Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Aggregates<.>)
Общее количество найденных документов : 26
Показаны документы с 1 по 10
 1-10    11-20   21-26 
1.


   
    Numerical studies of second- and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering / V. A. Markel [et al.] // Phys. Rev. E. - 1997. - Vol. 55, Is. 6. - P. 7313-7333, DOI 10.1103/PhysRevE.55.7313. - Cited References: 21 . - ISSN 1063-651X
РУБ Physics, Fluids & Plasmas + Physics, Mathematical
Рубрики:
DIFFUSION-LIMITED AGGREGATION
   COLLOIDAL AGGREGATION

   FRACTAL CLUSTERS

   ANTICORRELATION

   SIMULATIONS

Аннотация: Two- and four-point density correlation functions p(2)(r) and p(4)(r) are studied numerically and theoretically in computer-generated three-dimensional lattice cluster-cluster aggregates (CCA) with the number of particles N up to 20 000 in application to the light scattering problem. The ''pure'' aggregation algorithm is used, where subclusters of all possible sizes are allowed to collide. We find that large CCA clusters demonstrate pronounced multiscaling. In particular, the fractal dimension determined from the slope of p(2)(r) at small distances differs from that found from the dependence of the radius of gyration on the number of monomers (according to our data, 1.80 and 1.94, respectively). We also consider different functional forms for p(2) and their general properties and applicability. We find that the best fit to the numerical data is provided by the generalized exponential cutoff function with coefficients depending on N. The latter dependence is a manifestation of multiscaling. We propose some theoretical approaches for calculating p(4)(r), assuming p(2)(r) is known. In particular, we find the small-r asymptote for the p(4)(r) and verify it numerically. In addition, we find that p(4)(r) cannot be represented by a scaling dependence with a cutoff function, like p(2)(r) Instead, p(4)(r) is given by an expansion in terms of integer powers of r(2D-3), where D is the fractal dimension (approximate to 1.8 for CCA clusters).

WOS
Держатели документа:
UNIV WISCONSIN,DEPT CHEM,OFF CHANCELLOR,STEVENS POINT,WI 54481
UNIV WISCONSIN,DEPT PHYS & ASTRON,STEVENS POINT,WI 54481
RUSSIAN ACAD SCI,INST AUTOMAT & ELECTROMETRY,NOVOSIBIRSK 630090,RUSSIA
RUSSIAN ACAD SCI,SIBERIAN BRANCH,LV KIRENSKY PHYS INST,KRASNOYARSK 660036,RUSSIA
ИФ СО РАН

Доп.точки доступа:
Markel, V. A.; Shalaev, V. M.; Poliakov, E. Y.; George, T. F.
}
Найти похожие
2.


   
    Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions / V. A. Markel [et al.] // Phys. Rev. B. - 2004. - Vol. 70, Is. 5. - Ст. 54202, DOI 10.1103/PhysRevB.70.054202. - Cited References: 81 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
DISCRETE-DIPOLE APPROXIMATION
   ENHANCED RAMAN-SCATTERING

   METAL FRACTAL CLUSTERS

   OPTICAL-PROPERTIES

   SELECTIVE PHOTOMODIFICATION

   DISORDERED CLUSTERS

   NUMERICAL-SIMULATION

   SPECTRAL DEPENDENCE

   PARTICULATE MATTER

   LIGHT-SCATTERING

Кл.слова (ненормированные):
carbon -- iron -- palladium -- silver -- article -- dipole -- electromagnetic field -- geometry -- mathematical analysis -- molecular interaction -- nanoparticle -- radiation absorption
Аннотация: We calculate the quasistatic electromagnetic density of states for aggregates of touching spheres, in particular, linear chains and computer-generated random fractal aggregates. Multipole moments with orders of up to L=64 are taken into account for random aggregates with the number of particles of up to N=100 and up to L=8000 for linear chains. Extensive comparisons with the dipole approximation and geometrical cluster renormalization method are performed. Extinction spectra are calculated for several metals and black carbon. Long wavelength electromagnetic properties of fractal aggregates are considered in details.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
Jackson State Univ, Dept Phys, Jackson, MS 39217 USA
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
Krasnoyarsk State Tech Univ, Dept Phys & Engn, Krasnoyarsk 660028, Russia
Natl Acad Sci Ukraine, Inst Surface Chem, UA-03164 Kiev, Ukraine
ИФ СО РАН
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States
Department of Physics, Jackson State University, Jackson, MS 39217, United States
L. V. Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russian Federation
Moscow Inst. of Phys. and Technology, Dolgoprudny, Moscow Region 141700, Russian Federation
Dept. of Physics, and Engineering, Krasnoyarsk State Tech. University, Krasnoyarsk 660028, Russian Federation
Institute of Surface Chemistry, Natl. Academy of Sciences of Ukraine, 17 General Naumov St., 03164 Kiev, Ukraine

Доп.точки доступа:
Markel, V. A.; Pustovit, V. N.; Karpov, S. V.; Карпов, Сергей Васильевич; Obuschenko, A. V.; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Isaev, I. L.; Исаев, Иван Леонидович
}
Найти похожие
3.


