : Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+
Место публикации : J. Am. Ceram. Soc.: Wiley-Blackwell, 2015. - Vol. 98, Is. 6. - P.1870-1876. - ISSN 0002, DOI 10.1111/jace.13553. - ISSN 15512916(eISSN)
Примечания : Cited References:24. - This work was supported by the National Natural Science Foundations of China (grant nos. 51002146, 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306) and Fundamental Research Funds for the Central Universities (FRF-TP-14-005A1).
Предметные рубрики: LIGHT-EMITTING-DIODES
INFRARED PERSISTENT LUMINESCENCE
ENERGY-TRANSFER
PHOSPHOR
RED
NANOPARTICLES
EFFICIENCY
Аннотация: Garnet-type compound Ca3Ga2Ge3O12 and Cr3+-doped or Cr3+/Bi3+ codped Ca3Ga2Ge3O12 phosphors were prepared by a solid-state reaction. The crystal structure of Ca3Ga2Ge3O12 host was studied by X-ray diffraction (XRD) analysis and further determined by the Rietveld refinement. Near-infrared (NIR) photoluminescence (PL) and long-lasting phosphorescence (LLP) emission can be observed from the Cr3+-doped Ca3Ga2Ge3O12 sample, and the enhanced NIR PL emission intensity and LLP decay time can be realized in Cr3+/Bi3+ codped samples. The optimum concentration of Cr3+ in Ca3Ga2Ge3O12 phosphor was about 6 mol%, and optimum Bi3+ concentration induced the energy-transfer (ET) process between Bi3+ and Cr3+ ions was about 30 mol%. Under different excitation wavelength from 280 to 453 nm, all the samples exhibit a broadband emission peaking at 739 nm and the intensity of NIR emission increases owing to the ET behavior from Bi3+ to Cr3+ ions. The critical ET distance has been calculated by the concentration-quenching method. The thermally stable luminescence properties were also studied and the introduction of Bi3+ can also improve the thermal stability of the NIR emission.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Atuchin V. V., Yelisseyev A. P., Galashov E. N., Molokeev M. S.
Заглавие : Synthesis and luminescence properties of Li2O–Y2O3–TeO2:Eu3+ tellurite glass
Коллективы : Ministry of Education and Science of the Russian Federation
Место публикации : Mater. Chem. Phys.: Elsevier Science, 2014. - Vol. 147, Is. 3. - P.1191-1194. - ISSN 0254-0584, DOI 10.1016/j.matchemphys.2014.07.003. - ISSN 1879-3312
Примечания : Cited References: 26. - This study is partly supported by the Ministry of Education and Science of the Russian Federation.
Предметные рубрики: LIGHT-EMITTING-DIODES
SPECTROSCOPIC PROPERTIES
OPTICAL-PROPERTIES
ENERGY-TRANSFER
CERAMICS
Eu3+
PHOTOLUMINESCENCE
TEMPERATURE
EMISSION
PHOSPHOR
Ключевые слова (''Своб.индексиров.''): glasses--heat treatment--photoluminescence spectroscopy--optical properties
Аннотация: The Eu3+-doped red-orange emitting phosphor of tellurite glass 0.25Li2O–0.20Y2O3–0.5TeO2–0.05Eu2O3 has been synthesized by the melt quenching method. The amorphous nature of the glass has been verified by XRD measurements. The photoluminescence excitation and emission spectra, the luminescence decay curves have been investigated for the composition. The phosphor can be efficiently excited by the near UV light to realize the intense narrow red emission line (611 nm) corresponding to forced electric dipole transition 5D0 → 7F2 of Eu3+ ions. The Li2O–Y2O3–TeO2:Eu3+glass phosphor is a potential red-orange emitting candidate for the application in WLEDs.
Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Yu, Shixin, Xia, Zhiguo, Molokeev M. S., Miao, Hao, Atuchin V. V.
Заглавие : Synthesis and luminescence properties of blue-emitting phosphor Li3c2(PO4)3:Er2+
Место публикации : ECS J. Solid State Sci. Technol. - 2014. - Vol. 3, Is. 8. - P.R159-R163. - ISSN 2162-8769, DOI 10.1149/2.0071408jss. - ISSN 2162-8777
Примечания : Cited References: 33. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, No. 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635) and the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306). Z. G. Xia is also grateful for the financial support from University of Science and Technology Beijing. V.V.A. gratefully acknowledge the Ministry of Education and Science of the Russian Federation for the financial support.
