Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (3)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Calorimetry<.>)
Общее количество найденных документов : 27
Показаны документы с 1 по 10
 1-10    11-20   21-27 
1.


   
    Mixed-valence hydrated iron fluoridotitanate: synthesis, optics and calorimetry / S. V. Mel'nikova, N. M. Laptash, M. V. Gorev, E. I. Pogoreltsev // J. Phys. Chem. Solids. - 2020. - Vol. 142. - Ст. 109444, DOI 10.1016/j.jpcs.2020.109444. - Cited References: 35 . - ISSN 0022-3697
Кл.слова (ненормированные):
Crystal growth -- Fluoridotitanate -- Mixed valence -- Phase transition -- Optical properties -- Heat capacity
Аннотация: Mixed-valence hydrated fluoridotitanate with idealized formula FeTiF6·6H2O is the main product of fluoride processing of natural mineral ilmenite with hydrofluoric acid. Its single crystals were grown and optical and calorimetric experiments were carried out in the temperature range 200–350 K. Charge re-distribution, Fe2+Ti4+ to Fe3+Ti3+, in the compound studied was evident in XPS spectra. A first order ferroelastic phase transition occurs at temperatures T0↓ = 271.5 K, T0↑ = 274 ÷ 275.5 K with the symmetry change P3‾↔ P1‾. The structural transformation is accompanied by the appearance of a very weak optical anisotropy in the slice (001), a small anomaly of the heat capacity (ΔS = 1.5 J/mol K = 0.2R), and positive baric coefficients dT0/dp ≈ 30 ± 10 K/GPa.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Chemistry, Far Eastern Branch of RAS, Vladivostok, 690022, Russian Federation
Siberian Federal University, Krasnoyarsk, 660074, Russian Federation

Доп.точки доступа:
Mel'nikova, S. V.; Мельникова, Светлана Владимировна; Laptash, N. M.; Gorev, M. V.; Горев, Михаил Васильевич; Pogoreltsev, E. I.; Погорельцев, Евгений Ильич
}
Найти похожие
2.


   
    Synthesis, structure, and thermophysical properties of EuGaGe2O7 / L. T. Denisova, M. S. Molokeev, L. A. Irtyugo [et al.] // Inorg. Mater. - 2020. - Vol. 56, Is. 8. - P. 854-858, DOI 10.1134/S002016852008004X. - Cited References: 18 . - ISSN 0020-1685. - ISSN 1608-3172
РУБ Materials Science, Multidisciplinary
Рубрики:
TEMPERATURE HEAT-CAPACITY
   THERMODYNAMIC PROPERTIES

   CRYSTAL-STRUCTURE

Кл.слова (ненормированные):
europium gallium germanate -- solid-state synthesis -- differential scanning calorimetry -- heat capacity -- structure -- thermodynamic properties
Аннотация: The europium gallium germanate EuGaGe2O7 has been prepared by solid-state reaction in air in the temperature range 1273–1473 K using a stoichiometric mixture of Eu2O3, Ga2O3, and GeO2. Its crystal structure has been determined by X-ray diffraction (sp. gr. P21/c, a = 7.1693(7) Å, b = 6.57008(6) Å, c = 12.7699(1) Å, β = 117.4522(5)°, V = 533.768(8) Å3). The heat capacity of polycrystalline samples has been determined by differential scanning calorimetry in the temperature range 350–1053 K and the experimental data have been used to calculate the thermodynamic properties (enthalpy increment, entropy change, and reduced Gibbs energy change) of EuGaGe2O7.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Синтез, структура и теплофизические свойства EuGaGe2O7 [Текст] / Л. Т. Денисова, М. С. Молокеев, Л. А. Иртюго [и др.] // Неорган. матер. - 2020. - Т. 56 № 8. - С. 901-905

Держатели документа:
Siberian Fed Univ, Inst Nonferrous Met & Mat Sci, Svobodnyi Pr 79, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Fed Res Ctr, Kirensky Inst Phys,Krasnoyarsk Sci Ctr, Akademgorodok 50-38, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Engn Phys & Radio Elect, Ul Akad Kirenskogo 28-12 B, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Baikov Inst Met & Mat Sci, Leninskii Pr 49, Moscow 119991, Russia.

Доп.точки доступа:
Denisova, L. T.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Irtyugo, L. A.; Beletskii, V. V.; Kargin, Yu. F.; Denisov, V. M.
}
Найти похожие
3.


