Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Lyubutin, I. S.$<.>)
Общее количество найденных документов : 37
Показаны документы с 1 по 20
1.


   
    Another mechanism for the insulator-metal transition observed in Mott insulators / A. G. Gavriliuk [et al.] // Phys. Rev. B. - 2008. - Vol. 77, Is. 15. - Ст. 155112, DOI 10.1103/PhysRevB.77.155112. - Cited References: 26 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
ELECTRONIC-STRUCTURE
   SPIN TRANSITION

   HIGH-PRESSURES

   GDFE3(BO3)(4)

Аннотация: The two widely accepted mechanisms of the insulator-metal Mott-Hubbard transitions which have been considered up until now are driven by the band-filling or bandwidth effects. We found a different mechanism of the Mott-Hubbard insulator-metal transition, which is controlled instead by the changes in the Mott-Hubbard energy U. In contrast to the changes in the bandwidth W in the "bandwidth control" scenario or to the variations of the band-filling n parameter in the "band-filling" scenario, a dramatic decrease in the Mott-Hubbard energy U plays the key role in this mechanism. We have experimentally observed this type of the insulator metal transition in the transition metal oxide BiFeO(3). The decrease in the Mott-Hubbard energy is caused by the high-spin-low-spin crossover in the electronic d shell of 3d transition metal ion Fe(3+) with d(5) configuration under high pressure. The pressure-induced spin crossover in BiFeO(3) was investigated and confirmed by synchrotron x-ray diffraction, nuclear forward scattering, and x-ray emission methods. The insulator-metal transition at the same pressures was found by the optical absorption and dc resistivity measurements.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Gavriliuk, Alexander G.
Struzhkin, Viktor V.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA
[Gavriliuk, Alexander G.
Lyubutin, Igor S.] Russian Acad Sci, Inst Crystallog, Moscow 119333, Russia
[Gavriliuk, Alexander G.] RAS, Inst High Pressure Phys, Moscow 142190, Russia
[Ovchinnikov, Sergey G.] Russian Acad Sci, Siberian Div, Inst Phys, Krasnoyarsk 660036, Russia
[Ovchinnikov, Sergey G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Hu, Michael Y.
Chow, Paul] HPCAT, Argonne, IL 60439 USA
[Hu, Michael Y.
Chow, Paul] ANL, APS, Carnegie Inst Washington, Argonne, IL 60439 USA
ИФ СО РАН
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, United States
Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospekt 59, Moscow 119333, Russian Federation
Institute for High Pressure Physics, RAS, Troitsk, 142190, Russian Federation
Institute of Physics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Krasnoyarsk 660041, Russian Federation
HPCAT, Carnegie Institution of Washington, APS, Argonne, IL 60439, United States

Доп.точки доступа:
Gavriliuk, A. G.; Struzhkin, V. V.; Lyubutin, I. S.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Hu, M. Y.; Chow, P.
}
Найти похожие
2.


   
    Characterization of the iron oxide phases formed during the synthesis of core-shell FexOy@C nanoparticles modified with Ag / D. A. Petrov, C. R. Lin, R. D. Ivantsov [et al.] // Nanotechnology. - 2020. - Vol. 31, Is. 39. - Ст. 395703, DOI 10.1088/1361-6528/ab9af2. - Cited References: 46. - The reported study was funded by Joint Research Project of Russian Foundation for Basic Research № 19-52-52002 and Ministry of Science and Technology, Taiwan MOST № 108-2923-M-153-001-MY3 and № 106-2112-M-153-001-MY3. The samples of series 1 were studied with the support of the Ministry of Science and Higher Education of the Russian Federation within the State assignment FSRC «Crystallography and Photonics» RAS. The electron microscopy investigations were conducted in the SFU Joint Scientific Center supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation . - ISSN 1361-6528
   Перевод заглавия: Идентификация фаз оксида железа, формирующихся в процессе синтеза наночастиц FexOy@C с морфологией ядро-оболочка, модифицированных Ag
Кл.слова (ненормированные):
core–shell nanoparticles -- iron oxides -- carbon shell -- Ag nanoparticles
Аннотация: Core–shell FexOy@C nanoparticles (NPs) modified with Ag were studied with x-ray diffraction, transmission electron microscopy, energy dispersive elemental mapping, Mössbauer spectroscopy, static magnetic measurements, and optical magnetic circular dichroism (MCD). FexOy@C NPs synthesized by the pyrolysis process of the mixture of Fe(NO3)3 centerdot 9H2O with oleylamine and oleic acid were added to a heated mixture of oleylamine and AgNO3 in different concentrations. The final product was a mixture of iron oxide crystalline NPs in an amorphous carbon shell and Ag crystalline NPs. The iron oxide NPs were presented by two magnetic phases with extremely close crystal structures: Fe3O4 and γ-Fe2O3. Ag is shown to form crystalline NPs located very close to the iron oxide NPs. An assumption is made about the formation of hybrid FexOy@C-Ag NPs. Correlations were obtained between the Ag concentration in the fabricated samples, their magnetic properties and the MCD spectrum shape. Introducing Ag led to a approximately linear decrease of the NPs saturation magnetization depending upon the Ag concentration, it also resulted into the MCD spectrum shift to the lower light wave energies. MCD was also studied for the Fe3O4@C NPs synthesized earlier with the same one-step process using different heat treatment temperatures, and MCD spectra were compared for two series of NPs. A possible contribution of the surface plasmon excitation in Ag NPs to the MCD spectrum of the FexOy@C-Ag NPs is discussed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, FRC, KSC, SB RAS, Krasnoyarsk 660036, Russia
National Pingtung University, Pingtung City, Pingtung County 90003, Taiwan
Siberian Federal University, Svobodny Av., 79, Krasnoyarsk 660041, Russia
Shubnikov Institute of Crystallography of FSRC 'Crystallography and Photonics' RAS, Moscow 119333, Russia

Доп.точки доступа:
Petrov, D. A.; Петров, Дмитрий Анатольевич; Lin, C. R.; Ivantsov, R. D.; Иванцов, Руслан Дмитриевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Zharkov, S. M.; Жарков, Сергей Михайлович; Yurkin, G. Yu.; Юркин, Глеб Юрьевич; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Knyazev, Yu. V.; Князев, Юрий Владимирович; Molokeev, M. S.; Молокеев, Максим Сергеевич; Tseng, Y. T.; Lin, E. S.; Edelman, I. S.; Эдельман, Ирина Самсоновна; Baskakov, A. O.; Starchikov, S. S.; Lyubutin, I. S.
}
Найти похожие
3.


