Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (3)
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Adsorption<.>)
Общее количество найденных документов : 38
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-38 
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lin C. -R., Ivanova O. S., Petrov D. A., Sokolov A. Е., Chen Y. -Z., Gerasimova M. A., Zharkov S. M., Tseng Y. -T., Shestakov N. P., Edelman I. S.
Заглавие : Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles for dye adsorption
Место публикации : Nanomaterials. - 2021. - Vol. 11, Is. 9. - Ст.2371. - ISSN 20794991 (ISSN), DOI 10.3390/nano11092371
Примечания : Cited References: 35. - The authors are thankful for the financial support the Russian Foundation for Basic Research, Grant № 19-52-52002, Ministry of Science and Technology of Taiwan, Grants MOST № 108-2923-M-153-001-MY3 and № 109-2112-M-153-003-, the Russian Foundation for Basic Research with Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, the research project number 19-42-240005: “Features of the electronic structure, magnetic properties and optical excitations in nanocrystals of the multifunctional magnetic chalcogenides Fe3S4 and FeSe”. We thank also the SFU Joint Scientific Center supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation, where the Transmission Electron Microscopy studies were carried out
Аннотация: Fe3O4@SiO2 core-shell nanoparticles (NPs) were synthesized with the co-precipitation method and functionalized with NH2 amino-groups. The nanoparticles were characterized by X-ray, FT-IR spectroscopy, transmission electron microscopy, selected area electron diffraction, and vibrating sample magnetometry. The magnetic core of all the nanoparticles was shown to be nanocrystalline with the crystal parameters corresponding only to the Fe3O4 phase covered with a homogeneous amorphous silica (SiO2) shell of about 6 nm in thickness. The FT-IR spectra confirmed the appearance of chemical bonds at amino functionalization. The magnetic measurements revealed unusually high saturation magnetization of the initial Fe3O4 nanoparticles, which was presumably associated with the deviations in the Fe ion distribution between the tetrahedral and octahedral positions in the nanocrystals as compared to the bulk stoichiometric magnetite. The fluorescent spectrum of eosin Y-doped NPs dispersed in water solution was obtained and a red shift and line broadening (in comparison with the dye molecules being free in water) were revealed and explained. Most attention was paid to the adsorption properties of the nanoparticles with respect to three dyes: methylene blue, Congo red, and eosin Y. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for all three dyes. The equilibrium data were more compatible with the Langmuir isotherm and the maximum adsorption capacity was reached for Congo red.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Abylgazina L., Senkovska I., Ehrling S., Bon V., St. Petkov P., Evans J. D., Krylova S. N., Krylov A. S., Kaskel S.
Заглавие : Tailoring adsorption induced switchability of a pillared layer MOF by crystal size engineering
Место публикации : CrystEngComm. - 2021. - Vol. 23, Is. 3. - P.538-549. - ISSN 14668033 (ISSN), DOI 10.1039/d0ce01497d
Примечания : Cited References: 71. - The authors thank the DFG (FOR 2433 MOF Switches, Project No. 279409724) for financial support. P.P. and J. D. E. thank Center for Information Services and High Performance Computing (ZIH) at TU Dresden for providing high-performance computing facilities. Authors acknowledge Helmholtz-Zentrum Berlin für Materialien und Energie for allocated beamtime at KMC-2 and MX14.2 beamlines. J. D. E. acknowledges the support of the Alexander von Humboldt foundation and HPC platforms provided by a GENCI grant (A0070807069)
Аннотация: The pillared layer framework DUT-8(Zn) (Zn2(2,6-ndc)2(dabco), 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane, DUT = Dresden University of Technology) is a prototypical switchable MOF, showing characteristic adsorption and desorption induced open phase (op) to closed phase (cp) transformation associated with huge changes in cell volume. We demonstrate switchability strongly depends on a framework-specific critical particle size (dcrit). Superposed, the solvent removal process (pore desolvation stress contracting the framework) significantly controls the cp/op ratio after desolvation and, subsequently, the adsorption induced switchability characteristics of the system. After desolvation, the dense cp phase of DUT-8(Zn) shows no adsorption-induced reopening and therefore is non-porous for N2 at 77 K and CO2 at 195 K. However, polar molecules with a higher adsorption enthalpy, such as chloromethane at 249 K and dichloromethane (DCM) at 298 K can reopen the macro-sized crystals upon adsorption. For macro-sized particles, the outer surface energy is negligible and only the type of metal (Zn, Co, Ni) controls the DCM-induced gate opening pressure. The node hinge stiffness increases from Zn to Ni as confirmed by DFT calculations, X-ray crystal structural analysis, and low frequency Raman spectroscopy. This softer Zn-based node hinges and overall increased stabilization of cp vs. op phase shift the critical particle size at which switchability starts to become suppressed to even lower values (dcrit ‹ 200 nm) as compared to the Ni-based system (dcrit ≈ 500 nm). Hence, the three factors affecting switchability (energetics of the empty host, (Eop–Ecp) (I), particle size (II), and desolvation stress (III)) appear to be of the same order of magnitude and should be considered collectively, not individually.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Kononova O.N., Melnikov A.M., Borisova T.V., Krylov A. S.
