Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>S=LEDS<.>)
Общее количество найденных документов : 8
Показаны документы с 1 по 8
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Liu H., Liao L., Molokeev M. S., Guo Q., Zhang Y., Mei L.
Заглавие : A novel single-phase white light emitting phosphor Ca9La(PO4)5(SiO4)F2:Dy3+: Synthesis, crystal structure and luminescence properties
Место публикации : RSC Adv.: Royal Society of Chemistry, 2016. - Vol. 6, Is. 29. - P.24577-24583. - ISSN 20462069 (ISSN), DOI 10.1039/c5ra23348h
Примечания : Cited References: 33. - We gratefully acknowledge the financial support by the National Natural Science Foundations of China (Grant no. 41172053), the Fundamental Research Funds for the Central Universities (Grant no. 2652013043), and Science and Technology Innovation Fund of the China University of Geosciences (Beijing).
Предметные рубрики: Energy-transfer
Diodes
LEDs
Emission
Ions
Excitation
Ce3+
Eu2+
Ln
Аннотация: A novel single-phase white light emitting phosphor Ca9La(PO4)5(SiO4)F2:Dy3+ was prepared through traditional high-temperature solid state technology. The crystal structures of Ca9La(PO4)5(SiO4)F2 with or without Dy3+ ions were refined by the Rietveld method. The diffuse reflection spectra, excitation spectra, emission spectra, and decay times were characterized to investigate the photoluminescence properties for application in white light-emitting diodes. The results showed that the Ca9La(PO4)5(SiO4)F2:Dy3+ phosphor could efficiently assimilate n-UV light and emit blue (∼485 nm) and yellow light (∼580 nm), originating from the f-f transitions of Dy3+. The critical Dy3+ quenching concentration (QC) was determined to be about 15 mol%, and the corresponding QC mechanism was verified to be the dipole-dipole interaction. Additionally, the emission colors of all samples were located close to the ideal white light region, and the optimal chromaticity coordinates and correlated color temperature (CCT) were determined to be (x = 0.338, y = 0.336) and 5262 K. All the above results indicate that the as-prepared Ca9La(PO4)5(SiO4)F2:Dy3+ phosphor could serve as a promising candidate for white-light n-UV-LEDs. © The Royal Society of Chemistry 2016.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Xia Z., Miao S., Molokeev M. S., Chen M., Liu Q.
Заглавие : Structure and luminescence properties of Eu2+ doped LuxSr2-xSiNxO4-x phosphors evolved from chemical unit cosubstitution
Место публикации : J. Mater. Chem. C: Royal Society of Chemistry, 2016. - Vol. 4, Is. 6. - P.1336-1344. - ISSN 20507534 (ISSN), DOI 10.1039/c5tc04222d
Примечания : Cited References: 32. - This work was supported by the National Natural Science Foundation of China (Grant No. 51572023 and 51272242), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), the Funds of the State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS (RERU2015022), and Fundamental Research Funds for the Central Universities (FRF-TP-15-003A2).
Предметные рубрики: SOLID-SOLUTION PHOSPHORS
WHITE-LIGHT
PHOTOLUMINESCENCE
SUBSTITUTION
DISCOVERY
TRANSITIONLEDS
EVOLUTION
HOST
LEDS
Аннотация: The design scheme of the chemical unit cosubstitution of [Lu3+-N3-] for [Sr2+-O2-] in Sr2SiO4:Eu2+ has been put into practice to discover the new phosphor systems with tunable luminescence properties, and the structures and photoluminescence tuning of yellow-emitting LuxSr2-xSiNxO4-x:Eu2+ phosphors have been investigated. Crystal structures of LuxSr2-x-ySiNxO4-x:yEu2+ samples were resolved using the Rietveld method, suggesting that the as-prepared Sr2SiO4 belonged to monoclinic symmetry (P21/n) of β-phase Sr2SiO4, while Sr1.97Eu0.03SiO4 and Sr1.965Eu0.03Lu0.005SiO3.995N0.005 belonged to orthorhombic symmetry (Pnma) of α-Sr2SiO4. The emission peaks of LuxSr1.97-xSiNxO4-x:0.03Eu2+ phosphors were red-shifted from 563 to 583 nm upon increasing the [Lu3+-N3-] substitution content from x = 0 to x = 0.005, furthermore, the PL emission peaks of Lu0.005Sr1.965-ySiN0.005O3.995:yEu2+ also showed a red-shift from 583 nm to 595 nm with increasing Eu2+ concentration (y = 0.03, 0.07, 0.10 and 0.15), and their corresponding red-shift mechanism has been discussed. The temperature dependent luminescence results further verified that the introduction of [Lu3+-N3-] for [Sr2+-O2-] in Sr2SiO4:Eu2+ can improve the thermal stability of the photoluminescence, which indicated that the LuxSr2-x-ySiNxO4-x:yEu2+ phosphors have potential applications in white light-emitting diodes (wLEDs). © 2016 The Royal Society of Chemistry.