   
    Crystal structure and structural phase transition in bis­muth-containing HoFe3(BO3)4 in the temperature range 11–500 K / E. S. Smirnova, O. A. Alekseeva, A. P. Dudka [et al.] // Acta Crystallogr. B. - 2019. - Vol. 75. - P. 954-968, DOI 10.1107/S2052520619010473. - Cited References: 37. - The authors are grateful to D. Yu. Chernyshov (SNBL, ESRF, Grenoble) for his assistance in obtaining the experimental data. This work was performed using the equipment of the Shared Research Center FSRC ‘Crystallography and Photonics’ RAS and was supported by the Russian Ministry of Education and Science (project RFMEFI62119X0035). - This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC ‘Crystallography and Photonics’ RAS and partially by the Russian Foundation for Basic Research (grant No. 17-02-00766) . - ISSN 2052-5192
Кл.слова (ненормированные):
holmium iron borate -- crystal structure -- structural phase transition -- Mossbauer spectroscopy -- characteristic temperatures
Аннотация: An accurate single-crystal X-ray diffraction study of bis­muth-containing HoFe3(BO3)4 between 11 and 500 K has revealed structural phase transition at Tstr = 365 K. The Bi atoms enter the composition from Bi2Mo3O12-based flux during crystal growth and significantly affect Tstr. The content of Bi was estimated by two independent methods, establishing the composition as (Ho0.96Bi0.04)Fe3(BO3)4. In the low-temperature (LT) phase below Tstr the (Ho0.96Bi0.04)Fe3(BO3)4 crystal symmetry is trigonal, of space group P3121, whereas at high temperature (HT) above 365 K the symmetry increases to space group R32. There is a sharp jump of oxygen O1 (LT) and O2 (LT) atomic displacement parameters (ADP) at Tstr. O1 and O2 ADP ellipsoids are the most elongated over 90–500 K. In space group R32 specific distances decrease steadily or do not change with decreasing temperature. In space group P3121 the distortion of the polyhedra Ho(Bi)O6, Fe1O6 and Fe2O6, B2O3 and B3O3 increases with decreasing temperature, whereas the triangles B1O3 remain almost equilateral. All BO3 triangles deviate from the ab plane with decreasing temperature. Fe–Fe distances in Fe1 chains decrease, while distances in Fe2 chains increase with decreasing temperature. The Mössbauer study confirms that the FeO6 octahedra undergo complex dynamic distortions. However, all observed distortions are rather small, and the general change in symmetry during the structural phase transition has very little influence on the local environment of iron in oxygen octahedra. The Mössbauer spectra do not distinguish two structurally different Fe1 and Fe2 positions in the LT phase. The characteristic temperatures of cation thermal vibrations were calculated using X-ray diffraction and Mössbauer data.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Shubnikov Inst. of Cristal. of Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences, Moscow, 119333, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Smirnova, E. S.; Alekseeva, O. A.; Dudka, A. P.; Khmelenin, D. N.; Frolov, K. V.; Lyubutina, M. V.; Gudim, I. A.; Гудим, Ирина Анатольевна; Lyubutin, I. S.
}
Найти похожие
4.


   
    Crystal structure dynamics of RFe3(BO3)4 single crystals in the temperature range 25–500 K / O. A. Alekseeva, E. S. Smirnova, K. V. Frolov [et al.] // Crystals. - 2022. - Vol. 12, Is. 9. - Ст. 1203, DOI 10.3390/cryst12091203. - Cited References: 67. - This research was funded by the Ministry of Science and Higher Education within the State assignment FSRC ‘Crystallography and Photonics’ RAS 075-01025-22-00 . - ISSN 2073-4352
Кл.слова (ненормированные):
rare-earth iron borates -- low-temperature X-ray diffraction -- single crystals -- structural distortions -- temperature structural dynamics -- exchange and super-exchange interaction -- Mossbauer spectroscopy
Аннотация: The multiferroic RFe3(BO3)4 family is characterized by diverse magnetic, magnetoelectric, and magnetoelastic properties, the fundamental aspects of which are essential for modern electronics. The present research, using single-crystal X-ray diffraction (XRD) and Mossbauer spectroscopy (MS) in the temperature range of 25–500 K, aimed to analyze the influence of local atomic coordination on magnetoelectric properties and exchange and super-exchange interactions in RFe3(BO3)4. Low-temperature, single-crystal XRD data of the magnetically ordered phase of RFe3(BO3)4 at 25 K, which were obtained for the first time, were supplemented with data obtained at higher temperatures, making it possible to draw conclusions about the mechanism of the structural dynamics. It was shown that, in structures with R = Gd, Ho, and Y (low-temperature space group P3121), a shift in oxygen atoms (O2, second coordination sphere of R atoms) was accompanied by rotation of the B2O3 triangle toward R atoms at low temperatures, and by different rearrangements in iron chains of two types, in contrast to Nd and Sm iron borates (space group R32). These rearrangements in the structures of space group P3121 affected the exchange and super-exchange paths at low temperatures. The MS results confirm the influence of the distant environment of atoms on the magnetoelectric properties of rare-earth iron borates at low temperatures.

Смотреть статью,
Scopus
Держатели документа:
Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’, Russian Academy of Sciences, Moscow, 119333, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Alekseeva, O. A.; Smirnova, E. S.; Frolov, K. V.; Lyubutina, M. V.; Lyubutin, I. S.; Gudim, I. A.; Гудим, Ирина Анатольевна
}
Найти похожие
5.


   
    Crystal structure of bis­muth-containing NdFe3(BO3)4 in the temperature range 20–500 K / E. S. Smirnova, O. A. Alekseeva, A. P. Dudka [et al.] // Acta Crystallogr. B. - 2022. - Vol. 78, Pt. 1. - P. 1-13, DOI 10.1107/S205252062101180X. - Cited References: 44. - This work was performed using the equipment of the Shared Research Center FSRC `Crystallography and Photonics' RAS supported by the Russian Ministry of Science and Higher Education. This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC `Crystallography and Photonics' RAS . - ISSN 2052-5206
РУБ Chemistry, Multidisciplinary + Crystallography
Рубрики:
MAGNETIC PHASE-TRANSITIONS
   UNIT-CELL PARAMETERS

   DIFFRACTION

Кл.слова (ненормированные):
neodymium iron borate -- multiferroic -- crystal structure -- multi-temperature -- single-crystal X-ray diffraction -- Mossbauer spectroscopy -- characteristic temperature
Аннотация: Neodymium iron bor­ate NdFe3(BO3)4 is an intensively studied multiferroic with high electric polarization values controlled by a magnetic field. It is char­ac­ter­ized by a large quadratic magnetoelectric effect, rigidity in the base plane and a rather strong piezoelectric effect. In this work, the atomic structure of (Nd0.91Bi0.09)Fe3(BO3)4 was studied by single-crystal X-ray diffraction in the tem­per­ature range 20–500 K (space group R32, Z = 3). The Bi atoms found in the com­position partially substitute the Nd atoms in the 3a position; they entered the structure due to the growth conditions in the presence of Bi2Mo3O12. It was shown that in the tem­per­ature range 20–500 K there is no structural phase transition R32→P3121, which occurs in rare-earth iron bor­ates (RE = Eu–Er, Y) with an effective rare-earth cation radius smaller than that of Nd. The tem­per­ature dependence of the unit-cell c parameter reveals a slight increase on cooling below 90 K, which is similar to the results obtained previously for iron bor­ates of Gd, Y and Ho. The atomic distances (Nd,Bi)—O, (Nd,Bi)—B, (Nd,Bi)—Fe, Fe—O, Fe—B and Fe—Fe in the iron chains and between chains decrease steadily with decreasing tem­per­ature from 500 to 90 K, whereas the B1(3b)—O distance does not change and the average B2(9e)—O distance increases slightly. There is a uniform decrease in the atomic displacement parameters with decreasing tem­per­ature, with a more pronounced decrease for the Nd(3a) and O2(9e) atoms. The O2(9e) atoms are characterized by the maximum atomic displacement parameters and the most elongated atomic displacement ellipsoids. The characteristic Debye and Einstein tem­per­atures, and the static com­ponent in the atomic displacements were determined for cations using multi-tem­per­ature diffraction data. It was shown that the Nd cations have the weakest bonds with the surrounding atoms and the B cations have the strongest.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Russian Acad Sci, Fed Sci Res Ctr Crystallog & Photon, Shubnikov Inst Crystallog, Moscow 119333, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Smirnova, E. S.; Alekseeva, O. A.; Dudka, A. P.; Verin, I. A.; Artemov, V. V.; Lyubutina, M. V.; Gudim, I. A.; Гудим, Ирина Анатольевна; Frolov, K. V.; Lyubutin, I. S.; Russian Ministry of Science and Higher Education; Ministry of Science and Higher Education within the State assignment FSRC 'Crystallography and Photonics' RAS
}
Найти похожие
6.


