Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (5)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Oreshonkov, A. S.$<.>)
Общее количество найденных документов : 174
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-60      
1.


   
    Synthesis and properties of the NdSF compound, phase diagram of the NdF3–Nd2S3 system / V. M. Grigorchenko, M. S. Molokeev, A. S. Oreshonkov [et al.] // J. Solid State Chem. - 2024. - Vol. 333. - Ст. 124640, DOI 10.1016/j.jssc.2024.124640. - Cited References: 48. - This research was funded by the Tyumen Oblast Government as part of the West-Siberian Interregional Science and Education Center’s project No. 89-DON (3). - The studies ab initio simulation of electron band structure, analysis of optical properties, XRD analysis was partially supported by "Priority-2030" program for the Siberian Federal University, and the state assignment of Kirensky Institute of Physics . - ISSN 0022-4596. - ISSN 1095-726X
   Перевод заглавия: Синтез и свойства соединения NdSF, фазовая диаграмма системы NdF3–Nd2S3
Кл.слова (ненормированные):
Neodymium fluorosulfide -- Phase diagram -- Optical band gap -- Microhardness
Аннотация: The NdF3–Nd2S3 system attracts attention of researchers due to the possibility of using LnSF compounds (Ln = rare earth element) as possible new p- and n-type materials. The samples of this system were synthesized from NdF3 and Nd2S3. The NdSF compound belongs to the PbFCl structural type, P4/nmm space group, unit cell parameters: a = 3.9331(20) Å, c = 6.9081(38) Å. The experimentally determined direct and indirect NdSF bandgaps are equal to 2.68 eV and 2.24 eV. The electronic band structure was calculated via DFT simulation. The NdSF compound melts congruently at T = 1385 ± 10°С, ΔНm = 40.5 ± 10 kJ/mol, ΔS = 24.4 ± 10 J/mol. The NdSF microhardness is 455 ± 10 HV. Five phase transformations in the NdF3–Nd2S3 system were recorded by DSC; their balance equations were derived. The liquidus of the system calculated from the Redlich–Kister equation is fully consistent with the DSC data.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Tyumen State University, Tyumen, Volodarsky str. 6, 625003, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Akademgorodok str. 50, Building 38, 660036, Russia
Siberian Federal University, Krasnoyarsk, Svobodnyj av. 79, 660079, Russia
Department of Physical and Applied Chemistry, Kurgan State University, Sovetskaya str. 63/4, Kurgan, 640020, Russia
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Pervomaiskaya str. 91, 620990, Russia
Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034, St. Petersburg, Russia

Доп.точки доступа:
Grigorchenko, V.M.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Kertman, A.V.; Abulkhaev, M.U.; Mereshchenko, A.S.; Yurev, I.O.; Shulaev, N.А.; Kamaev, D.N.; Elyshev, A.V.; Andreev, O.V.
}
Найти похожие
2.