Предметные рубрики: ENERGY-TRANSFER
PHOTOLUMINESCENCE PROPERTIES
INORGANIC-COMPOUNDS
EMISSION COLOR
FULL-COLOR
DIODES
Eu2+
IONS
LEDS
Tb
Аннотация: A new blue-emitting phosphor Li3Sc2(PO4)3:Eu2+ was synthesized by a high temperature solid-state reaction method, and the crystal structure and photoluminescence properties were investigated in detail. The preferred crystallographic position of the Eu2+ ions in the Li3Sc2(PO4)3 host were determined from the structural analysis and spectroscopic properties. The as-prepared phosphor gave an intense blue emission band centered at 439 nm with the CIE coordinate of (0.1540, 0.0317) upon the excitation of the near ultraviolet light. The critical quenching concentration of Eu2+ in Li3Sc2(PO4)3:Eu2+ was about 15 mol%, and the corresponding concentration quenching mechanism was verified to be the dipole-quadrupole interaction. The fluorescence lifetime of Eu2+ emission and the thermal stable luminescence property have been investigated. Li3Sc2(PO4)3:Eu2+ was found to be a promising candidate as a blue-emitting n-UV convertible phosphor for the application in white light emitting diodes (w-LEDs).
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Guojun, Jia, Xiaofang, Guo, Shaoqiang, Molokeev M. S., Zhang, Junying, Xia, Zhiguo
Заглавие : Role of Halogen Atoms on High-Efficiency Mn2+ Emission in Two-Dimensional Hybrid Perovskites
Место публикации : J. Phys. Chem. Lett. - 2019. - Vol. 10, Is. 16. - P.4706-4712. - ISSN 1948-7185, DOI 10.1021/acs.jpclett.9b01996
Примечания : Cited References: 37. - This work is supported by the National Natural Science Foundation of China (No. 51722202 and 51572023), the Natural Science Foundations of Beijing (2172036), the Fundamental Research Funds for the Central Universities (FRF-TP-18-002C1), and the Guangdong Provincial Science & Technology Project (No. 2018A050506004).
Предметные рубрики: ENERGY-TRANSFER
LIGHT-EMISSION
DOPING MN2+
LEAD-FREE
NANOCRYSTALS
Аннотация: Doped halide pervoskites as highly efficient light emitters have recently fascinated the research community, while the influence of halogen atoms X (X = Cl, Br, I) on the hybrid energy levels and photoluminescence properties remains a challenge. Here, the role of X compositions in the two-dimensional hybrid perovskite BA2PbX4 (BA = C4H9NH3) on the doped Mn2+ emission is identified, wherein Mn2+ reveals a strong luminescence dependence on the nature of the halogen, and optimum Mn2+ emission with a record quantum yield of 60.1% has been achieved in BA2PbBr4. Density functional theory calculations show that BA2PbBr4 holds low Br vacancy concentration and unique coupled states of the Mn-3d level and Pb-6p level at the conduction band minimum, leading to efficient energy transfer from the host to Mn2+. Our work sheds new light on the methods to realize strong exciton–dopant exchange coupling for achieving high-efficiency dopant luminescence.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Yin, Mengyan, Liu, Yangai, Mei, Lefu, Molokeev M. S., Huang, Zhaohui, Fang, Minghao
Заглавие : Preparation, crystal structure and up-conversion luminescence of Er3+, Yb3+ co-doped Gd2(WO4)3
Место публикации : RSC Adv.: Royal Society of Chemistry, 2015. - Vol. 5, Is. 89. - P.73077-73082. - ISSN 2046-2069, DOI 10.1039/c5ra12959a
Примечания : Cited References: 43. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51472223), the Fundamental Research Funds for the Central Universities (Grant No. 2652015008), and New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0951).
Предметные рубрики: HYDROTHERMAL SYNTHESIS
ENERGY-TRANSFER
RED PHOSPHORS
NANOCRYSTALS
EMISSION
GREEN
HO
TEMPERATURE
TUNGSTATES
TM
Аннотация: Up-conversion (UC) phosphors Gd2(WO4)3:Er3+/Yb3+ were synthesized by a high temperature solid-state reaction method. The crystal structure of Gd2(WO4)3:3% Er3+/10% Yb3+ was refined by Rietveld method and it was showed that Er3+/Yb3+ were successfully doped into the host lattice replacing Gd3+. Under 980 nm laser excitation, intense green and weak red emissions centered at around 532 nm, 553 nm, and 669 nm were observed, which were assigned to the Er3+ ion transitions of 4H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2, respectively. The optimum Er3+ doping concentration was determined as 3 mol% when the Yb3+ concentration was fixed at 10 mol%. The pump power study indicated that the energy transfer from Yb3+ to Er3+ in Er3+, Yb3+ co-doped Gd2(WO4)3 was a two-photon process, and the related UC mechanism of energy transfer was discussed in detail. This journal is © The Royal Society of Chemistry.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhang L., Fang M., Huang Z., Liu Y., Min X., Tang H., Chen K., Guan M., Molokeev M. S.