   
    Crystal structure, absolute configuration and characteristic temperatures of SmFe3(BO3)4 in the temperature range 11-400 K / E. S. Smirnova, O. A. Alekseeva, A. P. Dudka [et al.] // Acta Crystallogr. B. - 2022. - Vol. 78, Is. 3-2, Pt. 1. - P. 546-556, DOI 10.1107/S2052520622003948. - Cited References: 43. - The authors are grateful to D. Yu. Chernyshov (SNBL, ESRF, Grenoble) for assistance in obtaining the experimental data. This work was performed using the equipment of the Shared Research Center FSRC ‘Crystallography and Photonics’ RAS supported by the Russian Ministry of Science and Higher Education. This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC ‘Crystallography and Photonics’ RAS . - ISSN 2052-5206
Кл.слова (ненормированные):
samarium bismuth iron borate -- absolute configuration -- crystal structure -- multi-temperature single-crystal X-ray diffraction -- Mossbauer spectroscopy -- characteristic temperatures -- solution-melt growth
Аннотация: The crystal structure of samarium iron borate was analyzed with regard to growth conditions and temperature. The inclusion of about 7% Bi atoms in the crystals grown using the Bi2Mo3O12-based flux was discovered and there were no impurities in the crystals grown using the Li2WO4-based flux. No pronounced structural features associated with Bi inclusion were observed. The different absolute configurations of the samples grown using both fluxes were demonstrated. Below 80 K, a negative thermal expansion of the c unit-cell parameter was found. The structure of (Sm0.93Bi0.07)Fe3(BO3)4 belongs to the trigonal space group R32 in the temperature range 90–400 K. A decrease in the (Sm,Bi)—O, Sm—B, Sm—Fe, Fe—O, Fe—B and Fe—Fe distances is observed with a lowering of the temperature, B1—O does not change, B2—O increases slightly and the B2O3 triangles deviate from the ab plane. The strongest decrease in the equivalent isotropic atomic displacement parameters (Ueq) with decreasing temperature is observed for atoms Sm and O2, and the weakest is observed for B1. The O2 atoms have the highest Ueq values, the most elongated atomic displacement ellipsoids of all the atoms and the smallest number of allowed vibrational modes of all the O atoms. The largest number of allowed vibrational modes and the strongest interactions with neighbouring atoms is seen for the B atoms, and the opposite is seen for the Sm atoms. The quadrupole splitting Δ(T) of the paramagnetic Mössbauer spectra increases linearly with cooling. The Néel temperature [TN = 31.93 (5) K] was determined from the temperature dependence of the hyperfine magnetic field Bhf(T), which has a non-Brillouin character. The easy-plane long-range magnetic ordering below TN was confirmed.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics', Russian Academy of SciencesMoscow 119333, Russian Federation
Moscow State University, Faculty of GeologyMoscow 119991, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Smirnova, E. S.; Alekseeva, O. A.; Dudka, A. P.; Sorokin, T. A.; Khmelenin, D. N.; Yapaskurt, V. O.; Lyubutina, M. V.; Frolov, K. V.; Lyubutin, I. S.; Gudim, I. A.; Гудим, Ирина Анатольевна
}
Найти похожие
7.


   
    Dynamics of structural and magnetic phase transitions in ferroborate YFe3(BO3)4 / K. V. Frolov [et al.] // J. Alloys Compd. - 2018. - Vol. 748. - P. 989-994, DOI 10.1016/j.jallcom.2018.03.243. - Cited References: 58. - We thank Dr. A.P. Dudka for help in the low temperature XRD measurements and Dr. D.Yu. Chernyshov for help in the synchrotron XRD measurements. This study was supported by the Federal Agency of Scientific Organizations (Agreement No 007-ГЗ/Ч3363/26 ) in parts of energy-dispersive X-ray microanalysis, high-temperature XRD, and Mossbauer measurements, by the Russian Foundation for Basic Research (project #17-02-00766а ) in parts of low-temperature XRD and Mossbauer measurements, Russian Ministry of Education and Science and performed using the equipment of the Shared Research Center of the Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RAS. . - ISSN 0925-8388
   Перевод заглавия: Динамика структурных и магнитных фазовых переходов в ферроборате YFe3(BO3)4
Кл.слова (ненормированные):
Multiferroics -- Rare-earth compounds -- X-ray diffraction -- Mossbauer spectroscopy -- Crystal structure
Аннотация: X-ray analysis of the YFe3(BO3)4 single crystal revealed different behavior of parameters of the crystal cell with an increase in temperature from 25 to 500 K. The parameters a and b initially increase monotonically and then rise sharply in the range between 360 and 380 K, which corresponds to the structural phase transition. The parameter c initially decreases linearly upon heating and then begins to increase, passing through a minimum at 90 K. In the interval of 200–500 K the parameter c grows linearly and does not undergo anomalies at the structural phase transition. The results of Mössbauer measurements at 57Fe nuclei in the paramagnetic phase of YFe3(BO3)4 correlate well with the XRD data, but they do not separate the two structural states of iron ions Fe1 and Fe2 arising in the P3121 phase during the structural phase transition. The temperature of the magnetic phase transition TN = 39.42(16) K is established, below which the iron ions form a 3D magnetic order of the Heisenberg type. The calculated “Mössbauer” Debye temperature ΘM = 340(2) K turned out to be three times lower than the Debye temperature of the entire crystal lattice TD = 1020 K. Mössbauer data indicate a weak bonding between the helicoidal chains of iron and the rest of the crystal lattice.
Рентгеновский анализ монокристалла YFe3(bo3-серии)4 выявил различие в поведении параметров кристаллической ячейки с увеличением температуры от 25 до 500 к. Параметры a и b сначала монотонно возрастают, а затем резко поднимется в диапазон между 360 и 380 К, что соответствует структурному фазовому переходу. Параметр c сначала линейно уменьшается при нагревании, а затем начинает возрастать, проходя через минимум при 90 K. В интервале 200-500 K параметр c растет линейно и не претерпевает аномалий при структурном фазовом переходе. Результаты Мёсбауэровской спектроскопии ядер 57Fe в парамагнитной фазе в YFe3(BO3)4 коррелируют с РСА, но они не разделяют двух структурных состояний ионов железа Fe1 и Fe2, возникающие в фазе P3121 в процессе структурного перехода. Установили температуру магнитного фазового перехода TN= 39.42(16) К, в результате которого ионы железа образуют 3D магнитный порядок типа Гейзенберга. Рассчитанная по Мёссбауэру Дебаевская температура QM= 340(2) K оказалась в три раза ниже температуры Дебая внутри кристаллической решетки TD= 1020 K. Данные Мёсбауэра указывают на слабую связь между геликоидальными цепочками железной и остальных кристаллических решеток.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RAS, Moscow, Russian Federation
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Frolov, K. V.; Lyubutin, I. S.; Alekseeva, O. A.; Smirnova, E. S.; Verin, I. A.; Temerov, V. L.; Темеров, Владислав Леонидович; Bezmaternykh, L. N.; Безматерных, Леонард Николаевич; Gudim, I. A.; Гудим, Ирина Анатольевна; Artemov, V. V.; Dmitrieva, T. V.
}
Найти похожие
8.