   
    Solid state synthesis, structural, DFT and spectroscopic analysis of EuAl3(BO3)4 / A. S. Oreshonkov, A. S. Aleksandrovsky, O. D. Chimitova [et al.] // Mater. Chem. Phys. - 2024. - Vol. 320. - Ст. 129400, DOI 10.1016/j.matchemphys.2024.129400. - Cited References: 55. - The work was carried out within the state assignment No FWES-2024-0003 of Kirensky Institute of Physics. This work was partially supported by the state order of BINM SB RAS (0273-2021-0008). The samples for this research were synthesized using equipment of the CCU BINM SB RAS. The reflectance spectrum was obtained at the Center for Optical and Laser Materials Research of Research park of St. Petersburg State University. The SEM measurements were performed at Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS" . - ISSN 0254-0584. - ISSN 1879-3312
   Перевод заглавия: Твердофазный синтез, структурный, квантово-химический (DFT) и спектроскопический анализ EuAl3(BO3)4
Кл.слова (ненормированные):
EuAl(BO) -- Huntite -- X-ray diffraction -- SEM -- DFT -- Charge transfer -- Raman -- Infrared -- Luminescence
Аннотация: Huntite-like borates are versatile and promising materials with wide range of applications in frequency conversion, UV light generation, lighting, displays, quantum information storage, and more, demonstrated by their various properties and uses in scientific research. In this work, EuAl3(BO3)4 powder was prepared through multi-stage solid-state reaction method using high-purity starting reagents: Eu2O3, Al2O3 and H3BO3, considering a 20 wt% excess of H3BO3 to compensate for B2O3 volatilization. Obtained samples undergo several treatments at varying temperatures and their phase purity is subsequently verified through powder X-ray diffraction analysis. The scanning electron microscopy reveals that resulting EuAl3(BO3)4 powder consists of granules exhibiting irregular morphologies with dimensions of 0.5–8 μm. The electronic band structure of EuAl3(BO3)4, calculated using the GGA PBE method, reveals f-states of Eu near 4 eV. These states do not produce emphasized peaks on simulated absorbance spectra. Using of DFT + U for the f-states of Eu pushed up f-bands above 6 eV and the charge transfer from p-O to d-Eu was obtained (Egdirect = 5.63 eV, Egindirect = 5.37 eV using Ueff = 4 eV). The variation of Ueff has a weak influence on the position of the bottom of the conduction band. The experimental bandgaps of EuAl3(BO3)4 crystalline powder, both direct and indirect, are found to be 3.96 and 3.67 eV, correspondingly. These values are lower than theoretical values what is associated with limitations of DFT calculations involving f electrons. The Raman spectrum of EuAl3(BO3)4 powder is discussed, detailing the contributions of different ions to specific spectral bands. Investigation of high-resolution luminescence spectra shows the possibility to estimate the content of defects by the testing the violation of the prohibition of ultranarrow 5D0 → 7F0 line that is forbidden in the ideal crystalline structure of trigonal EuAl3(BO3)4.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
School of Engineering and Construction, Siberian Federal University, Krasnoyarsk, 660041, Russia
Laboratory of Coherent Optics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia
Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude, 670047, Russia
Center for Optical and Laser Materials Research, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
Plekhanov Russian University of Economics, Moscow, 117997, Russia
Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
School of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk, 660041, Russia
Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Department of Molecular Electronics, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660041, Russia

Доп.точки доступа:
Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Chimitova, O.D.; Pankin, D.V.; Popov, Z.I.; Sukhanova, E.V.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Adichtchev, S.V.; Pugachev, A.M.; Nemtsev, I. V.; Немцев, Иван Васильевич
}
Найти похожие
3.


   
    Structural and spectroscopic effects of Li+ substitution for Na+ in LixNa1–xCaLa0.5Er0.05Yb0.45(MoO4)3 upconversion scheelite-type phosphors / C. S. Lim, A. Aleksandrovsky, M. Molokeev [et al.] // Crystals. - 2023. - Vol. 13, Is. 2. - Ст. 362, DOI 10.3390/cryst13020362. - Cited References: 63. - This study was funded by the Research Program through the Campus Research Foundation funded by Hanseo University in 2022 (2022046) . - ISSN 2073-4352
   Перевод заглавия: Структурные и спектроскопические эффекты замещения Na+ на Li+ в LixNa1-xCaLa0.5Er0.05Yb0.45(MoO4)3 ап-конверсионных люминофорах типа шеелита
Кл.слова (ненормированные):
microwave sol-gel synthesis -- complex molybdate -- scheelite -- crystal structure -- Raman -- frequency up-conversion -- band structure
Аннотация: New triple molybdates LixNa1−xCaLa0.5(MoO4)3:Er3+0.05/Yb3+0.45 (x = 0, 0.05, 0.1, 0.2, 0.3) were manufactured successfully using the microwave-assisted sol-gel-based technique (MAS). Their room-temperature crystal structures were determined in space group I41/a by Rietveld analysis. The compounds were found to have a scheelite-type structure. In Li-substituted samples, the sites of big cations were occupied by a mixture of (Li, Na, La, Er, Yb) ions, which provided a linear cell volume decrease with the Li content increase. The increased upconversion (UC) efficiency and Raman spectroscopic properties of the phosphors were discussed in detail. The mechanism of optimization of upconversion luminescence upon Li content variation was shown to be due to the control of excitation/energy transfer channel, while the control of luminescence channels played a minor role. The UC luminescence maximized at lithium content x = 0.05. The mechanism of UC optimization was shown to be due to the control of excitation/energy transfer channel, while the control of luminescence channels played a minor role. Over the whole spectral range, the Raman spectra of LixNa1−xCaLa0.5(MoO4)3 doped with Er3+ and Yb3+ ions were totally superimposed with the luminescence signal of Er3+ ions, and increasing the Li+ content resulted in the difference of Er3+ multiple intensity. The density functional theory calculations with the account for the structural disorder in the system of Li, Na, Ca, La, Er and Yb ions revealed the bandgap variation from 3.99 to 4.137 eV due to the changing of Li content. It was found that the direct electronic transition energy was close to the indirect one for all compounds. The determined chromaticity points (ICP) of the LiNaCaLa(MoO4)3:Er3+,Yb3+ phosphors were in good relation to the equal-energy point in the standard CIE (Commission Internationale de L’Eclairage) coordinates.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Aerospace Advanced Materials and Chemical Engineering, Hanseo University, Seosan 31962, Republic of Korea
Laboratory of Coherent Optics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, 660041 Krasnoyarsk, Russia
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
Institute of Engineering Physics and Radioelectronics, Siberian Federal University, 660041 Krasnoyarsk, Russia
Department of Physics, Far Eastern State Transport University, 680021 Khabarovsk, Russia
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
School of Engineering and Construction, Siberian Federal University, 660041 Krasnoyarsk, Russia
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, 630090 Novosibirsk, Russia
Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia

Доп.точки доступа:
Lim, Chang S.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Atuchin, V.
}
Найти похожие
4.


   
    Single crystals of EuScCuSe3: Synthesis, experimental and DFT investigations / M. V. Grigoriev, A. V. Ruseikina, V. A. Chernyshev [et al.] // Materials. - 2023. - Vol. 16, Is. 4. - Ст. 1555, DOI 10.3390/ma16041555. - Cited References: 39. - This research was funded by the Tyumen Oblast Government as part of the West-Siberian Interregional Science and Education Center’s project No. 89-DON (3). The work was supported by The Ministry of Science and Higher Education of the Russian Federation, project, No. FEUZ-2023-0017 . - ISSN 1996-1944
   Перевод заглавия: Монокристаллы EuScCuSe3: синтез, экспериментальные и DFT-исследования
Кл.слова (ненормированные):
quaternary chalcogenides -- crystal structure -- DFT calculations -- semiconductors -- vibrational spectroscopy
Аннотация: EuScCuSe3 was synthesized from the elements for the first time by the method of cesium-iodide flux. The crystal belongs to the orthorhombic system (Cmcm) with the unit cell parameters a = 3.9883(3) Å, b = 13.2776(9) Å, c = 10.1728(7) Å, V = 538.70(7) Å3. Density functional (DFT) methods were used to study the crystal structure stability of EuScCuSe3 in the experimentally obtained Cmcm and the previously proposed Pnma space groups. It was shown that analysis of elastic properties as Raman and infrared spectroscopy are powerless for this particular task. The instability of EuScCuSe3 in space group Pnma space group is shown on the basis of phonon dispersion curve simulation. The EuScCuSe3 can be assigned to indirect wide-band gap semiconductors. It exhibits the properties of a soft ferromagnet at temperatures below 2 K.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Laboratory of Theory and Optimization of Chemical and Technological Processes, University of Tyumen, Tyumen 625003, Russia
Institute of Inorganic Chemistry, University of Stuttgart, D-70569 Stuttgart, Germany
Institute of Natural Sciences and Mathematics, Ural Federal University named after the First President of Russia B.N. Yeltsin, Mira Str. 19, Ekaterinburg 620002, Russia
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
School of Engineering and Construction, Siberian Federal University, Krasnoyarsk 660041, Russia
Institute of Physics and Technology, University of Tyumen, Tyumen 625003, Russia
Institute of Engineering Physics and Radioelectronic of Siberian State University, Krasnoyarsk 660041, Russia
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia

Доп.точки доступа:
Grigoriev, Maxim V.; Ruseikina, Anna V.; Chernyshev, Vladimir A.; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Garmonov, Alexander A.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Locke, Ralf J. C.; Elyshev, Andrey V.; Schleid, Thomas
}
Найти похожие
5.