Заглавие : Simultaneous ion exchange recovery of platinum and rhodium from chloride solutions
Место публикации : Hydrometallurgy. - 2011. - Vol. 105, Is. 3-4. - P.341-349. - JAN. - ISSN 0304-386X, DOI 10.1016/j.hydromet.2010.11.009
Примечания : Cited Reference Count: 46
Предметные рубрики: GROUP-METALS PGM
SEPARATION
CATALYST
ANION
ADSORPTION
EXTRACTION
CHEMISTRY
RESIN
Ключевые слова (''Своб.индексиров.''): platinum--rhodium--sorption--anion exchangers--chloride solutions--anion exchangers--chloride solutions--platinum--rhodium--sorption--ammonium thiocyanate--anion exchangers--basic parameters--chemical structure--chloride solutions--diffusion coefficients--distribution coefficient--exchange capacities--kinetic properties--noble metals--purolite--rhodium chloride--separation factors--sorption ability--work focus--ammonium compounds--chlorine compounds--desorption--hydrochloric acid--ion exchange--ion exchange resins--ions--platinum--platinum compounds--potassium hydroxide--precious metals--recovery--rhodium--sulfuric acid--thioureas--urea--rhodium compounds
Аннотация: This work focuses on the sorption recovery of platinum (II, IV) and rhodium (III) simultaneously present in chloride solutions, freshly prepared and stored over 3 months, on commercial anion exchangers with different physical and chemical structure. The sorption was carried out from solutions with 0.001-4.0 mol/L HCl. The initial platinum and rhodium concentrations in contacting solutions were 0.25-2.5 mmol/L Sorption and kinetic properties of the chosen anion exchangers were investigated and the basic parameters of exchange capacity, recovery, distribution coefficients, separation factors, process rate, diffusion coefficients and half-exchange times were calculated. It is shown that anion exchangers investigated possess high sorption ability to platinum and rhodium chloride complexes, which does not deteriorate in case of stored solutions. Desorption of platinum and rhodium from the resins investigated was carried out with hydrochloric acid (2 mol/L), thiourea (1 mol/L) in sulfuric acid (2 mol/L) or in potassium hydroxide (2 mol/L) as well as by ammonium thiocyanate (2 mol/L). It was shown that complete separation of platinum and rhodium can be carried out with 2 mol/L HCl on anion exchanger Purolite S 985, whereas 2 mol/L NH(4)SCN as an elution agent leads to complete separation of noble metals on anion exchangers Purolite S 985, Purolite A 500 and AM-2B. (C) 2010 Elsevier B.V. All rights reserved.