   
    Structure and properties of phases in the Cu2-ХSe-Sb2Se3 system. The Cu2-XSe-Sb2Se3 phase diagram / M. A. Shtykova, M. S. Molokeev, B. A. Zakharov [et al.] // J. Alloys Compd. - 2022. - Vol. 906. - Ст. 164384, DOI 10.1016/j.jallcom.2022.164384. - Cited References: 111. - The research was supported for R.S. Bubnova by the Ministry of Science and Higher Education of the Russian Federation within the scientific tasks of the Institute of Silicate chemistry (Russian Academy of Sciences) [project number 0097-2019-0013]. The equipment of Research and Education Center "Molecular design and ecologically safe technologies" (Novosibirsk State University) was used for single-crystal X-ray diffraction experiments. BAZ and EVB acknowledge support by the Ministry of Science and Higher Education, project AAAA-A21-121011390011-4 . - ISSN 0925-8388
   Перевод заглавия: Структура и свойства фаз в системе Cu2-xSe-Sb2Se3; фазовая диаграмма Cu2-xSe-Sb2Se3
Кл.слова (ненормированные):
Phase equilibria -- Phase diagram -- High-temperature X-ray diffraction -- Redlich-Kister polynomial model -- Scanning electron microscopy -- Differential scanning calorimetry
Аннотация: The phase diagram of the Cu2−XSe-Sb2Se3 system is revisited to clarify ambiguity/disagreement in previously reported data. Ternary Cu3SbSe3 and CuSbSe2 compounds were obtained. In order to confirm that the phases have been identified correctly, crystal structures were solved, and the energy band gaps measured. For the sample containing 75 mol% Sb2Se3 and 25 mol% Cu1.995Se the temperature range of the stability of the high-temperature CuSb3Se5 phase was determined for the first time. This phase is formed at 445 °С, decomposes following a peritectic reaction at 527 °С, and can be quenched. A high-temperature X-ray diffraction study of a sample containing 75 mol% Sb2Se3 and 25 mol% Cu2Se allowed us to measure the thermal expansion of the CuSbSe2 and Sb2Se3 phases present in the sample. The anisotropy of thermal expansion of CuSbSe2 is similar to that of As2S3 (orpiment); thermal expansion of Sb2Se3 is similar to that of AsS (realgar). The 6 balance equations of the invariant phase transformations involving all the ternary compounds existing in the Cu2−XSe-Sb2Se3 system were suggested for the first time. The temperature and the enthalpies of all these transformations were measured. A phase diagram of the Cu2−XSe-Sb2Se3 system was found for the first time in all the range of concentrations at temperatures from ambient to the complete melting. This diagram takes into consideration the phase equilibria that involve all the ternary compounds that are possible in this system. The liquidus of the Cu2−XSe-Sb2Se3 system was calculated according to Redlich-Kister equation; it agrees with the experimental data within 1–17 °С.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Department of Inorganic and Physical Chemistry, Institute of Chemistry, Tyumen State University, Volodarsky str. 6, Tyumen, 625003, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok Str. 50, Building 38, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodnyj av. 79, Krasnoyarsk, 660079, Russian Federation
Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation
Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
Department of Condensed Matter Physics and Nanoscale Systems, Institute of Natural Sciences and Mathematics, Ural Federal University, Mira str. 19, Yekaterinburg, 620002, Russian Federation
Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, Makarov Emb., 2, St. Petersburg, 199034, Russian Federation
Department of Physical and Applied Chemistry, Institute of Natural Sciences and Mathematics, Kurgan State University, Sovetskaya str. 2, b. 4, Kurgan, 640020, Russian Federation
Laboratory of Electron and Probe Microscopy, REC “Nanotechnology”, Tyumen State University, Volodarsky str. 6, Tyumen, 625003, Russian Federation
Engineering Center of Composite Materials Based on Tungsten Compounds and Rare Earth Elements, Tyumen State University, Volodarsky str. 6, Tyumen, 625003, Russian Federation
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Pervomaiskaya str. 91, Yekaterinburg, 620990, Russian Federation

Доп.точки доступа:
Shtykova, M. A.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zakharov, B. A.; Selezneva, N. V.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Bubnova, R. S.; Kamaev, D. N.; Gubin, A. A.; Habibullayev, N. N.; Matigorov, A. V.; Boldyreva, E. V.; Andreev, O. V.
}
Найти похожие
4.