   
    Effect of magnetic impurities on superconductivity in LaH10 / D. V. Semenok, I. A. Troyan, A. V. Sadakov [et al.] // Adv. Mater. - 2022. - Vol. 34, Is. 42. - Ст. 2204038, DOI 10.1002/adma.202204038. - Cited References: 106. - In situ X-ray diffraction experiments at high pressure were performed on SPring-8, station BL10XU, Sayo, Japan (proposal No. 2020A0576). This work was supported by JSPS KAKENHI Grant Number 20H05644. Low-pressure studies were carried out on a synchrotron source of the Kurchatov institute (KISI-Kurchatov), station RKFM. The high-pressure experiments were supported by the Ministry of Science and Higher Education of the Russian Federation within the state assignment of the FSRC Crystallography and Photonics of the RAS. I.A.T. was supported by the Russian Science Foundation, project No. 22-12-00163. A.R.O. thanks the Russian Science Foundation (grant 19-72-30043). D.V.S. thanks the Russian Foundation for Basic Research (project 20-32-90099). I.A.K. thanks the Russian Science Foundation (grant No. 21-73-10261) for the financial support of the anharmonic phonon density of states calculations and molecular dynamics simulations. SEM, XRF, and XRD studies of the initial alloys were performed using the equipment of the Shared Research Center FSRC Crystallography and Photonics of the RAS. I.A.T. and A.G.I. acknowledge the use of the facilities of the Center for Collective Use “Accelerator Center for Neutron Research of the Structure of Substance and Nuclear Medicine” of the INR RAS for high-pressure cell preparation. The research used resources of the LPI Shared Facility Center. V.M.P acknowledge the support of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (Project No. 0023-2019-0005) and A.V.S. and O.A.S. acknowledge the support of the Russian Science Foundation, grant 22-22-00570. K.S.P. thanks the Russian Foundation for Basic Research (project 19-02-00888). I.A.K. thanks the Russian Science Foundation (grant No. 19-73-00237) for the financial support of the development of T-USPEX method and anharmonic phonon density of states calculation algorithm. S.W.T was supported by NSF Cooperative Agreement No. DMR-1157490/1644779 and by the State of Florida. A.D.G. was supported by T.H. and T.F. funding. The authors acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL). The authors also thank Igor Grishin (Skoltech) for proofreading the manuscript, and Dr. C. Tantardini (University of Tromsø) for calculations using the virtual crystal approximation, and Dr. E. Talantsev (IMP RAS) for useful discussions . - ISSN 0935-9648. - ISSN 1521-4095
Кл.слова (ненормированные):
Anderson's theorem -- high pressure -- hydrides -- superconductivity
Аннотация: Polyhydrides are a novel class of superconducting materials with extremely high critical parameters, which is very promising for sensor applications. On the other hand, a complete experimental study of the best so far known superconductor, lanthanum superhydride LaH10, encounters a serious complication because of the large upper critical magnetic field HC2(0), exceeding 120–160 T. It is found that partial replacement of La atoms by magnetic Nd atoms results in significant suppression of superconductivity in LaH10: each at% of Nd causes a decrease in TC by 10–11 K, helping to control the critical parameters of this compound. Strong pulsed magnetic fields up to 68 T are used to study the Hall effect, magnetoresistance, and the magnetic phase diagram of ternary metal polyhydrides for the first time. Surprisingly, (La,Nd)H10 demonstrates completely linear HC2(T) ∝ |T – TC|, which calls into question the applicability of the Werthamer–Helfand–Hohenberg model for polyhydrides. The suppression of superconductivity in LaH10 by magnetic Nd atoms and the robustness of TC with respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem gives new experimental evidence of the isotropic (s-wave) character of conventional electron–phonon pairing in lanthanum decahydride.

Смотреть статью,
Scopus
Держатели документа:
Materials Discovery Laboratory, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30/1, Moscow, 121205, Russian Federation
Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 59 Leninsky Prospekt, Moscow, 119333, Russian Federation
V.L. Ginzburg Center for High-Temperature Superconductivity and Quantum Materials, P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991, Russian Federation
Center for Fundamental and Applied Research, Dukhov Research Institute of Automatics (VNIIA), st. Sushchevskaya, 22, Moscow, 127055, Russian Federation
Laboratory of Computational Materials Discovery, Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny, 141700, Russian Federation
Crystal Physics Laboratory, NRC “Kurchatov Institute” PNPI, 1, mkr. Orlova roshcha, Gatchina, 188300, Russian Federation
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russian Federation
Synchrotron radiation source “KISI-Kurchatov”, National Research Center “Kurchatov Institute”, Moscow, 123182, Russian Federation
Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, 01328, Germany
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States
Brazilian Synchrotron Light Laboratory (LNLS/Sirius), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-100, Brazil
KYOKUGEN, Graduate School of Engineering Science, Osaka University, Machikaneyamacho 1-3, Osaka, Toyonaka, 560-8531, Japan
HSE Tikhonov Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, 20 Myasnitskaya ulitsa, Moscow, 101000, Russian Federation

Доп.точки доступа:
Semenok, D. V.; Troyan, I. A.; Sadakov, A. V.; Zhou, D.; Galasso, M.; Kvashnin, A. G.; Ivanova, A. G.; Kruglov, I. A.; Bykov, A. A.; Terent'ev, K. Yu.; Терентьев, Константин Юрьевич; Cherepakhin, A. V.; Черепахин, Александр Владимирович; Sobolevskiy, O. A.; Pervakov, K. S.; Seregin, A. Y.; Helm, T.; Forster, T.; Grockowiak, A. D.; Tozer, S. W.; Nakamoto, Y.; Shimizu, K.; Pudalov, V. M.; Lyubutin, I. S.; Oganov, A. R.
}
Найти похожие
9.