WOS,
Scopus,
eLibrary
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lin, Chun-Rong, Ivanova O. S., Edelman I. S., Knyazev Yu. V., Zharkov S. M., Petrov D. A., Sokolov A. Е., Svetlitsky E. S., Velikanov D. A., Solovyov, Leonid A., Chen, Ying-Zhen, Tseng, Yaw-Teng
Заглавие : Carbon double coated Fe3O4@C@C nanoparticles: Morphology features, magnetic properties, dye adsorption
Коллективы : Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-52-52002]; Ministry of Science and Technology of TaiwanMinistry of Science and Technology, Taiwan [108-2923-M-153-001-MY3, 109-2112-M-153-003]; Joint Scientific Center of the Siberian Federal University [FSRZ-2020-0011]; Ministry of Science and Higher Education of the Russian Federation
Место публикации : Nanomaterials. - 2022. - Vol. 12, Is. 3. - Ст.376. - ISSN 2079-4991(eISSN), DOI 10.3390/nano12030376
Примечания : Cited References: 44. - The work was supported financially by the Russian Foundation for Basic Research, Grant No. 19-52-52002 and Ministry of Science and Technology of Taiwan, Grants MOST No. 108-2923-M-153-001-MY3 and No. 109-2112-M-153-003-. The support was obtained also from the Joint Scientific Center of the Siberian Federal University supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation, where the Transmission Electron Microscopy studies were carried out
Предметные рубрики: SOLID-PHASE EXTRACTION
FE3O4 NANOPARTICLES
PROFILE REFINEMENT
Аннотация: This work is devoted to the study of magnetic Fe3O4 nanoparticles doubly coated with carbon. First, Fe3O4@C nanoparticles were synthesized by thermal decomposition. Then these synthesized nanoparticles, 20–30 nm in size were processed in a solution of glucose at 200 °C during 12 h, which led to an unexpected phenomenon – the nanoparticles self-assembled into large conglomerates of a regular shape of about 300 nm in size. The morphology and features of the magnetic properties of the obtained hybrid nanoparticles were characterized by transmission electron microscopy, differential thermo-gravimetric analysis, vibrating sample magnetometer, magnetic circular dichroism and Mössbauer spectroscopy. It was shown that the magnetic core of Fe3O4@C nanoparticles was nano-crystalline, corresponding to the Fe3O4 phase. The Fe3O4@C@C nanoparticles presumably contain Fe3O4 phase (80%) with admixture of maghemite (20%), the thickness of the carbon shell in the first case was of about 2–4 nm. The formation of very large nanoparticle conglomerates with a linear size up to 300 nm and of the same regular shape is a remarkable peculiarity of the Fe3O4@C@C nanoparticles. Adsorption of organic dyes from water by the studied nanoparticles was also studied. The best candidates for the removal of dyes were Fe3O4@C@C nanoparticles. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for cationic dye methylene blue (MB) and anionic dye Congo red (CR). The equilibrium data were more consistent with the Langmuir isotherm and were perfectly described by the Langmuir–Freundlich model.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Melchakova I., Nikolaeva K. M., Kovaleva E. A., Tomilin F. N., Ovchinnikov S. G., Tchaikovskaya O. N., Avramov P. V., Kuzubov A. A.
Заглавие : Potential energy surfaces of adsorption and migration of transition metal atoms on nanoporus materials: The case of nanoporus bigraphene and G-C3N4
Место публикации : Appl. Surf. Sci. - 2021. - Vol. 540. - Ст.148223. - ISSN 01694332 (ISSN), DOI 10.1016/j.apsusc.2020.148223
Примечания : Cited References: 39. - The authors would like to thank Joint Supercomputer Center of RAS, Moscow; Center of Equipment for Joint Use of Siberian Federal University, Krasnoyarsk; and Information Technology Centre, Novosibirsk State University for providing the access to their supercomputers. Publication was supported by Project FSWM-2020-0033 of Russian Ministry of Science and Education
Аннотация: First-row transition metal (TM) atoms adsorption and migration on nanoporus 2D materials like bigraphene with double vacancies and g-C3N4 as the active sites for TM nanocluster's growth was studied within the framework of density functional theory. Both thermodynamic and kinetic aspects of composite synthesis were discussed. It was found that potential barriers of adatom's migration from bigraphene's outer surface to the interlayer space through the double vacancy are rather low values. High potential barriers of TM migration along the carbon plane prevents TM clusterization due to enhanced chemical activity of double vacancies which gives a possibility to capture the surface adatoms. As was shown for the monolayer graphene, the decrease of vacancies concentration reduces the barrier of adatom migration along the surface while the second graphene sheet in bigraphene stabilizes the structure. The behavior of TM-atom regarding g-CN2 and g-CN1 nanosheets was investigated. Potential energy surfaces were obtained and discussed. The migration barriers were found surmountable that means high probability of migration of TM adatoms to global minima and formation of TM vacancies. Comparison of barriers values with Boltzmann factor demonstrated that just standalone temperature fluctuations cannot initiate structural transitions. The properties of designed structures can be of interest of catalysts and biosensors for biomedical applications.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Gavrilyuk A. P., Isaev I. L., Gerasimov V. S., Karpov S. V.