   
    Properties of GdSF and phase diagram of the GdF3 - Gd2S3 system / M. U. Abulkhaev, M. S. Molokeev, A. S. Oreshonkov [и др.] // J. Solid State Chem. - 2023. - Vol. 322. - Ст. 123991, DOI 10.1016/j.jssc.2023.123991. - Cited References: 44. - The authors of the article are grateful to P.P. Fedorov for valuable critical comments on the manuscript. - This research was funded by the Tyumen Oblast Government, as a part of the West-Siberian Interregional Science and Education Center’s project No. 89-DON (3) . - ISSN 0022-4596. - ISSN 1095-726X
Кл.слова (ненормированные):
Gadolinium fluorosulfide -- Optical properties -- Electronic structure -- Thermal properties -- System phase diagram -- Tauc plot -- Direct and indirect bandgaps
Аннотация: The objectives of this study were to refine the phase diagram of the GdF3-Gd2S3 system and to calculate their liquidus, and to synthesize GdSF and to study their properties. The GdSF compound (ST PbFCl, P4/nmm, a (Å) 3.83006(17), c (Å) 6.8529(3), has an optical band gap for a direct interband transition of 2.56 ​eV and is characterized by a pronounced increase in the Kubelka-Munk function in the region of this transition. Direct optical bandgap of GdSF is measured to be equal to 2.77 ​eV. Two indirect bandgaps are detected to be 1.54 and 2.4 ​eV. Meta-GGA simulations of band structure predicting 1.481 ​eV direct bandgap of GdSF are in good agreement with these features of the experimental absorption spectrum. To explain this complicated case, we argue that formally direct optical transitions to highly dispersive subbands contribute not to direct but to indirect bandgaps measured by Tauc analysis. The GdSF compound melts incongruently with the formation of a melt and γ-Gd2S3 compound at t ​= ​1280 ​± ​2°С, ΔН ​= ​40.6 ​± ​2.8 ​kJ/mol, ΔS ​= ​26.1 ​± ​1.8 ​J/mol∗K. The eutectic has a composition of 13 ​mol.% Gd2S3 (0.74 GdF3 ​+ ​0.26 GdSF), the melting characteristics of the eutectic are 1182 ​± ​2°С, ΔН ​= ​36.2 ​± ​2.5 ​kJ/mol, ΔS ​= ​24.9 ​± ​1.7 ​J/mol∗K. In the system GdF3 - Gd2S3 the balance equations for five phase transformations recorded by the DSC method were compiled. Convergence was achieved in the liquidus of the system constructed according to DSC data and calculated with the use of the Redlich-Kister equation.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Tyumen State University, Tyumen, Volodarsky str. 6, 625003, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Akademgorodok str. 50, Building 38, 660036, Russia
Siberian Federal University, Krasnoyarsk, Svobodnyj av. 79, 660079, Russia
Department of Physical and Applied Chemistry, Kurgan State University, Sovetskaya str. 63/4, Kurgan, 640020, Russia
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Pervomaiskaya str. 91, 620990, Russia

Доп.точки доступа:
Abulkhaev, M. U.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Kertman, A. V.; Kamaev, D. N.; Trofimova, O. V.; Elyshev, A. V.; Andreev, O. V.
}
Найти похожие
6.


   
    Novel Janus 2D structures of XMoY (X, Y = O, S, Se, Te) composition for solar hydrogen production / E. V. Sukhanova, N. Sagatov, A. S. Oreshonkov [и др.] // Int. J. Hydrog. Energy. - 2023. - Vol. 48, Is. 38. - P. 14226-14237, DOI 10.1016/j.ijhydene.2022.12.286. - Cited References: 97. - The authors acknowledge financial support from Russian Science Foundation (№ 21-73-20183). The authors are grateful to the Joint Supercomputer Center of the Russian Academy of Sciences and to the Information Technology Centre of Novosibirsk State University for providing access to the cluster computational resources . - ISSN 0360-3199. - ISSN 1879-3487
Кл.слова (ненормированные):
Photocatalytic water splitting -- Novel materials -- Transition metal dichalcogenides -- H2 generation
Аннотация: The successful fabrication of H-phase Janus transition metal dichalcogenides (TMDs) has received considerable interest due to its great potential in photocatalytic applications. Here, new A′-XMoY (X/Y = O, S, Se, Te) Janus-type structures belonging to the family of TMDs were theoretically investigated for the first time in terms of photocatalytic water splitting via DFT calculations. For all compounds, the Raman spectra were calculated. The SMoO, SeMoO, SMoSe, SMoTe and SeMoTe compounds are dynamically stable and are semiconductors. Among all considered structures SMoTe is the most promising candidate for solar hydrogen production because valence and conduction bands perfectly engulf the redox potentials of water at both neutral and acidic media, opposite to SMoSe, SMoO, SeMoO suitable only in the acidic media, and SeMoTe – in the neutral media. Moreover, A′-SMoTe demonstrates the outstanding values of the solar-to-hydrogen (STH) conversion efficiencies of 54.0 and 67.1 for neutral and acidic media.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, prosp. acad. Koptyuga 3, 630090 Novosibirsk, Russia
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
School of Engineering and Construction, Siberian Federal University, 660041 Krasnoyarsk, Russia
Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia

Доп.точки доступа:
Sukhanova, E.V.; Sagatov, N.; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Gavryushkin, P.N.; Popov, Z.I.
}
Найти похожие
7.