   
    Local anisotropy and giant enhancement of local electromagnetic fields in fractal aggregates of metal nanoparticles / S. V. Karpov [et al.] // Phys. Rev. B. - 2005. - Vol. 72, Is. 20. - Ст. 205425, DOI 10.1103/PhysRevB.72.205425. - Cited References: 56 . - ISSN 1098-0121
РУБ Physics, Condensed Matter
Рубрики:
SMALL-PARTICLE COMPOSITES
   DIFFUSION-LIMITED AGGREGATION

   OPTICAL-PROPERTIES

   SELECTIVE PHOTOMODIFICATION

   NUMERICAL-SIMULATION

   DISORDERED CLUSTERS

   ABSORPTION-SPECTRUM

   PARTICULATE MATTER

   NONLINEAR OPTICS

   LIGHT-SCATTERING

Аннотация: We have shown within quasistatic approximation that the giant fluctuations of a local electromagnetic field in random fractal aggregates of silver nanospheres are strongly correlated with a local anisotropy factor S which is defined in this paper. The latter is a purely geometrical parameter which characterizes the deviation of local environment of a given nanosphere in an aggregate from spherical symmetry. Therefore, it is possible to predict the sites with anomalously large local fields in an aggregate without explicitly solving the electromagnetic problem. We have also demonstrated that the average (over nanospheres) value of S does not depend noticeably on the fractal dimension D, except when D approaches the trivial limit D=3. In this case, as one can expect, the average local environment becomes spherically symmetrical and S approaches zero. This corresponds to the well-known fact that in trivial aggregates, fluctuations of local electromagnetic fields are much weaker than in fractal aggregates. Thus, we find that, within the quasistatics, the large-scale geometry does not have a significant impact on local electromagnetic responses in nanoaggregates in a wide range of fractal dimensions. However, this prediction is expected not to be correct in aggregates which are sufficiently large for the intermediate- and radiation-zone interaction of individual nanospheres to become important.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
Krasnoyarsk State Tech Univ, Dept Phys & Engn, Krasnoyarsk 660028, Russia
Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
ИФ СО РАН
L. V. Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russian Federation
Department of Physics and Engineering, Krasnoyarsk State Technical University, Krasnoyarsk 660028, Russian Federation
Departments of Radiology and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States

Доп.точки доступа:
Karpov, S. V.; Карпов, Сергей Васильевич; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Isaev, I. L.; Исаев, Иван Леонидович; Markel, V. A.
}
Найти похожие
4.


   
    Spectroscopic studies of fractal aggregates of silver nanospheres undergoing local restructuring / S. V. Karpov [et al.] // J. Chem. Phys. - 2006. - Vol. 125, Is. 11. - Ст. 111101, DOI 10.1063/1.2229202. - Cited References: 30 . - ISSN 0021-9606
РУБ Physics, Atomic, Molecular & Chemical
Рубрики:
ENHANCED RAMAN-SCATTERING
   SMALL-PARTICLE COMPOSITES

   OPTICAL-PROPERTIES

   DISORDERED CLUSTERS

   NONLINEAR OPTICS

   LOCALIZATION

   NANOPARTICLES

   EIGENMODES

   BOUNDS

Кл.слова (ненормированные):
Large-scale fractal geometry -- Nonlinear optical responses -- Restructuring -- Silver nanospheres -- Aggregates -- Colloids -- Electromagnetic fields -- Fractals -- Nonlinear optics -- Sampling -- Spectroscopic analysis -- Silver
Аннотация: We present an experimental spectroscopic study of large random colloidal aggregates of silver nanoparticles undergoing local restructuring. We argue that such well-known phenomena as strong fluctuation of local electromagnetic fields, appearance of "hot spots" and enhancement of nonlinear optical responses depend on the local structure on the scales of several nanosphere diameters, rather than the large-scale fractal geometry of the sample. (c) 2006 American Institute of Physics.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
Krasnoyarsk State Tech Univ, Dept Phys & Engn, Krasnoyarsk 660028, Russia
Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
ИФ СО РАН
L. V. Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russian Federation
Department of Physics and Engineering, Krasnoyarsk State Technical University, Krasnoyarsk 660028, Russian Federation
Departments of Radiology and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States

Доп.точки доступа:
Karpov, S. V.; Карпов, Сергей Васильевич; Gerasimov, V. S.; Герасимов, Валерий Сергеевич; Isaev, I. L.; Исаев, Иван Леонидович; Markel, V. A.
}
Найти похожие
5.