Заглавие : Preparation and luminescence properties of the blue-emitting phosphor BaBPO5:Eu2+
Место публикации : Sci. Adv. Mater. - 2016. - Vol. 8, Is. 5. - P.1086-1092. - ISSN 19472935 (ISSN), DOI 10.1166/sam.2016.2704
Примечания : Cited References: 22. - This work was financially supported by the National Natural Science Foundation of China (NSFC Grant no. 51172216) and the Fundamental Research Funds for the Central Universities (Grant no. 2652015022).
Предметные рубрики: Energy-transfer
Diodes
Ions
Eu3+
Photoluminescence
Reduction
Tb3+
Ключевые слова (''Своб.индексиров.''): babpo5--eu2+--phosphor--white light emitting diodes
Аннотация: Blue-emitting BaBPO5:xEu2+ phosphors were prepared by a high-temperature solid-state reaction route. The crystal phase, luminescence properties, lifetime, and thermal stability were investigated, respectively. The phase analysis indicated that BaBPO5 crystallize with the structure of stillwellite-type compounds. Under the excitation at 310 nm, the phosphor exhibited an asymmetric broad-band blue emission with peak at 410 nm, which was ascribed to the 4f-5d transition of Eu2+. It was further calculated that the dipole-dipole interactions were responsible for a concentration quenching effect in BaBPO5:xEu2+ phosphors at x = 0.08. The lifetime decreased with the increasing concentration of Eu2+ ions. The temperature-dependent emission spectra indicated an excellent thermal stability of the BaBPO5:0.08Eu2+ samples. Surface morphology and CIE coordinate were also investigated. All the properties assessed indicated that the developed blue-emitting BaBPO5:Eu2+ phosphor is a good candidate for application in white-light emitting diodes. © 2016 by American Scientific Publishers.
Смотреть статью,
Scopus,
WOS
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Pustovarov V. A., Ogorodnikov I. N., Omelkov S. I., Molokeev M. S., Kozlov A. V., Isaenko L. I.
Заглавие : Photoluminescence of monoclinic Li3AlF6 crystals under vacuum ultraviolet and soft X-ray excitations
Место публикации : Opt. Mater.: Elsevier, 2015. - Vol. 49. - P.201-207. - ISSN 0925-3467, DOI 10.1016/j.optmat.2015.09.011
Примечания : Cited References: 49. - This work was partly supported by the Ministry of Education and Science of the Russian Federation (the basic part of the government mandate); Center of Excellence "Radiation and Nuclear Technologies" (Competitiveness Enhancement Program of Ural Federal University, Russia), HASYLAB DESY (Projects Nos. 20110843, 20080119EC), European Social Fund ("Mobilitas" program, MJD219), Estonian Research Council (Institutional Research Funding IUT02-26) and Baltic Science Link project coordinated by the Swedish Research Council, VR
Предметные рубрики: LiBaAlF6 single-crystals
F-type centers
LiBaF3 crystals
Color-centers
Recombination luminescence
Rietveld refinement
VUV spectroscopy
Trapped excitons
Energy-transfer
Pure
Ключевые слова (''Своб.индексиров.''): li3alf6--time-resolved luminescence--vuv spectroscopy--defects
Аннотация: Using Bridgman technique we have grown monoclinic β-LiAF crystals suitable for optical studies, performed XRD-identification and Rietveld refinement of the crystal structure and carried out a photoluminescence study upon vacuum ultraviolet (VUV) and extreme ultraviolet (XUV)-excitations, using the low-temperature (T = 7.2 K) time-resolved VUV-spectroscopy technique. The intrinsic PL emission band at 340–350 nm has been identified as due to radiative recombination of self-trapped excitons. The electronic structure parameters were determined: bandgap E g ≈ 12.5 eV, energy threshold for creation of unrelaxed excitons 11.8 eV < E n < 12.5 eV . The PL emission bands at 320–325 and 450 nm were attributed to luminescence caused by lattice defects. We have discovered an efficient excitation of PL emission bands in the energy range of interband transitions ( E ex > 13.5 eV), as well as in the energy range of core transitions at 130 eV. We have revealed UV–VUV PL emission bands at 170 and 208 nm due to defects. A reasonable assumptions about the origin of the UV–VUV bands were discussed.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Guojun, Jiang, Xingxing, Molokeev M. S., Lin, Zheshuai, Zhao, Jing, Wang, Jing, Xia, Zhiguo
Заглавие : Optically Modulated Ultra-Broad-Band Warm White Emission in Mn2+-Doped (C6H18N2O2)PbBr4 Hybrid Metal Halide Phosphor
Место публикации : Chem. Mater. - 2019. - Vol. 31, Is. 15. - P.5788-5795. - ISSN 0897-4756, DOI 10.1021/acs.chemmater.9b01864. - ISSN 1520-5002(eISSN)
Примечания : Cited References: 47. - This work is supported by the National Natural Science Foundation of China (nos. 51722202 and 51572023), Natural Science Foundations of Beijing (2172036), the Fundamental Research Funds for the Central Universities (FRF-TP-18-002C1), and the Guangdong Provincial Science & Technology Project (no. 2018A050506004).