   
    Halogen-doped Chevrel phase Janus monolayers for photocatalytic water splitting / E. V. Sukhanova, N. E. Sagatov, A. S. Oreshonkov [et al.] // Nanomaterials. - 2023. - Vol. 13, Is. 2. - Ст. 368, DOI 10.3390/nano13020368. - Cited References: 85. - The authors acknowledge financial support from the Russian Science Foundation (no. 21-73-20183) . - ISSN 2079-4991
   Перевод заглавия: Гологен-допированные шеврелеподобные монослои со структурой типа "Янус" для фотокаталитического расщепления воды
Кл.слова (ненормированные):
TMDs -- non-van der Waals monolayers -- Mo6S8 -- Mo3S4 -- 2D materials -- exfoliation -- OER -- HER -- nanomaterials
Аннотация: Chevrel non-van der Waals crystals are promising candidates for the fabrication of novel 2D materials due to their versatile crystal structure formed by covalently bonded (Mo6X8) clusters (X–chalcogen atom). Here, we present a comprehensive theoretical study of the stability and properties of Mo-based Janus 2D structures with Chevrel structures consisting of chalcogen and halogen atoms via density functional theory calculations. Based on the analysis performed, we determined that the S2Mo3I2 monolayer is the most promising structure for overall photocatalytic water-splitting application due to its appropriate band alignment and its ability to absorb visible light. The modulated Raman spectra for the representative structures can serve as a blueprint for future experimental verification of the proposed structures.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Laboratory of Acoustic Microscopy, Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
Laboratory of Phase Transformations and State Diagrams of the Earth’s Matter at High Pressures, Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
School of Engineering and Construction, Siberian Federal University, 660041 Krasnoyarsk, Russia
Geology Geophysics Department, Novosibirsk State University, 630090 Novosibirsk, Russia

Доп.точки доступа:
Sukhanova, Ekaterina V.; Sagatov, Nursultan E.; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Gavryushkin, Pavel N.; Popov, Zakhar I.
}
Найти похожие
8.


   
    Structural, spectroscopic, electric and magnetic properties of new trigonal K5FeHf(MoO4)6 orthomolybdate / V. Grossman, V. Atuchin, B. G. Bazarov [et al.] // Molecules. - 2023. - Vol. 28, Is. 4. - Ст. 1629, DOI 10.3390/molecules28041629. - Cited References: 82. - This work was supported by the state order of BINM SB RAS (0273-2021-0008), IIC (121031700318-8), ISP (FWGW-2022-0006) and the Russian Science Foundation (21-19-00046). The research was granted by the Government of the Russian Federation (075-15-2022-1132) . - ISSN 1420-3049
   Перевод заглавия: Структурные, спектроскопические, электрические и магнитные свойства нового тригонального K5FeHf(MoO4)6 ортомолибдата
Кл.слова (ненормированные):
ternary molybdate -- phase relations -- crystal structure -- Raman -- electronic structure -- magnetic properties
Аннотация: A new multicationic structurally disordered K5FeHf(MoO4)6 crystal belonging to the molybdate family is synthesized by the two-stage solid state reaction method. The characterization of the electronic and vibrational properties of the K5FeHf(MoO4)6 was performed using density functional theory calculations, group theory, Raman and infrared spectroscopy. The vibrational spectra are dominated by vibrations of the MoO4 tetrahedra, while the lattice modes are observed in a low-wavenumber part of the spectra. The experimental gap in the phonon spectra between 450 and 700 cm−1 is in a good agreement with the simulated phonon density of the states. K5FeHf(MoO4)6 is a paramagnetic down to 4.2 K. The negative Curie–Weiss temperature of −6.7 K indicates dominant antiferromagnetic interactions in the compound. The direct and indirect optical bandgaps of K5FeHf(MoO4)6 are 2.97 and 3.21 eV, respectively. The K5FeHf(MoO4)6 bandgap narrowing, with respect to the variety of known molybdates and the ab initio calculations, is explained by the presence of Mott-Hubbard optical excitation in the system of Fe3+ ions.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 670047, Russia
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia
Department of Applied Physics, Novosibirsk State University, Novosibirsk 630090, Russia
Research and Development Department, Kemerovo State University, Kemerovo 650000, Russia
Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk 630073, Russia
R&D Center “Advanced Electronic Technologies”, Tomsk State University, Tomsk 634034, Russia
Laboratory of Coherent Optics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
School of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk 660041, Russia
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090, Russia
Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia
School of Engineering and Construction, Siberian Federal University, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Grossman, V.; Atuchin, V. V.; Bazarov, B. G.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Eremin, E. V.; Еремин, Евгений Владимирович; Krylov, A. S.; Крылов, Александр Сергеевич; Kuratieva, N.; Bazarova, J. G.; Maximov, N.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Pervukhina, N.; Shestakov, N. P.; Шестаков, Николай Петрович
}
Найти похожие
9.