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Cheng, Peng, L.u., Kong, Zihui, Wu, Meihan, Molokeev M. S., Zhou, Zhi, Wang, Jing, Xia, Mao
Заглавие : A high thermal stability Cr3+-doped gallate far red phosphor for plant lighting: structure, luminescence enhancement and application prospect
Место публикации : J. Mater. Chem. C. - 2022. - Vol. 10, Is. 15. - P.5829-5839. - ISSN 2050-7526, DOI 10.1039/d2tc00614f. - ISSN 2050-7534(eISSN)
Примечания : Cited References: 39. - The authors would like to gratefully acknowledge funds from the National Natural Science Foundation of China (Grant no. 51974123), the Distinguished Youth Foundation of Hunan Province (Grant no. 2020JJ2018), Key R & D projects in Hunan Province (2020WK2016 & 2020SK2032), the Hunan High Level Talent Gathering Project (2019RS1077 & 2020RC5007), the Natural Sciences Foundation of Hunan Agricultural University (19QN11), the Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Resource Utilization Science Foundation (19KFXM12), the Changsha Science and technology plan (KH2005114), the Scientific Research Fund of Hunan Provincial Education Department (19C0903) and the Innovation Training Program for College Students of Hunan Province (No. S202010537012)
Предметные рубрики: EMITTING PHOSPHOR
TUNING PHOTOLUMINESCENCE
LEDS
Аннотация: Cationic substitution is a common material modification strategy. Generally, it follows the principles of radius matching, valency equilibrium and stoichiometric substitution. However, radius-mismatched, nonstoichiometric-ratio ion substitution can achieve unexpected experimental results. Such unexpected results are very important for expanding the research of materials, but the modification mechanism is still unclear. In this work, the optical performance of ZnGa2O4:0.02Cr3+ (ZGO:0.02Cr3+) is effectively regulated by chemical unit cosubstitution (Ge4+–Li+/Na+ for Ga3+–Zn2+) and excess cation substitution synergetic strategies, and the thermal stability is retained at 97.7% at room temperature and 150 °C. Ge4+–Li+ and Ge4+–Na+ replace the lattice position of Ga3+–Zn2+ to enhance the photoluminescence (PL) intensity and quantum efficiency (QE) of ZGO:0.02Cr3+. The optimal doping contents of Ge4+–Li+ and Ge4+–Na+ are all 0.3 mol (PL intensity is 130.3% and 153.4% and QE = 77.4% and 85.1%). With further addition of Li+ ions, the emission intensity and QE continued to increase to 176.4% and 83.8%, respectively. The synergistic effect of the mechanism on optical properties is explained via Rietveld refinement, optical band gap energy and thermoluminescence. Finally, LED devices were fabricated by using the ZGO:0.02Cr3+,0.03Ge4+,0.11Li+ phosphor to investigate the effect on plant growth. The growth period was reduced and the fruit quality was improved in dwarf potted tomato, which shows the application prospect in plant growth of the ZGO:0.02Cr3+ phosphor.
Смотреть статью,
WOS
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Guo Q. F., Ma B., Liao L. B., Molokeev M. S., Mei L. F., Liu H. K.
Заглавие : Crystal structure and luminescence properties of novel Sr10−x(SiO4)3(SO4)3O:xEu2+ phosphor with apatite structure
Место публикации : Ceram. Int.: Elsevier Science, 2016. - Vol. 42, Is. 10. - P.11687-11691. - ISSN 0272-8842, DOI 10.1016/j.ceramint.2016.04.086. - ISSN 1873-3956(eISSN)
Примечания : Cited References:26. - This present work is supported by the National Natural Science Foundation of China (Grant no. 41172053).