Предметные рубрики: LIGHT EMISSION
PEROVSKITE NANOCRYSTALS
ENERGY-TRANSFER
STATE
Br
Аннотация: Finding new low-dimensional metal halides with broad-band emission is attracting interest in single-component phosphor for white light-emitting diodes (WLEDs). The full-spectrum white light still remains a challenge as found in the two-dimensional hybrid material (C6H18N2O2)PbBr4 exhibiting the intrinsic free exciton (FE) and broad-band self-trap exciton (STE) emission upon 365 nm ultraviolet excitation, and a combined strategy has been proposed through doping the Mn2+ ions enabling a superposition of multiple emission centers toward the ultra-broad-band warm white light. The occupation of Mn2+ in (C6H18N2O2)PbBr4 has been discussed, and optical investigations verify that the warm white-light emission of Mn2+-doped (C6H18N2O2)PbBr4 originates from the coupling effects of the FE, STEs, and the 4T1–6A1 transition of the doped Mn2+. When the concentration of Mn2+ is 5%, the emission spectrum of the phosphor covers all visible-light areas with a full width at half maximum (FWHM) of about 230 nm. The high Ra (84.9) and warm light CCT (3577 K) values of the as-fabricated WLED lamp demonstrate that (C6H18N2O2)Pb1–xMnxBr4 can be promising as single-component white-light phosphor in solid-state lighting. Our work could provide a new understanding and perspective about hybrid metal halides for designing superior phosphor toward single-component white emission.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
11.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Jun, Xia, Zhiguo, Chen, Mingyue, Molokeev M. S., Liu, Quanlin
Заглавие : New insight into phase formation of MxMg2Al4+xSi5-xO18:Eu2+ solid solution phosphors and its luminescence properties
Место публикации : Sci. Rep. - 2015. - Vol. 5. - Ст.12149. - ISSN 2045-2322, DOI 10.1038/srep12149
Примечания : Cited References:17. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, No. 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306), and Fundamental Research Funds for the Central Universities (FRF-TP-14-005A1).
Предметные рубрики: CRYSTAL-STRUCTURE
ENERGY-TRANSFER
WHITE LEDS
CORDIERITE
Eu2+
Mg2Al4Si5O18
EMISSION
Аннотация: Here we reported the phase formation of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) solid solution phosphors, where M+ ions were introduced into the void channels of Mg2Al4Si5O18 via Al3+/Si4+ substitution to keep the charge balance. XRD results revealed that the as-prepared phosphors with different M+ contents were iso-structural with Mg2Al4Si5O18 phase. The combined analysis of the Rietveld refinement and high resolution transmission electron microscopy (HRTEM) results proved that M+ ions were surely introduced into the intrinsic channels in Mg2Al4Si5O18. The emission peaks of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) phosphors with various x values performed a systematic red-shift tendency, which was ascribed to the elongation of [MgO6] octahedra. The temperature stable photoluminescence and internal quantum efficiency (QE) of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) phosphors were enhanced owing to the filling of M+ in the void channels suggesting a new insight to design the solid solution phosphors with improved photoluminescence properties.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
12.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen M., Xia Z., Molokeev M. S., Liu Q.
Заглавие : Morphology and phase transformation from NaCaSiO3OH to Na2Ca2Si2O7 and photoluminescence evolution: Via Eu3+/Tb3+ doping
Место публикации : Chem. Commun.: Royal Society of Chemistry, 2016. - Vol. 52, Is. 75. - P.11292-11295. - ISSN 13597345 (ISSN), DOI 10.1039/c6cc06375f
Примечания : Cited References: 26. - The present work was supported by the National Natural Science Foundation of China (Grant No. 51572023 and 51272242), the Fundamental Research Funds for the Central Universities (FRF-TP-15-003A2) and the Russian Foundation for Basic Research (Grant No. 15-52-53080 GFEN_a).