   
    The model of resonant domain of metal nanoparticle aggregates in pulsed laser fields / A. P. Gavrilyuk, S. V. Karpov // Proceedings of SPIE - The International Society for Optical Engineering / sponsors: SPIE Russia Chapter, National Academy of Sciences, Belarus, Russian Academy of Sciences, Belarus Foundation for Basic Research, Russian Physical Society ; ICONO 2007: Novel Photonics Materials; Optics and Optical Diagnostics of Nanostructures (2007 ; 28.05 - 01.06 ; Минск) : S P I E - International Society for Optical Engineering, 2007. - 6728. - С. 67281T, DOI 10.1117/12.752386 . - ISBN 0819468851
ГРНТИ


РИНЦ,
Источник статьи
Держатели документа:
Institute of Computational Modeling,Russian Academy of Science
Institute of Physics,Russian Academy of Science
Доп.точки доступа:
sponsors: SPIE Russia Chapter, National Academy of Sciences, Belarus, Russian Academy of Sciences, Belarus Foundation for Basic Research, Russian Physical Society; Gavrilyuk, A. P.; Karpov, S. V.; Карпов, Сергей Васильевич; ICONO 2007: Novel Photonics Materials; Optics and Optical Diagnostics of Nanostructures(2007 ; 28.05 - 01.06 ; Минск)
Нет сведений об экземплярах (Источник в БД не найден)
}
Найти похожие
6.


   
    Processes in Resonant Domains of Metal Nanoparticle Aggregates and Optical Nonlinearity of Aggregates in Pulsed Laser Fields [Текст] / A. P. Gavrilyuk, S. V. Karpov // arXiv. - 2008. - Ст. 0808.2355

Смотреть статью,
Читать в сети ИФ

Доп.точки доступа:
Gavrilyuk, A.P.; Karpov, S.V.
}
Найти похожие
7.


   
    Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields / A. P. Gavrilyuk, S. V. Karpov // Appl. Phys. B-Lasers Opt. - 2009. - Vol. 97, Is. 1. - P163-173, DOI 10.1007/s00340-009-3592-y. - Cited Reference Count: 43. - Гранты: Authors are thankful to Prof. V. A. Markel ( University of Pennsylvania) for computation of multipole polarizability of silver nanoparticle bispheres, for the attention to this paper, fruitful discussions and great support. This research was supported by grants: 27.1 of the Presidium of RAS, 9.1 DPS RAS, 5 SB RAS, 3818.2008.3 and 6612.2006.3 of the President of RF ( SS RAS), DSP 2.1.1.1814, 05- 03- 32642 RFBR. - Финансирующая организация: [27.1 of the Presidium of RAS]; [9.1 DPS RAS]; [5 SB RAS]; [3818.2008.3]; [6612.2006.3] . - SEP. - ISSN 0946-2171
Рубрики:
SMALL-PARTICLE COMPOSITES
   FRACTAL CLUSTERS

   SELECTIVE PHOTOMODIFICATION

   ABSORPTION-COEFFICIENTS

   REFRACTIVE-INDEXES

   SILVER

   ENHANCEMENT

   RESPONSES

   GOLD

Кл.слова (ненормированные):
Metal nanoparticles -- Nanosecond pulsed laser -- Nonlinear refractive index -- Optical nonlinearity -- Physical effects -- Pulsed-laser field -- Resonant domain -- Silver nanoparticles -- Simple Physical Models -- Aggregates -- Laser excitation -- Nanoparticles -- Nonlinear optics -- Organic polymers -- Pulsed laser applications -- Refractive index -- Silver
Аннотация: Optical nonlinearities in aggregates of nanoparticles formed in silver hydrosols (SHs) are studied under pico- and nanosecond pulsed laser excitation. The dependence of the nonlinear refractive index n (2) on the degree of hydrosol aggregation is studied experimentally at the wavelength lambda=1.064 mu m. It is found that n (2) changes sign when the degree of hydrosol aggregation is increased. Various physical effects occurring in resonant domains of the aggregates are analyzed using a simple physical model of two bound silver nanoparticles. The theory takes into account thermal, elastic, electrostatic, and light-induced effects. Experimental results are discussed in the context of this theory.