Заглавие : Physical principles of the formation of a nanoparticle electric double layer in metal hydrosols
Место публикации : Colloid Polym. Sci. - 2020. - Vol. 298, Is. 1. - P.1-7. - ISSN 0303-402X, DOI 10.1007/s00396-019-04573-8. - ISSN 1435-1536 (eISSN)
Примечания : Cited References: 25. - The reported research was funded by the Russian Foundation for Basic Research and the government of the Krasnoyarsk territory, Krasnoyarsk Regional Fund of Science, grant No 18-42-243023, the RF Ministry of Education and Science, the State contract with Siberian Federal University for scientific research in 2017–2019.
Аннотация: The Brownian dynamics method is employed to study the formation of an electrical double layer (EDL) on the metal nanoparticle (NP) surface in hydrosols during adsorption of electrolyte ions from the interparticle medium. Also studied is the charge accumulation by NPs in the Stern layer. To simulate the process of the formation of EDL, we took into account the effect of image forces and specific adsorption, dissipative and random forces, and the degree of hydration of adsorbed ions on the EDL structure. The employed model makes it possible to determine the charge of NPs and the structure of EDL. For the first time, the charge of both the diffuse part of EDL and the dense Stern layer has been determined. A decrease in the electrolyte concentration (below c ˂ 0.1 mol/l) has been found to result in dramatic changes in the formation of the Stern layer.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ehrling S., Senkovska I., Bon V., Evans J. D., Petkov P., Krupskaya Y., Kataev V., Wulf T., Krylov A. S., Vtyurin A. N., Krylova S. N., Adichtchev S., Slyusareva E., Weiss M. S., Buchner B., Heine T., Kaskel S.
Заглавие : Crystal size: Versus paddle wheel deformability: Selective gated adsorption transitions of the switchable metal-organic frameworks DUT-8(Co) and DUT-8(Ni)
Место публикации : J. Mater. Chem. A. - 2019. - Vol. 7, Is. 37. - P.21459-21475. - ISSN 20507488 (ISSN), DOI 10.1039/c9ta06781g
Примечания : Cited References: 106. - The authors thank DFG (FOR 2433) for financial support. We thank HZB for the allocation of synchrotron radiation beam-time and financial support. PP, TW and TH used high performance facilities of ZIH Dresden. TW thanks the European Social Funds for Germany for a PhD fellowship.
Аннотация: Switchable pillared layer metal–organic frameworks M2(2,6-ndc)2(dabco) (DUT-8(M), M = Ni, Co, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]octane, DUT – Dresden University of Technology) were synthesised in two different crystallite size regimes to produce particles up to 300 μm and smaller particles around 0.1 μm, respectively. The textural properties and adsorption-induced switchability of the materials, obtained from both syntheses, were studied by physisorption of N2 at 77 K, CO2 at 195 K and n-butane at 273 K, revealing pronounced differences in adsorption behavior for Ni and Co analogues. While the smaller nano-sized particles (50–200 nm) are rigid and show no gating transitions confirming the importance of crystallite size, the large particles show pronounced switchability with characteristic differences for the two metals resulting in distinct recognition effects for various gases and vapours. Adsorption of various vapours demonstrates consistently a higher energetic barrier for the “gate opening” of DUT-8(Co) in contrast to DUT-8(Ni), as the “gate opening” pressure for Co based material is shifted to a higher value for adsorption of dichloromethane at 298 K. Evaluation of crystallographic data, obtained from single crystal and powder X-ray diffraction analysis, showed distinct geometric differences in the paddle wheel units of the respective MOFs. These differences are further disclosed by solid-state UV-vis, FT-IR and Raman spectroscopy. Magnetic properties of DUT-8(Co) and DUT-8(Ni) were investigated, indicating a high-spin state for both materials at room temperature. Density functional theory (DFT) simulations confirmed distinct energetic differences for Ni and Co analogues with a higher energetic penalty for the structural “gate opening” transformation for DUT-8(Co) compared to DUT-8(Ni) explaining the different flexibility behaviour of these isomorphous MOFs.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Kremneva A. M., Fedorov A. V., Bulavchenko O. A., Knyazev Yu. V., Saraev A. A., Yakovlev V. A., Kaichev V. V.
