Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Metasomatism<.>)
Общее количество найденных документов : 2
Показаны документы с 1 по 2
1.


   
    Conditions of formation of iron-carbon melt inclusions in garnet and orthopyroxene under P-T conditions of lithospheric mantle / Y. V. Bataleva [et al.] // Petrology. - 2018. - Vol. 26, Is. 6. - P. 565-574, DOI 10.1134/S0869591118060024. - Cited References: 45. - This work was supported by the Russian Foundation for Basic Research (project no. 16-35-60024) and a State Assignment (project no. 0330-2016-0007). . - ISSN 0869-5911. - ISSN 1556-2085
РУБ Geosciences, Multidisciplinary + Mineralogy
Рубрики:
EARTHS LOWER MANTLE
   DIAMOND FORMATION

   DEEP MANTLE

   PHYSICOCHEMICAL PARAMETERS

Кл.слова (ненормированные):
high-pressure experiment -- metal-carbon melt -- graphite -- diamond -- CO2-fluid -- mantle silicates -- mantle metasomatism
Аннотация: Of great importance in the problem of redox evolution of mantle rocks is the reconstruction of scenarios of alteration of Fe0- or Fe3C-bearing rocks by oxidizing mantle metasomatic agents and the evaluation of stability of these phases under the influence of fluids and melts of different compositions. Original results of high-temperature high-pressure experiments (P = 6.3 GPa, T = 1300–1500°С) in the carbide–oxide–carbonate systems (Fe3C–SiO2–(Mg,Ca)CO3 and Fe3C–SiO2–Al2O3–(Mg,Ca)CO3) are reported. Conditions of formation of mantle silicates with metallic or metal–carbon melt inclusions are determined and their stability in the presence of CO2-fluid representing the potential mantle oxidizing metasomatic agent are estimated. It is established that garnet or orthopyroxene and CO2-fluid are formed in the carbide–oxide–carbonate system through decarbonation, with subsequent redox interaction between CO2 and iron carbide. This results in the formation of assemblage of Fe-rich silicates and graphite. Garnet and orthopyroxene contain inclusions of a Fe–C melt, as well as graphite, fayalite, and ferrosilite. It is experimentally demonstrated that the presence of CO2-fluid in interstices does not affect on the preservation of metallic inclusions, as well as graphite inclusions in silicates. Selective capture of Fe–C melt inclusions by mantle silicates is one of the potential scenarios for the conservation of metallic iron in mantle domains altered by mantle oxidizing metasomatic agents.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Условия образования включений железо-углеродного расплава в гранатах и ортопироксенах при P-T параметрах литосферной мантии [Текст] / Ю. В. Баталева [и др.] // Петрология. - 2018. - Т. 26 № 6. - С. 571-582

Держатели документа:
Russian Acad Sci, Sobolev Inst Geol & Mineral, Siberian Branch, Novosibirsk, Russia.
Novosibirsk State Univ, Novosibirsk, Russia.
Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk, Russia.

Доп.точки доступа:
Bataleva, Yu. V.; Palyanov, Yu. N.; Borzdov, Yu. M.; Novoselov, I. D.; Bayukov, O. A.; Баюков, Олег Артемьевич; Sobolev, N. V.; Russian Foundation for Basic Research [16-35-60024]; [0330-2016-0007]
}
Найти похожие
2.


   
    Graphite and diamond formation in the carbide–oxide–carbonate interactions (Experimental modeling under mantle P,T-conditions) / Y. Bataleva [et al.] // Minerals. - 2018. - Vol. 8, Is. 11. - Ст. 522, DOI 10.3390/min8110522. - Cited References: 67. - The authors express their sincere thanks to the in-house Editor, the guest Academic Editor, and three anonymous Reviewers for helpful and constructive reviews. The authors thank S. Ovchinnikov for his assistance in implementation of Mössbauer spectroscopy measurements and A. Moskalev for his assistance in the work preparation. . - ISSN 2075-163X
   Перевод заглавия: Образование графита и алмаза при взаимодействиях карбид-оксид-карбонат (экспериментальное моделирование в Р,Т-условиях мантии)
Кл.слова (ненормированные):
Cohenite -- Graphite -- Diamond -- CO2 fluid -- Carbonate -- Garnet -- Experiment -- High pressure -- Lithospheric mantle -- Metasomatism
Аннотация: Experimental modeling of the formation of graphite and diamond as a result of carbide–fluid interactions was performed in the Fe3C–SiO2–Al2O3–(Mg,Ca)CO3 systems at 6.3 and 7.5 GPa and 1100–1650 °C. In the experiments with ƒO2-gradient (7.5 GPa, 1250–1350 °C), graphite + magnesiowüstite + garnet ± cohenite assemblage was formed. Graphite was produced through the redox interactions of carbide with carbonate or CO2 (reducing conditions), and redox reactions of magnesiowüstite and CO2 (oxidizing conditions). At 1450–1650 °C, crystallization of graphite, garnet, magnesiowüstite and ferrospinel, as well as generation of Fe2+,3+-rich carbonate–silicate melt occurred. This melt, saturated with carbon, acted as a medium of graphite crystallization and diamond growth on seeds. In the experiments without ƒO2-gradient (6.3 GPa), decarbonation reactions with the formation of CO2-fluid and Fe,Mg,Ca-silicates, as well as C0-producing redox reactions of CO2-fluid with cohenite were simultaneously realized. As a result, graphite (± diamond growth) was formed in assemblage with Fe2+,Fe3+,Mg-silicates and magnetite (1100–1200 °C), or with Fe3+-rich garnet and orthopyroxene (1300–1500 °C). It has been established that a potential mechanism for the crystallization of graphite or diamond growth is the oxidation of cohenite by CO2-fluid to FeO and Fe3O4, accompanied by the extraction of carbon from Fe3C and the corresponding reduction of CO2 to C0.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug ave 3, Novosibirsk, 630090, Russian Federation
Department of Geology and Geophysics, Novosibirsk State University, Pirogova str 2, Novosibirsk, 630090, Russian Federation
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Bataleva, Y.; Palyanov, Y.; Borzdov, Y.; Novoselov, I.; Bayukov, O. A.; Баюков, Олег Артемьевич
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)