   
    Electron transport in FeBO3 ferroborate at ultrahigh pressures / I. A. Troyan [et al.] // JETP Letters. - 2012. - Vol. 94, Is. 10. - P. 748-752, DOI 10.1134/S0021364011220115. - Cited References: 22. - This work was supported by the Russian Foundation for Basic Research (project nos. 09-02-01527-a, 09-02-00127-a, 09-02-00171-a, 11-02-00291-a, and 11-02-00636-a), by the Ministry of Education and Science of the Russian Federation (state contract nos. 16.518.11.7021 and MK-5632.2010.2), and by the Division of Physical Sciences, Russian Academy of Sciences (program "Strong Electron Correlations"). . - ISSN 0021-3640
РУБ Physics, Multidisciplinary
Рубрики:
MAGNETIC COLLAPSE
   TRANSITION

   STATE

Аннотация: The electrical resistance of FeBO3 crystals at high and ultrahigh pressures (up to 198 GPa) and low temperatures has been measured using diamond anvil cells. It has found that in the high-pressure phase, 46 GPa ‹ P‹ 100 GPa, the activation energy E-ac decreases gradually from 0.55 to 0.3 eV according to a linear law. Its extrapolation to zero gives an estimated value of about 210 GPa for the pressure at which complete metallization is expected. However, above 100 GPa, the linear E-ac(P) dependence smoothly transforms to a nonlinear one. At the same time, the temperature dependence of the electrical resistance at fixed pressure significantly deviates from the Arrhenius activation law and does not obey the Mott law for the hopping conductivity. Experimental data demonstrate the dependence of the activation energy E-ac both on pressure and temperature. At T = 0, the gap tends to zero. Theoretical analysis shows that the decrease in E-ac upon cooling can be interpreted in terms of the transition of the low-spin FeBO3 phase to the magnetically ordered (anti-ferromagnetic) state.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Транспортные свойства ферро-бората FeBO3 при сверхвысоких давлениях [Текст] / И. А. Троян [и др.] // Письма в Журн. эксперим. и теор. физ. : Наука, 2011. - Т. 94 Вып. 10. - С. 811-815

Держатели документа:
[Troyan, I. A.
Gavrilyuk, A. G.
Lyubutin, I. S.] Russian Acad Sci, Shubnikov Inst Crystallog, Moscow 119333, Russia
[Troyan, I. A.] Max Planck Inst Chem, D-55020 Mainz, Germany
[Gavrilyuk, A. G.] Russian Acad Sci, Inst Nucl Res, Troitsk 142190, Moscow Region, Russia
[Ovchinnikov, S. G.
Kazak, N. V.] Russian Acad Sci, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk 660036, Russia
[Ovchinnikov, S. G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Troyan, I. A.; Gavrilyuk, A. G.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Lyubutin, I. S.; Kazak, N. V.; Казак, Наталья Валерьевна
}
Найти похожие
10.


   
    Electronic Transitions in the VBO3 Single Crystal at High Pressures / A. G. Gavriliuk [et al.] // JETP Letters. - 2008. - Vol. 88, Is. 11. - P. 762-766, DOI 10.1134/S0021364008230136. - Cited References: 19. - We are grateful to V.V. Rudenko for the samples provided for this study and to I.S. Edelman for discussions of the results. This work was supported by the Russian Foundation for Basic Research (project nos. 07-02-00490a, 08-02-00897a, and 08-02-90708mob_st); by the Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (project no. MK-4278.2008.2); and by the Division of Physical Sciences, Russian Academy of Sciences (program "Strongly Correlated Electrons"). . - ISSN 0021-3640
РУБ Physics, Multidisciplinary
Рубрики:
FEBO3
Кл.слова (ненормированные):
74.62.Fj -- 75.50.-y -- 78.70.En -- 81.40.Rs
Аннотация: Optical absorption spectra of single crystals of the ferromagnetic semiconductor VBO3 are studied at high pressures up to 70 GPa achieved in a diamond-anvil cell. An electronic transition accompanied by sharp changes in the optical parameters and a decrease in the optical gap from E-0 = 3.02 eV to 2.25 eV is found at the pressure P-C = 30 GPa. The gap does not disappear in the high-pressure phase and its value becomes typical of semiconductors. This is indicative of a semiconductor-semiconductor transition. The transition to the metallic state may occur at the critical pressure P-met similar to 290 GPa.

WOS,
Scopus,
Читать в сети ИФ


Держатели документа:
[Gavriliuk, A. G.
Lyubutin, I. S.] Russian Acad Sci, AV Shubnikov Crystallog Inst, Moscow 119333, Russia
[Gavriliuk, A. G.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia
[Kazak, N. V.
Ovchinnikov, S. G.] Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
[Ovchinnikov, S. G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
ИФ СО РАН
Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii pr. 59, Moscow, 119333, Russian Federation
Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow region, 142190, Russian Federation
Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Gavriliuk, A. G.; Kazak, N. V.; Казак, Наталья Валерьевна; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Lyubutin, I. S.
}
Найти похожие
11.


   
    Evolution of the optical absorption spectra and electronic structure of the VBO3 crystal under high pressures / N. V. Kazak [et al.] // J. Exp. Theor. Phys. - 2009. - Vol. 109, Is. 3. - P. 455-465, DOI 10.1134/S1063776109090118. - Cited References: 27. - We would like to thank A. D. Vasil'ev for performing the X-ray diffraction investigations.This study was supported by the Russian Foundation for Basic Research (project nos. 07-02-00490a, 08-02-00897a, 08-02-90708 mob_st, 09-02-00171a, and 07-02-00226), the Federal Agency for Science and Innovation (Rosnauka) (project no. MK-4278.2008.2, contract no. 01.164.12.HB11), and the Branch of Physical Sciences of the Russian Academy of Sciences within the framework of the program "Strongly Correlated Electrons." . - ISSN 1063-7761
РУБ Physics, Multidisciplinary
Рубрики:
BAND-STRUCTURE
   PHASE-TRANSITION

   FEBO3

   FE1-XVXBO3

   STATE

   MODEL

Кл.слова (ненормированные):
Charge-transfer excitations -- D-d transitions -- Ferromagnetic semiconductor -- Fundamental absorption edge -- High pressure -- Optical absorption spectrum -- Absorption -- Boron -- Boron compounds -- Electronic properties -- Electronic structure -- Optical materials -- Oxygen -- Vanadium -- Light absorption
Аннотация: The evolution of optical absorption spectra of the ferromagnetic semiconductor VBO3 under high pressures up to 70 GPa has been investigated. It has been revealed that, below the fundamental absorption edge (E (g1) = 3.02 eV), the spectra exhibit a series of bands V1 (2.87 eV), V2 (2.45 eV), V3 (1.72 eV), and V4(1.21 eV) due to the d-d transitions in the V3+ ion and charge-transfer excitations. A model of the electronic structure of the VBO3 semiconductor has been constructed. This model combines the one-electron description of the s and p states of boron and oxygen and the many-electron description of the vanadium d states.

WOS,
Scopus,
РИНЦ,
Смотреть статью,
Читать в сети ИФ

Публикация на русском языке Эволюция спектров оптического поглощения и электронной структуры в кристалле VBO[3] при воздействии высоких давлений [Текст] / Н. В. Казак [и др.] // Журн. эксперим. и теор. физ. - 2009. - Т. 136 Вып. 3. - С. 531-542

Держатели документа:
[Kazak, N. V.
Ovchinnikov, S. G.
Edel'man, I. S.
Rudenko, V. V.] Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
[Gavriliuk, A. G.
Lyubutin, I. S.] Russian Acad Sci, AV Shubnikov Crystallog Inst, Moscow 119333, Russia
[Gavriliuk, A. G.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Oblast, Russia
[Ovchinnikov, S. G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
ИФ СО РАН
Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow oblast 142190, Russian Federation
Siberian Federal University, Svobodny pr. 79, Krasnoyarsk 660041, Russian Federation

Доп.точки доступа:
Kazak, N. V.; Казак, Наталья Валерьевна; Gavriliuk, A. G.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Lyubutin, I. S.; Edel'man, I. S.; Edelman, I. S.; Rudenko, V. V.; Руденко, Валерий Васильевич; Russian Foundation for Basic Research [07-02-00490a, 08-02-00897a, 08-02-90708 mob_st, 09-02-00171a, 07-02-00226]; Federal Agency for Science and Innovation [MK-4278.2008.2, 01.164.12.HB11]; Russian Academy of Sciences
}
Найти похожие
12.