Предметные рубрики: LIGHT-EMITTING-DIODES
ENERGY-TRANSFER
SPECTROSCOPIC PROPERTIES
PHOSPHORS
LUMINESCENCE
Аннотация: A facile and controllable ethanol/water aided hydrothermal process was developed to prepare the NaCaSiO3OH:Tb3+/Eu3+ phosphor. The morphologies were in situ constructed with the phase transformation from NaCaSiO3OH to Na2Ca2Si2O7, and the intrinsic crystal structural transformation mechanism and the dependence of their photoluminescence tuning on the Tb3+/Eu3+ ratio have been discussed. © 2016 The Royal Society of Chemistry.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
13.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lim, Chang Sung, Atuchin V. V., Aleksandrovsky A. S., Molokeev M. S., Oreshonkov A. S.
Заглавие : Microwave sol–gel synthesis of CaGd2(MoO4)4:Er3+/Yb3+ phosphors and their upconversion photoluminescence properties
Место публикации : J. Am. Ceram. Soc.: Wiley-Blackwell, 2015. - Vol. 98, Is. 10. - P.3223-3230. - ISSN 0002, DOI 10.1111/jace.13739. - ISSN 15512916(eISSN)
Примечания : Cited References:69. - This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014-046024). VVA and ASA are partially supported by the Ministry of Education and Science of the Russian Federation.
Предметные рубрики: RED-EMITTING PHOSPHORS
VIBRATIONAL PROPERTIES
LUMINESCENCE PROPERTIES
WHITE LEDS
SPECTROSCOPIC PROPERTIES
HYDROTHERMAL SYNTHESIS
CRYSTAL-STRUCTURE
ROOM-TEMPERATURE
ENERGY-TRANSFER
SR
Аннотация: CaGd2(MoO4)4:Er3+/Yb3+ phosphors with the doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0.05, 0.1, 0.2, and Yb3+ = 0.2, 0.45) have been successfully synthesized by the microwave sol–gel method, and the crystal structure refinement and upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after heat-treatment at 900°C for 16 h, showed a well-crystallized morphology. Under the excitation at 980 nm, CaGd2(MoO4)4:Er3+/Yb3+ particles exhibited strong 525 and 550-nm emission bands in the green region and a weak 655-nm emission band in the red region. The Raman spectrum of undoped CaGd2(MoO4)4 revealed about 15 narrow lines. The strongest band observed at 903 cm−1 was assigned to the ν1 symmetric stretching vibration of MoO4 tetrahedrons. The spectra of the samples doped with Er and Yb obtained under 514.5 nm excitation were dominated by Er3+ luminescence preventing the recording Raman spectra of these samples. Concentration quenching of the erbium luminescence at 2H11/2→4I15/2 and 4S3/2→4I15/2 transitions in the CaGd2(MoO4)4:Er3+/Yb3+ crystal structure was established to be approximately at the 10 at.% doping level.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
14.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Jun, Rong, Ximing, Zhang, Peng, Molokeev M. S., Wei, Peijia, Liu, Quanlin, Zhang, Xiuwen, Xia, Zhiguo
Заглавие : Manipulation of Bi3+/In3+ Transmutation and Mn2+-Doping Effect on the Structure and Optical Properties of Double Perovskite Cs2NaBi1-xInxCl6
Место публикации : Adv. Opt. Mater. - 2019. - Vol. 7, Is. 8. - Ст.1801435. - ISSN 2195-1071, DOI 10.1002/adom.201801435
Примечания : Cited References: 51. - J.Z. and X.M.R. contributed equally to this work. The present work was supported by the National Natural Science Foundation of China (Grant Nos. 51722202, 51572023, and 91622125) and Natural Science Foundations of Beijing (2172036). X.W.Z. acknowledges the support from National Key R&D Program of China (Grant No. 2016YFB0700700).
Предметные рубрики: HALIDE DOUBLE PEROVSKITE
LEAD-FREE
ENERGY-TRANSFER
NANOCRYSTALS
BR
Ключевые слова (''Своб.индексиров.''): band gap engineering--halide double perovskites--mn2+ doping
Аннотация: The halide double perovskite family represented by A2(B+,B3+)X6 can overcome the lead toxicity and enable generally large band gap engineering via B/B sites' transmutation or exotic dopants to fulfill the emerging applications in the optoelectronic fields. Herein, the design and the experimental synthesis of a new family of Mn2+‐doped Cs2NaBi1‐xInxCl6 crystals with an intense orange‐yellow emission band are reported, and the phase formation stability is discussed via a combined experimental–theoretical approach. Depending on the manipulation of Bi3+/In3+ combination, the band gap increases with In3+ content, and a subsequent evolution from indirect to direct band gap is verified. First‐principles calculations and parity analyses indicate a parity forbidden effect on Cs2NaInCl6, and a combination effect of absorption on Cs2NaBi1‐xInxCl6 from both Cs2NaBiCl6 and Cs2NaInCl6. The associated Mn2+‐doped photoluminescence depending on the Bi3+/In3+ substitution is also addressed from the variation of the different Mn–Cl environment and neighboring‐cation effect.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
15.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen M., Xia Z., Molokeev M. S., Liu Q.