Заглавие : Effect of calcination temperature on activity of Fe2O3-Al2O3 nanocomposite catalysts in CO oxidation
Коллективы : Russian Science FoundationRussian Science Foundation (RSF) [17-73-20157]; National center of investigation of catalysts" at Boreskov Institute of Catalysis
Место публикации : Catal. Lett. - 2020. - Vol. 150. - P.3377-3385. - ISSN 1011-372X, DOI 10.1007/s10562-020-03250-8. - ISSN 1572-879X(eISSN)
Примечания : Cited References: 31. - This work was supported by the Russian Science Foundation (Grant No. 17-73-20157). The experiments were performed using facilities of the shared research center "National center of investigation of catalysts" at Boreskov Institute of Catalysis. The authors thank A.Yu. Gladky for the TPR measurements and Z.S. Vinokurov for the XRD measurements.
Предметные рубрики: MOSSBAUER
SPECTROSCOPY
CHEMISTRY
IRON
XPS
ADSORPTION
OXYGEN
FE
Аннотация: Nanocomposite Fe–Al oxide catalysts were prepared by the melting of iron and aluminum nitrates with the subsequent calcination in air at different temperatures. It was found that the catalysts calcined at 450 °C are more active in the oxidation of CO than the catalysts calcined at 700 °C. X-ray diffraction and X-ray photoelectron spectroscopy showed that all the catalysts consist of hematite, α-Fe2O3 nanoparticles, and Al2O3 in an amorphous state. Iron oxide is the active component, which provides the oxidation of CO, while alumina is a texture promoter. The increase in the calcination temperature leads to a minor increase in the average size of hematite nanoparticles and an insignificant decrease in the specific surface area. Kinetic measurements showed that the oxidation of CO over the Fe–Al catalysts calcined at 450 and 700 °C proceeds with the activation energy of 61–69 and 91 kJ/mol, respectively. This means that the low-temperature and high-temperature catalysts contain different active species. Temperature-programmed reduction with CO indicated that the decrease in the calcination temperature improves the reducibility of the Fe-Al nanocomposites. According to 57Fe Mössbauer spectroscopy, the low-temperature catalysts contain hydrated iron oxides (acagenite and ferrihydrite) and a significant amount of highly defective hematite, which is absent in the high-temperature catalyst. These species can provide the enhanced activity of the low-temperature catalysts in the oxidation of CO.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Parshin A. M., Sutormin V. S., Zyryanov V. Ya., Shabanov V. F.
Заглавие : Polar anchoring energy and tilt angle measured by magneto-optical technique in nematic doped with ionic surfactant
Место публикации : Liq. Cryst. - 2020. - Vol. 47, Is. 12. - P.1825-1831. - ISSN 0267-8292, DOI 10.1080/02678292.2020.1733683. - ISSN 1366-5855(eISSN)
Примечания : Cited References: 32
Предметные рубрики: LIQUID-CRYSTAL
TEMPERATURE-DEPENDENCE
INTERFACE
ADSORPTION
Аннотация: The surface anchoring of a nematic doped with the ionic surfactant has been investigated and compared with the one in the undoped sample. The director tilt angle at the substrates coated with the orienting polymer film has been determined by the null method in a rotating magnetic field. The Frederiks transition in a magnetic field has been chosen as a convenient technique to measure the polar anchoring energy Wθ. The temperature dependences of anchoring energy have been obtained for the various nematic cells. The Wθ values for nematic doped with the ionic surfactant are less than for the undoped one. The factors affecting the measurement accuracy have been discussed. The accuracy is higher for the thinner nematic layers and weaker anchoring energy.
Смотреть статью,
Читать в сети ИФ,
Scopus,
WOS
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Fedorov A.S., Sorokin P.B., Kuzubov A. A.
Заглавие : Ab-initio study of hydrogen chemical adsorption on the platinum surface/carbon nanotube join system
Место публикации : Physica status solidi B - Basic Solid State Physics. - 2008. - Vol. 245, № 8. - С. 1546-1551
Найти похожие
 1-10    11-20   21-30   31-38 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)