   
    Experimental study of iron sulfide Fe[[d]]3[[/d]]S[[d]]4[[/d]] nanoparticles synthesized by the polyolmediated process / Chun-Rong Lin [и др.] // Новое в магнетизме и магнитных материалах : сборник трудов XXII международной конференции. - Астрахань, 2012. - С. 470-472


Доп.точки доступа:
Chun-Rong Lin; Shin-Zong Lu; Yu-Jhan Siao; Lyubutin, I.S.; Ivantsov, R.D.; Иванцов, Руслан Дмитриевич; Starchikov, S.S.; Funtov, K.O.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Edelman, I.S.; Эдельман, Ирина Самсоновна; Российская академия наук; Научный совет по физике конденсированных сред РАН; Институт физики твердого тела РАН; Московский государственный университет им. М.В. Ломоносова; Астраханский государственный университет ; "Новое в магнетизме и магнитных материалах", международная конференция (22 ; 2012 ; сент. ; 17-23 ; Астрахань)
}
Найти похожие
13.


   
    Fe3S4 and Fe3O4 magnetic nanocrystals: magnetooptical and Mössbauer spectroscopy study / C-R Lin [et al.] // Mater. Research Express. - 2014. - Vol. 1, Is. 2. - P. 025033DOI 10.1088/2053-1591/1/2/025033. - We thank the National Science Council of Taiwan (NSC 100-2923-M-153-001-MY3 and NSC 102-2112-M-153-002-MY3) for financial support. Support by the Russian Foundation for Basic Research (Grants #14-12-00848 and 14-02-0121) is acknowledged. This work was also supported by the Russian Federation President Grant NSh-2886.2014.2.
Кл.слова (ненормированные):
iron sulfide Fe3S4 -- iron oxide Fe3O4 -- magnetic nanoparticles -- Mössbauer spectroscopy -- magnetic circular dichroism -- ab-initio band structure -- calculations
Аннотация: Iron oxide magnetite (Fe3O4) should be a reasonable analog for conception and understanding of the magnetic properties of iron sulfide greigite (Fe3S4)—one of the most required magnetic materials having numerous applications but being far from the complete understanding now. We present here a comparative study of the Mössbauer effect (ME) and the magnetic circular dichroism (MCD) spectroscopy of Fe3O4 and Fe3S4 nanoparticles. The ME spectrum parameters of Fe3S4 are shown to distinguish strongly from that of Fe3O4, and the MCD spectrum shapes are shown to be absolutely different for two compounds. To clarify the origin of the Fe3S4 MCD spectrum we have performed ab initio band structure calculations and identified the MCD spectrum features with the transitions between calculated energy states.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
Department of Applied Physics, National Pintung University of Education, Pintung 90003, Taiwan
L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
Siberian Federal University, Krasnoyarsk, 660041, Russia
University of Nevada, Reno, NV 89557, USA
Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333, Russia

Доп.точки доступа:
Lin, C.-R.; Tseng, Y.-T.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Ivantsov, R. D.; Иванцов, Руслан Дмитриевич; Edelman, I. S.; Эдельман, Ирина Самсоновна; Fedorov, A. S.; Федоров, Александр Семенович; Kuzubov, A. A.; Кузубов, Александр Александрович; Fedorov, D. A.; Федоров, Дмитрий Александрович; Starchikov, S. S.; Lyubutin, I. S.
}
Найти похожие
14.


   
    High-pressure magnetic properties and P-T phase diagram of iron borate / A. G. Gavriliuk [et al.] // J. Exp. Theor. Phys. - 2005. - Vol. 100, Is. 4. - P. 688-696, DOI 10.1134/1.1926429. - Cited References: 24 . - ISSN 1063-7761
РУБ Physics, Multidisciplinary
Рубрики:
FEBO3 SINGLE-CRYSTALS
   NUCLEAR-RESONANCE

   BAND-STRUCTURE

   TRANSITION

   TEMPERATURE

   SCATTERING

Кл.слова (ненормированные):
Antiferromagnetic materials -- Diamonds -- Ferromagnetic materials -- High pressure effects -- Low temperature effects -- Magnetic moments -- Magnetic properties -- Magnetization -- Phase diagrams -- Powders -- Single crystals -- Synchrotron radiation -- Diamond anvil cells -- Electronic transition -- Iron borate -- Nuclear forward scattering (NFS) -- Iron compounds
Аннотация: The high-pressure magnetic states of iron borate (FeBO3)-Fe-57 single-crystal and powder samples have been investigated in diamond anvil cells by nuclear forward scattering (NFS) of synchrotron radiation at different temperatures. In the low-pressure (0 < P < 46 GPa) antiferromagnetic phase, an increase of the Neel temperature from 350 to 595 K induced by pressure was found. At pressures 46-49 GPa, a transition from the antiferromagnetic to a new magnetic state with a weak magnetic moment (magnetic collapse) was discovered. It is attributed to the electronic transition in Fe3+ ions from the high-spin 3d(5) (S = 5/2, (6)A(1g)) to the low-spin (S = 1/2, T-2(2g)) state (spin crossover) due to the insulator-semiconductor-type transition with extensive suppression of strong d-d electron correlations. At low temperatures, NFS spectra of the high-pressure phase indicate magnetic correlations in the low-spin system with a magnetic ordering temperature of about 50 K. A tentative magnetic P-T phase diagram of FeBO3 is proposed. An important feature of this diagram is the presence of two triple points where magnetic and paramagnetic phases of the high-spin and low-spin states coexist. © 2005 Pleiades Publishing, Inc.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Inst High Pressure Phys, Troitsk 142190, Moscow Oblast, Russia
Russian Acad Sci, Inst Crystallog, Moscow 119333, Russia
Russian Acad Sci, Siberian Div, Kirensky Inst Phys, Krasnoyarsk 660036, Russia
ИФ СО РАН
Institute for High-Pressure Physics, Troitsk, Moscow oblast, 142190, Russian Federation
Institute of Crystallography, Russian Academy of Sciences, Moscow, 119333, Russian Federation
Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Gavriliuk, A. G.; Trojan, I. A.; Lyubutin, I. S.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Sarkissian, V. A.
}
Найти похожие
15.