Заглавие : Insights into Ba4Si6O16 structure and photoluminescence tuning of Ba4Si6O16:Ce3+,Eu2+ phosphors
Место публикации : J. Mater. Chem. C: Royal Society of Chemistry, 2015. - Vol. 3, Is. 48. - P.12477-12483. - ISSN 20507534 (ISSN), DOI 10.1039/c5tc03271g
Примечания : Cited References: 39. - This work was supported by the National Natural Science Foundations of China (Grant No. 51572023 and 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306), and Fundamental Research Funds for the Central Universities (FRF-TP-14-005A1).
Предметные рубрики: LIGHT-EMITTING-DIODES
ENERGY-TRANSFER
LUMINESCENCE PROPERTIES
WHITE-LIGHT
GLASS-CERAMICS
BA PHOSPHORS
EMISSION
GREEN
EU2+
FLUORESCENCE
Аннотация: The versatile polymorphism and chemical compositions of barium silicates have been studied for a long time and their crystal structures have been established. Herein, we focused on the understanding of the crystal structure of the Ba4Si6O16 phase and the structural correlation of Ba4Si6O16 and Ba2Si3O8; moreover, the luminescence properties of Ce3+,Eu2+-co-activated Ba4Si6O16 phosphors have been discussed. Ba4Si6O16:Ce3+,Eu2+ phosphors show tunable blue-green emission upon excitation with 365 nm ultraviolet (UV) light. The blue emission originates from Ce3+, whereas the bluish-green emission is ascribed to Eu2+, and variation in the emission peak wavelength from 442 to 497 nm can be achieved by properly tuning the Ce3+/Eu2+ ratio. Energy transfer from Ce3+ to Eu2+ in the Ba4Si6O16 host has been validated by the variation of emission spectra as well as the variation of Ce3+ decay lifetimes with increasing Eu2+ concentration, and the energy transfer mechanism is demonstrated to be a resonant type via a dipole-dipole process. The results suggest that Ba4Si6O16:Ce3+,Eu2+ phosphors are potential candidates as a blue-green component for UV-excited white light-emitting diodes. © 2015 The Royal Society of Chemistry.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
16.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen, Weibin, Zhang, Xuejie, Zhou, Jianxian, Zhang, Haoran, Zhuang, Jianle, Xia, Zhiguo, Liu, Yingliang, Molokeev M. S., Xie, Gening, Lei, Bingfu
Заглавие : Glass-ceramics with thermally stable blue-red emission for high-power horticultural LED applications
Место публикации : J. Mater. Chem. C. - 2020. - Vol. 8, Is. 12. - P.3996-4002. - ISSN 2050-7526, DOI 10.1039/d0tc00061b. - ISSN 2050-7534(eISSN)
Примечания : Cited References: 36. - The present work was supported by the National Natural Science Foundations of China (Grant No. 21671070); the Project of GDUPS (2018) for Prof. Bingfu LEI; the Guangzhou Science & Technology Project, China (No. 201704030086); and the National Undergraduate Innovation and Entrepreneurship Training Program grant for Gening Xie (No. 201910564035).
Предметные рубрики: PLANT-GROWTH
ENERGY-TRANSFER
CARBON DOTS
PHOSPHOR
LIGHT
Аннотация: As one of the key elements of indoor agriculture, horticultural light sources are developing rapidly towards requiring high energy density, high output power and high stability, which poses a challenge for traditional phosphor conversion devices. To address this, an all-inorganic blue-red dual-emitting light convertor consisting of Ba1.3Sr1.7MgSi2O8:Eu2+,Mn2+ (BSMS) phosphor-in-glass (PiG) plates was prepared to improve the duration lifetime of converted high-power light-emitting diodes (LEDs) and meet the light quality requirements of photosynthesis for indoor agriculture. The obtained samples show an external quantum efficiency of 45.3%, outstanding thermal stability and a specific emission spectrum that highly matches the absorption of chlorophyll and β-carotene. Moreover, a proof-of-concept BSMS-PiG horticultural lamp for application in an indoor plant factory was successfully fabricated based on a ∼370 nm emitting LED chip. The blue-red ratio of its spectrum could be regulated by controlling the thickness of BSMS-PiG and the concentrations of Mn2+ ions within BSMS-PiG. The BSMS-PiG horticultural LEDs were applied to the indoor cultivation of Romaine lettuce. The results indicated that the biomass of Romaine lettuce was 58.21% greater than that of control lettuce samples cultivated under commercial plant lamps. In particular, the content values of total chlorophyll, β-carotene and soluble protein were improved. The BSMS-PiG horticultural LED is a potential candidate to act as a high-power horticultural light source.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
17.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ji H., Huang Z., Xia Z., Xie Y, Molokeev M. S., Atuchin V. V.