    Орешонков, Александр Сергеевич.
    DFT моделирование спектров КРС монослойных дихалькогенидов молибдена со структурой типа «Янус» / А. С. Орешонков, Е. В. Суханова, З. И. Попов // Комбинационное рассеяние - 95 лет исследований : тезисы докл. / сопредс. конф. В. Ф. Шабанов, зам. предс. конф., чл. орг. ком. А. Н. Втюрин, чл. орг. ком. А. С. Крылов, чл. орг. ком. С. Н. Крылова. - Новосибирск, 2023. - С. 58DOI 10.34077/SCATTERING95-58. - Библиогр.: 3. - РНФ №21-73-20183

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Шабанов, Василий Филиппович \сопредс. конф.\; Shabanov, V. F.; Втюрин, Александр Николаевич \зам. предс. конф., чл. орг. ком.\; Vtyurin, A. N.; Крылов, Александр Сергеевич \чл. орг. ком.\; Krylov, A. S.; Крылова, Светлана Николаевна \чл. орг. ком.\; Krylova, S. N.; Суханова, Е. В.; Попов, Захар Иванович; Popov Z.I.; Oreshonkov, A. S.; "Комбинационное рассеяние - 95 лет исследований", Российская конференция и школа молодых ученых по актуальным проблемам спектроскопии комбинационного рассеяния света(2023 ; 5-9 июня ; Новосибирск); Школа молодых ученых по актуальным проблемам спектроскопии комбинационного рассеяния света (с участием иностранных ученых)(2023 ; 5-9 июня ; Новосибирск); Институт физики полупроводников им. А.В. Ржанова Сибирского отделения РАН
}
Найти похожие
10.


    Драница, М. В.
    Численная оценка теплотехнических арактеристик наружных ограждающих конструкций сельского дома / М. В. Драница, А. С. Орешонков // Енисейская теплофизика : тез. докл. I Всерос. науч. конф. с междунар. участием / прогр. ком. В. Ф. Шабанов [и др.]. - Красноярск, 2023. - Секция 2 : Строительная теплофизика. - С. 105-107. - Библиогр.: 4 . - ISBN 978-5-7638-4846-5
Аннотация: В данной работе выполнено сравнение классических и альтернативных вариантов наружных ограждающих конструкций, применяемых для строительства жилых помещений в сельской местности. Среди анализируемых параметров рассмотрены: толщина конструкции; теплопроводность используемых материалов и тепловое сопротивление варианта стеновой конструкции; соответствие теплового сопротивления наружной ограждающей конструкции нормативам в рассматриваемом регионе (Красноярский край); стоимость.

Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН
Сибирский федеральный университет
Красноярский государственный аграрный университет

Доп.точки доступа:
Шабанов, Василий Филиппович \прогр. ком.\; Shabanov, V. F.; Орешонков, Александр Сергеевич; Oreshonkov, A. S.; Сибирский федеральный университет; Институт теплофизики им. С.С. Кутателадзе СО РАН; Всероссийская научная конференция с международным участием "Енисейская теплофизика"(1 ; 2023 ; 28–31 марта ; Красноярск); "Енисейская теплофизика", Всероссийская научная конференция(1 ; 2023 ; 28–31 марта ; Красноярск)
}
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-60      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)