   
    Low-temperature structural and magnetic phase transitions in multiferroic GdFe3(BO3)4 / K. V. Frolov [et al.] // J. Alloys Compd. - 2016. - Vol. 671. - P. 545-551, DOI 10.1016/j.jallcom.2016.02.083. - Cited References:36. - We thank Dr. A.P. Dudka for help in the low temperature XRD measurements. This study was supported in part by the Russian Foundation for Basic Research (projects # 14-02-00483a and 13-02-12442), and the Council on Grants from the President of the Russian Federation for Support of Leading Scientific Schools (grant # NSh-1130.2014.5 and # NSh-924.2014.2). This work was performed using the equipment of the Shared Research Center IC RAS and was supported by the Russian Ministry of Education and Science (project RFMEFI62114X0005). . - ISSN 0925-8388. - ISSN 1873-4669
   Перевод заглавия: Низкотемпературные структурные и магнитные фазовые переходы в мультиферроике GdFe3(BO3)4
РУБ Chemistry, Physical + Materials Science, Multidisciplinary + Metallurgy & Metallurgical Engineering
Рубрики:
IRON BORATE GDFE3(BO3)4
   BIFEO3 THIN-FILMS

   MAGNETOELASTIC PROPERTIES

   RM3(BO3)4 CRYSTALS

   TRIGONAL GDFE3(BO3)4

   ENHANCED POLARIZATION

   HIGH-PRESSURES

   CRYSTALLIZATION

   BEHAVIOR

   GROWTH

Кл.слова (ненормированные):
Multiferroics -- Rare earth compounds -- X-ray diffraction -- Mossbauer -- spectroscopy -- Crystal structure -- Spin dynamics
Аннотация: X-ray analysis revealed that at temperature decreasing from room temperature to Tstr = 155 K the crystal unit cell GdFe3(BO3)4 is reduced only along the c axis (at 0.01 Å), while the a and b axes are unchanged within the error limits. The volume of the crystal decreases uniformly in the direction of all three axes at 155–80 K. At 80–30 K the crystal volume is decreased only by reduction of the parameters a and b, while the parameter c increases conversely. In the paramagnetic region Mössbauer spectra do not distinguish between the two structural positions of iron ions Fe1 and Fe2, appearing at T < Tstr. Below the temperature of the magnetic phase transition at TN = 38.0(1) K the Mössbauer data indicate quasi-one-dimensional magnetic ordering of iron moments in the sublattice Fe2 and a two-dimensional one in the iron sublattice Fe1. The dynamics of spin reorientation in sublattices Fe1 and Fe2 is studied in detail.
Рентгеновский анализ показал, что при уменьшении температуры от комнатной до Tstr = 155 K изменение параметра элементарной ячейки кристалла GdFe3(BO3)4 происходит лишь вдоль оси с (при 0,01 Å), в то время как а и b оси остаются неизменными в пределах погрешности измерений. Объем кристалла уменьшается равномерно в направлении всех трех осей при 155-80 K. При 80-30 K объем кристалла уменьшается только уменьшением параметров a и b, в то время как параметр с наоборот увеличивается. В парамагнитной области Мессбауэровские спектры не различают двух структурных позиций ионов железа Fe1 и Fe2, появляющиеся при Т˂Tstr. Ниже температуры магнитного фазового перехода при TN = 38,0(1) К Мёссбауэрские данные указывают на квази-одномерный магнитное упорядочение моментов железа в подрешетке Fe2 и двумерное в железной подрешетке Fe1. Динамика спиновой переориентации в подрешетках Fe1 и Fe2 подробно изучается.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, AV Shubnikov Crystallog Inst, Moscow 119333, Russia.
Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA.
Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Frolov, K. V.; Lyubutin, I. S.; Smirnova, E. S.; Alekseeva, O. A.; Verin, I. A.; Artemov, V. V.; Kharlamova, S. A.; Bezmaternykh, L. N.; Безматерных, Леонард Николаевич; Gudim, I. A.; Гудим, Ирина Анатольевна; Russian Foundation for Basic Research [14-02-00483a, 13-02-12442]; Council on Grants from the President of the Russian Federation for Support of Leading Scientific Schools [NSh-1130.2014.5, NSh-924.2014.2]; Russian Ministry of Education and Science [RFMEFI62114X0005]
}
Найти похожие
16.


   
    Magnetic and structural properties of the NdFe3(BO3)4 AND SmFe3(BO3)4 multiferroics studied with mossbauer spectroscopy / K. V. Frolov [et al.] // Moscow International Symposium on Magnetism (MISM-2017) : 1-7 July 2017 : book of abstracts. - 2017. - Ст. 4PO-J-42. - P. 921

РИНЦ,
Материалы конференции,
Читать в сети ИФ

Доп.точки доступа:
Frolov, K. V.; Lyubutin, I. S.; Smirnova, E. S.; Alekseeva, O. A.; Bezmaternykh, L. N.; Безматерных, Леонард Николаевич; Gudim, I. A.; Гудим, Ирина Анатольевна; Moscow International Symposium on Magnetism(7 ; 2017 ; Jul. ; Moscow); Московский государственный университет им. М.В. Ломоносова; Российский фонд фундаментальных исследований
Нет сведений об экземплярах (Источник в БД не найден)
}
Найти похожие
17.


   
    Magnetic order in FeCr2S4-type chalcogenide spinels / F. J. Berry [et al.] // J. Phys.: Condens. Matter. - 2007. - Vol. 19, Is. 26. - Ст. 266204, DOI 10.1088/0953-8984/19/26/266204. - Cited References: 15 . - ISSN 0953-8984
РУБ Physics, Condensed Matter
Рубрики:
COLOSSAL-MAGNETORESISTANCE
   TRANSITION

Кл.слова (ненормированные):
Doping (additives) -- Iron compounds -- Magnetization -- Magnetoresistance -- Mossbauer spectroscopy -- X ray absorption fine structure spectroscopy -- Chalcogenide spinels -- Low temperature magnetic behaviour -- Magnetic ordering temperature -- Thiospinels -- Chalcogenides
Аннотация: The thiospinels of composition FeCr2S4 and Fe1+xCr2-2xSnxS4 with 0 < x < 0.1 have been examined by means of extended x- ray absorption fine structure, Mossbauer spectroscopy and magnetoresistance techniques. The structural characterization shows that tin enters the spinel- related lattice as Sn4+ and occupies the octahedral B site. Appreciable magnetoresistance is observed in the temperature range 160 - 185 K which includes the magnetic ordering temperature. The effect of slight non- stoichiometry in FeCr2S4 and of tin doping is observed in the M r ossbauer spectra which show the Fe2+ ions to occupy the tetrahedral A sites. The M r ossbauer spectra recorded around the magnetic ordering temperature are sensitive to small ( 0.03 T) applied magnetic fields. The influence of tin on the low temperature magnetic behaviour is associated with the distribution of Cr3+, Sn4+ and Fe3+ ions around tetrahedral Fe2+ sites and vacancies in the anionic sublattice. An interpretation of the colossal magnetoresistance phenomena below TN is suggested.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Open Univ, Dept Chem, Milton Keynes MK7 6AA, Bucks, England
Russian Acad Sci, AV Shubnikov Crystallog Inst, Moscow 119333, Russia
Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England
Russian Acad Sci, Inst Inorgan & Gen Chem, Moscow 119907, Russia
Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
ИФ СО РАН
Department of Chemistry, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
A V Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky avenue 59, Moscow 119333, Russian Federation
Department of Physics, University of Liverpool, Liverpool L69 3BX, United Kingdom
Institute of Inorganic and General Chemistry, Russian Academy of Sciences, Leninsky avenue 31, Moscow 119907, Russian Federation
L V Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation

Доп.точки доступа:
Berry, F. J.; Dmitrieva, T. V.; Ovanesyan, N. S.; Lyubutin, I. S.; Thomas, M. F.; Sarkisyan, V. A.; Ren, X.; Aminov, T. G.; Shabunina, G. G.; Rudenko, V.; Vorotynov, A. M.; Воротынов, Александр Михайлович; Dubinskaya, Y. L.
}
Найти похожие
18.