Заглавие : Facile solution-precipitation assisted synthesis and luminescence property of greenish-yellow emitting Ca6Ba(PO4)4O:Eu2+ phosphor
Место публикации : Mater. Res. Bull.: Elsevier, 2016. - Vol. 75. - P.233-238. - ISSN 00255408 (ISSN), DOI 10.1016/j.materresbull.2015.11.055
Примечания : Cited References: 22. - This work was partly supported by the National Natural Science Foundations of China (grant nos. 51272242, 51472222, 51511130035), the Research Fund for the Doctoral Program of Higher Education of China (grant no. 20130022110006), and the Russian Foundation for Basic Research (grant no. 15-52-53080 GFEN_a). VVA was partly supported by the Ministry of Education and Science of the Russian Federation
Предметные рубрики: SOLID-SOLUTION PHOSPHORS
PHOTOLUMINESCENCE PROPERTIES
VIBRATIONAL PROPERTIES
ENERGY-TRANSFER
DIODES
Ключевые слова (''Своб.индексиров.''): optical materials--luminescence--optical properties--crystal structure--phosphors
Аннотация: Greenish-yellow emitting microcrystalline Ca6Ba(PO4)4O:Eu2+ phosphor was successfully prepared by a solution-precipitation assisted high temperature reaction method. Phase structure, morphology and/or luminescence properties of the precursor and the as-prepared phosphors were characterized. The phase-pure Ca6Ba(PO4)4O:Eu2+ phosphors were obtained with smooth grain surface and particle size of 2–8 μm. Ca6Ba(PO4)4O:Eu2+ exhibits bright greenish-yellow color emission with its maximum at 540 nm upon UV-blue light excitation. The maximum position of the broad emission band is independent on the calcination temperature. The emission intensity increases with increasing calcination temperature due to improved crystallinity. Besides, the presence of two Eu2+ emission centers in the Ca6Ba(PO4)4O crystal lattice was confirmed and the coordination effects are considered concerning the roles of isolated O atoms and those from the PO4 tetrahedra.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
18.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Liu, Dongjie, Yun, Xiaohan, Li, Guogang, Dang, Peipei, Molokeev M. S., Lian, Hongzhou, Shang, Mengmeng, Lin, Jun
Заглавие : Enhanced cyan emission and optical tuning of Ca3Ga4O9:Bi3+ for high-quality full-spectrum white light-emitting diodes
Место публикации : Adv. Opt. Mater. - 2020. - Vol. 8, Is. 22. - Ст.2001037. - ISSN 2195-1071, DOI 10.1002/adom.202001037
Примечания : Cited References: 55. - This work was financially supported by the National Natural Science Foundation of China (NSFC No. 51932009, 51720105015, 51672265, 51672266, 51672257 and 51672259), the Key Research Program of Frontier Sciences, CAS (Grant No. YZDY-SSW-JSC018), Science and Technology Cooperation Project between Chinese and Australian Governments (2017YFE0132300), the Jiangmen Innovative Research Team Program (2017), and the Major Program of Basic Research and Applied Research of Guangdong Province (2017KZDXM083)
Предметные рубрики: ENERGY-TRANSFER
TUNABLE LUMINESCENCE
PHOSPHOR
CRYSTAL
MODULATION
Аннотация: Highly efficient cyan‐emitting phosphor materials are indispensable for closing the cyan gap in spectra of the traditional phosphor‐converted white light‐emitting diodes (WLEDs) to achieve high‐quality full‐spectrum white lighting. In this work, bright cyan‐emitting Ca3Ga4O9 (CGO):0.02Bi3+,0.07Zn2+ phosphor is developed to bridge the cyan gap. Such a Bi3+,Zn2+ codoping enhances the cyan emission of CGO:0.02Bi3+ by 4.1 times due to the influence of morphology and size of phosphor particles, charge compensation and lattice distortion. Interestingly, codoping La3+ ions into the current system can achieve a photoluminescence tuning of CGO:0.02Bi3+ from cyan to yellowish‐green by crystallographic site engineering. Besides, Bi3+–Eu3+ energy transfer is successfully realized in CGO:0.02Bi3+,0.07Zn2+,nEu3+ phosphors and the emission color tuning from cyan to orange is observed. The investigation of thermal quenching behaviors reveals that the incorporation of Zn2+ and La3+ improves the thermal stability of CGO:0.02Bi3+. Finally, CGO:0.02Bi3+,0.07Zn2+,0.10Eu3+ phosphor is employed to obtain a single‐phased warm WLED device. A full‐spectrum WLED device with remarkable color rendering index (Ra) of 97.4 and high luminous efficiency of 69.72 lm W−1 is generated by utilizing CGO:0.02Bi3+,0.07Zn2+ phosphor. This result suggests the important effect of CGO:0.02Bi3+,0.07Zn2+ phosphor on closing the cyan gap, providing new insights of cyan‐emitting phosphors applied in full‐spectrum white lighting.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
19.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Cheng F., Xia, Zhiguo, Molokeev M. S., Jing X.