WOS,
Scopus,
eLibrary,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk 660036, Russia
Siberian Fed Univ, Krasnoyarsk 660028, Russia

Доп.точки доступа:
Gavrilyuk, A. P.; Гаврилюк, Анатолий Петрович; Karpov, S. V.; Карпов, Сергей Васильевич
}
Найти похожие
8.
Описание изобретения к патенту 2351064

   
    Способ рекуперации электрической энергии в импульсных установках и устройство для его осуществления / Д. А. Великанов ; патентообладатель Институт физики им. Л.В. Киренского Сибирского отделения РАН. - № 2007126455/09 ; Заявл. 11.07.2007 // Изобретения. Полезные модели : офиц. бюл. Фед. службы по интеллектуал. собственности (Роспатент). - 2009. - № 9
   Перевод заглавия: Method of electric energy recuperation in impulse aggregates, and device for method implementation
Аннотация: Изобретение относится к электротехнике и может быть использовано для генерации импульсов в активно-индуктивных нагрузках. Технический результат состоит в снижении тепловых потерь при перезарядке, в получении однополярных импульсов тока, в отсутствии необходимости коммутации полярности тока дозарядки, в упрощении конструкции и схемы управления ключом. Способ рекуперации электрической энергии заключается в преобразовании магнитной энергии электрического тока, полученной в результате преобразования энергии заряженного емкостного накопителя в магнитную энергию электрического тока, в энергию емкостного накопителя. В течение одного цикла работы импульсной установки преобразование энергии емкостного накопителя в магнитную энергию электрического тока и наоборот производится дважды. На первом этапе энергия емкостного накопителя преобразуется в магнитную энергию тока в активно-индуктивной нагрузке с последующей рекуперацией энергии в емкостный накопитель. На втором этапе энергия емкостного накопителя преобразуется в магнитную энергию тока в катушке индуктивности с последующей рекуперацией энергии в емкостный накопитель. Устройство содержит подключаемый к зарядному устройству емкостный накопитель энергии, параллельно которому подключены последовательно соединенные активно-индуктивная нагрузка и первый ключ. В него введена цепь из последовательно соединенных катушки индуктивности и второго ключа, которая подключена параллельно емкостному накопителю энергии. Первый вывод емкостного накопителя, первый вывод активно-индуктивной нагрузки и первый вывод катушки индуктивности соединены между собой и подключаются к положительному выводу зарядного устройства. Второй вывод активно-индуктивной нагрузки подключен к аноду первого ключа, второй вывод катушки индуктивности подключен к катоду второго ключа. Второй вывод емкостного накопителя, катод первого ключа и анод второго ключа соединены между собой и подключаются к отрицательному выводу зарядного устройства. 2 н. и 5 з.п. ф-лы, 3 ил.
Invention concerns electric equipment and can be applied for impulse generation in active inductance loads. Method of electric power recuperation involves transformation of magnetic energy of electric current, obtained by transformation of charged capacitive storage energy into magnetic energy of electric current, into capacitive storage energy. During one cycle of impulse aggregate operation capacitive storage energy to magnetic energy of electric current and back is performed twice. At the first stage, capacitive storage energy is transformed into magnetic current energy in active inductance load with further energy recuperation to capacitive storage. At the second stage, capacitive storage energy is transformed into magnetic current energy in inductance coil with further energy recuperation to capacitive storage. Device includes capacitive storage connected to charging device and parallel to sequence of active inductance load and first key. Additionally device includes a circuit of sequential inductance coil and second key, circuit connected parallel to capacitive storage. First output of capacitive storage, first output of active inductance load and first output of inductance coil are interconnected and connected to positive output of charging device. Second output of active inductance load is connected to anode of first key, second output of inductance coil is connected to cathode of second key. Second output of capacitive storage, cathode of first key and anode of second key are interconnected and connected to negative output of charging device./p p num="34"EFFECT: reduced heat loss during recharge, obtaining monopolar current impulses, eliminated necessity of charge current polarity commutation, simplified construction and key control scheme./p p num="35"7 cl, 3 dwg, 2 ex/p

eLibrary,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского Сибирского отделения РАН

Доп.точки доступа:
Великанов, Дмитрий Анатольевич; Институт физики им. Л.В. Киренского Сибирского отделения РАНФедеральная служба по интеллектуальной собственности (Роспатент); Федеральный институт промышленной собственности
}
Найти похожие
9.


   
    Dynamic Changes of Optical Characteristics of Resonant Domains in Metal Nanoparticle Aggregates under Pulsed Laser Fields [Text] / Gavrilyuk A.P., Karpov S.V. // Applied Physics B: Lasers and Optics. - 2010. - Vol. 101. - P512


Доп.точки доступа:
Gavrilyuk, A.P.; Karpov, S.V.
}
Найти похожие
10.


   
    Dynamic changes of optical characteristics of resonant domains in metal nanoparticle aggregates under pulsed laser fields [Text] / A. P. Gavrilyuk, S. V. Karpov. // Technical digest International conference ICONO/LAT 2010. - Казань, 2010. - Ст. ITuQ39


Доп.точки доступа:
Gavrilyuk, A.P.; Karpov., S.V.; International Conference on Coherent and Nonlinear Optics(2010 ; Aug. ; 23-26 ; Казань); International Conference on Lasers, Applications, and Technologies(2010 ; Aug. ; 23-26 ; Казань)
}
Найти похожие
 1-10    11-20   21-26 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)