Предметные рубрики: Light-Emitting-Diodes
Energy-transfer
Tunable phosphor
LEDs
Eu-2+
Ions
Ce3+
Ключевые слова (''Своб.индексиров.''): crystal structure--apatite--phosphor
Аннотация: In this paper, a series of novel luminescent Sr10−x(SiO4)3(SO4)3O:xEu2+ phosphors with apatite structure were synthesized by a high temperature solid-state reaction. The phase structure, photoluminescence (PL) properties, as well as the PL thermal stability were investigated. Sr9.92(SiO4)3(SO4)3O:0.08Eu2+ phosphor exhibits better thermal quenching resistance, retaining the luminance of 66.55% at 150 °C compared with that at 25 °C. The quenching concentration of Eu2+ in Sr10(SiO4)3(SO4)3O was about 0.08 (mol) with the dipole–quadrupole interaction. The Sr10−x(SiO4)3(SO4)3O:xEu2+ phosphors exhibited a broad-band green emission at 538 nm upon excitation at 396 nm. The results indicate that Sr10−x(SiO4)3(SO4)3O:xEu2+ phosphors have potential applications as near UV-convertible phosphors for white-light UV LEDs.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Yu, Shixin, Xia, Zhiguo, Molokeev M. S., Miao, Hao, Atuchin V. V.
Заглавие : Synthesis and luminescence properties of blue-emitting phosphor Li3c2(PO4)3:Er2+
Место публикации : ECS J. Solid State Sci. Technol. - 2014. - Vol. 3, Is. 8. - P.R159-R163. - ISSN 2162-8769, DOI 10.1149/2.0071408jss. - ISSN 2162-8777
Примечания : Cited References: 33. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, No. 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635) and the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306). Z. G. Xia is also grateful for the financial support from University of Science and Technology Beijing. V.V.A. gratefully acknowledge the Ministry of Education and Science of the Russian Federation for the financial support.
Предметные рубрики: ENERGY-TRANSFER
PHOTOLUMINESCENCE PROPERTIES
INORGANIC-COMPOUNDS
EMISSION COLOR
FULL-COLOR
DIODES
Eu2+
IONS
LEDS
Tb
Аннотация: A new blue-emitting phosphor Li3Sc2(PO4)3:Eu2+ was synthesized by a high temperature solid-state reaction method, and the crystal structure and photoluminescence properties were investigated in detail. The preferred crystallographic position of the Eu2+ ions in the Li3Sc2(PO4)3 host were determined from the structural analysis and spectroscopic properties. The as-prepared phosphor gave an intense blue emission band centered at 439 nm with the CIE coordinate of (0.1540, 0.0317) upon the excitation of the near ultraviolet light. The critical quenching concentration of Eu2+ in Li3Sc2(PO4)3:Eu2+ was about 15 mol%, and the corresponding concentration quenching mechanism was verified to be the dipole-quadrupole interaction. The fluorescence lifetime of Eu2+ emission and the thermal stable luminescence property have been investigated. Li3Sc2(PO4)3:Eu2+ was found to be a promising candidate as a blue-emitting n-UV convertible phosphor for the application in white light emitting diodes (w-LEDs).
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ji H. P., Huang Z. H., Xia Z. G., Molokeev M. S., Atuchin V. V., Fang M. H., Huang S. F.
Заглавие : New yellow-emitting whitlockite-type structure Sr1.75Ca 1.25(PO4)2:Eu2+ phosphor for near-UV pumped white light-emitting devices
Место публикации : Inorg. Chem.: American Chemical Society, 2014. - Vol. 53, Is. 10. - P.5129-5135. - ISSN 0020-1669, DOI 10.1021/ic500230v. - ISSN 1520-510X
Примечания : Cited References: 31. - This work was supported by the National Natural Science Foundations of China (Grant Nos. 51032007, 51002146, 51272242), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130022110006), and the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950). V.V.A. gratefully acknowledges the Ministry of Education and Science of the Russian Federation for the financial support. S.H. would like to acknowledge the China Scholarship Council (CSC) for providing a doctoral scholarship for his Ph.D. study at the University of Auckland.
Предметные рубрики: LUMINESCENCE PROPERTIES
CRYSTAL-STRUCTURE
RED PHOSPHOR
DIODES
LEDS
SR
CA
ORTHOPHOSPHATE
CA-3(PO4)2
EUROPIUM
Аннотация: New compound discovery is of interest in the field of inorganic solid-state chemistry. In this work, a whitlockite-type structure Sr1.75Ca1.25(PO4)2 newly found by composition design in the Sr3(PO4)2–Ca3(PO4)2 join was reported. Crystal structure and luminescence properties of Sr1.75Ca1.25(PO4)2:Eu2+ were investigated, and the yellow-emitting phosphor was further employed in fabricating near-ultraviolet-pumped white light-emitting diodes (w-LEDs). The structure and crystallographic site occupancy of Eu2+ in the host were identified via X-ray powder diffraction refinement using Rietveld method. The Sr1.75Ca1.25(PO4)2:Eu2+ phosphors absorb in the UV–vis spectral region of 250–430 nm and exhibit an intense asymmetric broadband emission peaking at 518 nm under λex = 365 nm which is ascribed to the 5d–4f allowed transition of Eu2+. The luminescence properties and mechanism are also investigated as a function of Eu2+ concentration. A white LED device which is obtained by combining a 370 nm UV chip with commercial blue phosphor and the present yellow phosphor has been fabricated and exhibit good application properties.
Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Xia Y., Chen J., Liu Y.-G., Molokeev M. S., Guan M., Huang Z., Fang M.
Заглавие : Crystal structure evolution and luminescence properties of color tunable solid solution phosphors Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu2+
Место публикации : Dalton Trans.: Royal Society of Chemistry, 2016. - Vol. 45, Is. 3. - P.1007-1015. - ISSN 14779226 (ISSN), DOI 10.1039/c5dt03786g
Примечания : Cited References: 42. - This work was sponsored by National Natural Science Foundation of China (Grant No. 51472223), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0951) and the Fundamental Research Funds for the Central Universities (Grant No. 2652015020).
Предметные рубрики: LIGHT-EMITTING-DIODES
WHITE-LIGHT
ENERGY-TRANSFER
SILICATE GLASS
SINGLE-PHASE
EU2+
LEDS
PHOTOLUMINESCENCE
EMISSION
UV
Аннотация: A series of apatite solid solution phosphors Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu2+ (x = 0,2,4,6) were synthesized by a conventional higherature solid-state reaction. The phase purity was examined using XRD, XPS and XRF. The crystal structure information, such as the concentration, cell parameters and occupation rate, was analyzed using a Rietveld refinement, demonstrating that the Eu2+ activated the Ca2La8(SiO4)6O2 and Ca8La2(PO4)6O2 to form continuous solid solution phosphors. Different behaviors of luminescence evolution in response to structural variation were verified among the series of phosphors. Two kinds of Eu2+ ion sites were proved using low temperature PL spectra (8k) and room temperature decay curves. The substitution of large La3+ ions by small Ca2+ ions induced a decreased crystal field splitting of the Eu2+ ions, which caused an increase in emission energy from the 5d excited state to the 4f ground state and a resultant blue-shift from 508 nm to 460 nm. Therefore, with the crystal structure evolution, the emitted color of the series of phosphors could be tuned from green to blue by adjusting the ratio of Ca/La. © 2016 The Royal Society of Chemistry.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Guo Q., Liao L., Molokeev M. S., Mei L., Liu H.
Заглавие : Color tunable emission and energy transfer of Ce3+ and Tb3+ co-doped novel La6Sr4(SiO4)6F2 phosphors with apatite structure
Место публикации : Mater. Res. Bull.: Elsevier, 2015. - Vol. 72. - P.245-251. - ISSN 0025-5408, DOI 10.1016/j.materresbull.2015.07.029
Примечания : Cited References: 37. - This present work is supported by the National Natural Science Foundations of China (Grant No. 41172053).
Предметные рубрики: LIGHT-EMITTING-DIODES
LUMINESCENCE PROPERTIES
PHOTOLUMINESCENCE PROPERTIES
EU2+
LEDS
Ключевые слова (''Своб.индексиров.''): inorganic compounds--luminescence--phosphors--optical properties--crystal structure
Аннотация: Single-phase La6Sr4(SiO4)6F2: Ce3+, Tb3+ samples with apatite-like structure have been synthesized via solid-state reaction method. The phase structure, luminescence properties, lifetime, the PL thermal stability, as well as the fluorescence decay curves of the samples were investigated to characterize the resulting samples. Effective energy transfer occurs from Ce3+ to Tb3+ in La6Sr4(SiO4)6F2, which shows more intense Blue-Green light under UV light excitation. In addition, a possible mechanism of the energy-transfer from Ce3+ to Tb3+ ion is also proposed. The critical distance RC of Ce3+ to Tb3+ ions in La6Sr4(SiO4)6F2 host was calculated to be 11.878 Å. All the results indicate that La6Sr4(SiO4)6F2:Ce3+, Tb3+ phosphors have potential applications to be used as near UV-convertible phosphors for white light-emitting diodes. © 2015 Elsevier Ltd. All rights reserved.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)