Заглавие : Effects of composition modulation on the luminescence properties of Eu3+ doped Li1-xAgxLu(MoO4)2 solid-solution phosphors
Место публикации : Dalton Trans.: Royal Society of Chemistry, 2015. - Vol. 44, Is. 41. - P.18078-18089. - ISSN 1477-9226, DOI 10.1039/c5dt02760h
Примечания : Cited References: 42. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51272242, 51572023, 51511130035), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (RERU2015022), and the excellent tutor section of the Fundamental Research Funds for the Central Universities of China University of Geosciences, Beijing (2-9-2015-028). This work was also partly supported by the Russian Foundation for Basic Research (Grant No. 15-52-53080 GFEN_a).
Предметные рубрики: RED PHOSPHORS
PHOTOLUMINESCENCE PROPERTIES
ENERGY-TRANSFER
WHITE LEDS
IONS
NA
POLYMORPHISM
TUNGSTATES
RELAXATION
MOLYBDATES
Аннотация: Double molybdate scheelite-type solid-solution phosphors Li1−xAgxLu1−y(MoO4)2:yEu3+ were synthesized by the solid state reaction method, and their crystal structures and luminescence properties were investigated in detail. The composition modulation and structural evolution of this series of samples were studied and the selected AgEu(MoO4)2, AgLu(MoO4)2, LiLu(MoO4)2 and LiEu(MoO4)2 phases were analyzed based on the Rietveld refinement. Depending on the variation of the Li/Ag ratio in Li1−xAgxLu1−y(MoO4)2:yEu3+ phosphors, the difference in the luminescence properties of Li1−xAgxLu1−y(MoO4)2:yEu3+ phosphors was ascribed to two factors, one reason could be assigned to the coupling effect and the nonradiative transition between the energy levels of LixAg1−xLu(MoO4)2 matrices and the activator Eu3+, another could be due to the near ultraviolet energy absorption and transmission efficiency between the charge-transfer (CT) band of O2−–Mo6+ and the 4f → 4f emissive transitions of Eu3+. The ultraviolet-visible diffuse reflection spectra (UV-vis DRS) and Raman spectra analysis were also used to verify the above mechanism.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
20.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Miao, Shihai, Xia, Zhiguo, Molokeev M. S., Chen, Mingyue, Zhang, Jie, Liu, Quanlin
Заглавие : Effect of Al/Si substitution on the structure and luminescence properties of CaSrSiO4:Ce3+ phosphors: analysis based on the polyhedra distortion
Место публикации : J. Mater. Chem. C: Royal Society of Chemistry, 2015. - Vol. 3, Is. 18. - P.4616-4622. - ISSN 2050, DOI 10.1039/c5tc00339c. - ISSN 20507534(eISSN)
Примечания : Cited References:30. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306) and the excellent tutor section of the Fundamental Research Funds for the Central Universities of China University of Geosciences, Beijing (2652015027).Cover image: Artwork representing main idea of this article
Предметные рубрики: LIGHT-EMITTING-DIODES
COLOR-TUNABLE PHOSPHOR
ENERGY-TRANSFER
Аннотация: Blue-emitting CaSrSiO4:Ce3+,Li+ phosphors were prepared by a high temperature solid-state method, and the effect of substituting Al3+ for Si4+ in CaSrSiO4:Ce3+,Li+ has been studied. Crystal structures of the as-prepared Ca1−ySr1−ySi1−xAlxO4:yCe3+,yLi+ phosphors were resolved by the Rietveld method, which suggested that all the samples belonged to the orthorhombic symmetry (Pnma) group of α-CaSrSiO4. The photoluminescence (PL) emission and excitation spectra, the lifetime, and the effect of Al3+ concentration on the PL properties were investigated in detail. The emission peaks of the CaSrSi1−xAlxO4:Ce3+,Li+ (x = 0–0.10) phosphors were red-shifted from 452 to 472 nm with increasing Al/Si ratio. The red-shift of the Ce3+ emission is ascribed to the polyhedra distortion of the cations, originating from the variation in the neighboring [(Si,Al)O4] polyhedra, and the detailed mechanism has been discussed.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)