   
    Magnetic properties and structural anomalies observed in multiferroic NdFe3(BO3)4 by 57Fe Mossbauer spectroscopy / K. V. Frolov, I. S. Lyubutin, O. A. Alekseeva [et al.] // J. Alloys Compd. - 2022. - Vol. 909. - Ст. 164747, DOI 10.1016/j.jallcom.2022.164747. - Cited References: 61. - This work was supported by the Russian Ministry of Science and Higher Education within the State assignment FSRC "Crystallography and Photonics" RAS and performed using the equipment of the Shared Research Center "Structural diagnostics of materials" of FSRC "Crystallography and Photonics" RAS . - ISSN 0925-8388
Кл.слова (ненормированные):
Multiferroics -- Rare earth - iron compounds -- X-ray diffraction -- Mossbauer spectroscopy -- Commensurate and incommensurate magnetic structures
Аннотация: The results of studies of the NdFe3(BO3)4 by 57Fe Mossbauer spectroscopy in comparison with the data of single crystal X-ray diffraction measurements are presented. Scanning of the crystal cell parameters in a wide temperature range T = 15–500 K revealed a negative thermal expansion along the c axis and structural anomalies. The temperature dependences of the Mössbauer parameters of hyperfine interaction in the paramagnetic state of NdFe3(BO3)4 correlate well with the behavior of crystal cell parameters obtained by X-ray diffraction data. The temperature of the magnetic phase transition TN = 32.54(4) K is established, below which the iron ions form a 3D magnetic order of the Izing type. The magnetic transition of the iron subsystem from a commensurate to an incommensurate structure at a temperature of about T ≈ 15 K is discussed. The "Mössbauer" Debye temperature ΘM was estimated to be 485(2) K.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics” RAS, Moscow, 119333, Russian Federation
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Frolov, K. V.; Lyubutin, I. S.; Alekseeva, O. A.; Smirnova, E. S.; Dudka, A. P.; Verin, I. A.; Temerov, V. L.; Темеров, Владислав Леонидович; Gudim, I. A.; Гудим, Ирина Анатольевна
}
Найти похожие
19.


   
    Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process / I. S. Lyubutin [et al.] // J. Nanopart. Res. - 2013. - Vol. 15. - P. 1397DOI 10.1007/s11051-012-1397-0
   Перевод заглавия: Магнитные, структурные и электронные свойства наночастиц сульфида железа Fe3S4, полученных полиол-синтезом
Аннотация: Iron sulfide nanoparticles Fe3S4 with the spinel-type crystal structure were synthesized by the polyol mediated process. The particle size depends on preparation conditions and varies from 9 to 20 nm. Mössbauer data have revealed that the dominating fraction of iron ions in the 9-nm sample is in the high-spin ferric state. This implies an occurrence of the cation vacancies in nonstoichiometric greigite. The stoichiometric phase of greigite Fe3S4 dominates in the 18-nm-size nanoparticles. Magnetic measurements have shown a ferrimagnetic behavior of all samples at temperatures between 78 and 300 K. The estimated value of magnetic moment of the stoichiometric greigite nanoparticles is about 3.5 μB per Fe3S4 unit. The Mössbauer spectra indicate a superparamagnetic behavior of small particles, and some fraction of superparamagnetic phase is observed in all samples synthesized which may be caused by the particle size distribution. The blocking temperatures of T B ≈ 230 and 250 K are estimated for the 9 and 14 nm particles, respectively. The Mössbauer parameters indicate a great degree of covalency in the Fe–S bonds and support the fast electron Fe3+ ⇆ Fe2+ exchange in the B-sites of greigite. An absence of the Verwey transition at temperatures between 90 and 295 K is established supporting a semimetal type of conductivity. The temperature and magnetic field dependences of the magnetic circular dichroism (MCD) of optical spectra were measured in Fe3S4 for the first time. The spectra differ substantially from that of the isostructural oxide Fe3O4. It is supposed that the MCD spectra of greigite nanoparticles result from the collective electron excitations in a wide band with superimposed peaks of the d–d transitions in Fe ions.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, AV Shubnikov Crystallog Inst, Moscow 119333, Russia
Southern Taiwan Univ Sci & Technol, Dept Mech Engn, Inst Nanotechnol, Tainan 710, Taiwan
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
Siberian Fed Univ, Inst Engn Phys & Radioelect, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Lyubutin, I. S.; Starchikov, S. S.; Lin, Chun-Rong; Lu, Shin-Zong; Shaikh, M. O.; Funtov, K. O.; Dmitrieva, T. V.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Edelman, I. S.; Ivantsov, R. D.; Иванцов, Руслан Дмитриевич
}
Найти похожие
20.


   
    Optical transitions in GdFe3(BO3)(4) and FeBO3 under high pressures / A. G. Gavriliuk [et al.] // J. Phys.: Condens. Matter. - 2005. - Vol. 17: 2nd International Symposium on Physics of Solids Under High Presure Using Nuclear Probes (JUL 22-25, 2004, Cologne, GERMANY), Is. 48. - P. 7599-7604, DOI 10.1088/0953-8984/17/48/011. - Cited References: 8 . - ISSN 0953-8984
РУБ Physics, Condensed Matter
Рубрики:
ELECTRONIC-STRUCTURE
Кл.слова (ненормированные):
Band structure -- Coulomb blockade -- High pressure effects -- Iron compounds -- Magnetic moments -- Mathematical models -- Optical properties -- Relaxation processes -- Coulomb correlations -- Electron correlations -- Insulator-semiconductor transitions -- Optical transitions -- Gadolinium compounds
Аннотация: The optical properties of GdFe3(BO3)(4) under high pressures have been investigated experimentally and theoretically, and the results are compared with the properties of FeBO3. A model of the GdFe3(BO3)(4) band structure is derived within the multielectron model taking into account the strong electron correlations. Crossover of the Fe3+ ion high-spin and low-spin states, collapse of the magnetic moment, the relaxation Coulomb correlations, and insulator-semiconductor transition are predicted. Optical transitions in GdFe3(BO3)(4) and FeBO3 under high pressures were discovered.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
RAS, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
RAS, Inst Crystallog, Moscow 119333, Russia
RAS, Inst High Pressure Phys, Troitsk 142190, Russia
ИФ СО РАН
Institute of Crystallography, RAS, 119333, Moscow, Russian Federation
Institute for High Pressure Physics, RAS, 142190, Troitsk, Russian Federation
L V Kirensky Institute of Physics, Siberian Branch, RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Gavriliuk, A. G.; Kharlamova, S. A.; Lyubutin, I. S.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Potseluyko, A. M.; Trojan, I. A.; Zabluda, V. N.; Заблуда, Владимир Николаевич
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)