    Bogdanov, E. V.
    Calorimetric study of the fluoro-oxygen crystal (ND4)2MoO2F4 / E. V. Bogdanov, E. I. Pogoreltsev // Proc. of int. conf. on therm. analys. and calorim. in Russia (RTAC-2016). - 2016. - Vol. I. - P. 181 . - ISBN 978-5-7422-5447-8
   Перевод заглавия: Калориметрические исследования фтор-кислородного кристалла (ND4)2MoO2F4

Материалы конференции

Доп.точки доступа:
Pogoreltsev, E. I.; Погорельцев, Евгений Ильич; Богданов, Евгений Витальевич; International conference on thermal analysis and calorimetry in Russia(2016 ; Sept. ; 16-23 ; Saint-Petersburg); Международная конференция по термическому анализу и калориметрии в России(15 ; 16 - 23 сентября 2016 г. ; г. Санкт-Петербург); Институт общей и неорганической химии им. Н.С. Курнакова РАНСанкт-Петербургский политехнический университет им. Петра Великого
}
Найти похожие
5.


   
    Диэлектрический метод измерения скрытой теплоты плавления льда при оттаивании мерзлой почвы / В. Л. Миронов [и др.] // Журн. радиоэлектрон. : электронный журнал. - 2018. - № 12. - Ст. 14, DOI 10.30898/1684-1719.2018.12.14. - Библиогр.: 14 . - ISSN 1684-1719
   Перевод заглавия: The dielectric method of measurement the latent heat of ice fusion during thawing of frozen soil
Кл.слова (ненормированные):
диэлектрическая модель -- диэлектрическая проницаемость -- мерзлые почвы -- незамерзшая вода -- незамерзающая вода -- связанная вода -- фазовые переходы -- дифференциальная сканирующая калориметрия -- dielectric model -- dielectric constant -- frozen soil -- unfrozen water -- nonfreezable water -- bound water -- phase transitions -- differential scanning calorimetry
Аннотация: Проведены экспериментальные исследования изменения массы незамерзшей воды, содержащейся в мерзлой Nа-бентонитовой глине в диапазоне температур от -30 до 0 °C и диапазоне массовых влажностей от 0 до 1 г/г с помощью диэлектрического метода. Предложен калориметрический метод измерения удельной скрытой теплоты плавления льда в связанную и несвязанную воду при нагревании мерзлой почвы. Предложен метод измерения скрытой теплоты плавления льда в мерзлой почве в процессе нагревания методом диэлектрических измерений. С целью обоснования предложенной методики проведено сравнение скрытой теплоты плавления льда при нагревании бентонитовой глины, полученной методом дифференциальной сканирующей калориметрии (ДСК), с рассчитанной с помощью диэлектрического метода.
Experimental studies of the change in the mass of unfrozen water contained in frozen Na-bentonite clay in the temperature range from -30 to 0 °C and a gravimetric moistures range from 0 to 1 g/g have been carried out by the dielectric method. The calorimetric method is proposed for measuring the specific latent heat of fusion of ice into bound and unbound water when the frozen soil is heated. The method of dielectric measurements is proposed for measuring the latent heat of fusion of ice in frozen soils during heating. In order to substantiate the proposed technique, the latent heat of fusion of ice in frozen bentonite clay measured by the differential scanning calorimetry during heating was compared with this value obtained by the dielectric method.

Смотреть статью,
РИНЦ,
Читать в сети ИФ,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН, 660036, г. Красноярск, ул. Академгородок, 50/38

Доп.точки доступа:
Миронов, Валерий Леонидович; Mironov, V. L.; Каравайский, Андрей Юрьевич; Karavaisky, A. Yu.; Лукин, Юрий Иванович; Lukin, Y. I.; Погорельцев, Евгений Ильич; Pogoreltsev, E. I.
}
Найти похожие
6.


    Flerov, I. N.
    Conversial and inversial barocaloric effects around triple points in ferroelastics (NH4)3NbOF6 and (NH4)3TiOF5 / I. N. Flerov, M. V. Gorev, E. V. Bogdanov // 2nd Journale of Thermal analysis and calorimetry conference : book of abstracts. - 2019. - P. 489-490. - Cited References:. - The reported study was funded by RFBR according to the research project No 18-02-00269 . - ISBN 978-963-454-416-6

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk
Institute of Engineering Systems and Energy, Krasnoyarsk State Agrarian University, Krasnoyarsk

Доп.точки доступа:
Gorev, M. V.; Горев, Михаил Васильевич; Bogdanov, E. V.; Богданов, Евгений Витальевич; Флёров, Игорь Николаевич; Journale of Thermal Analysis and Calorimetry Conference(2 ; 2019 ; June. ; 18-21 ; Budapest, Hungary); Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference(7 ; 2019 ; June. ; 18-21 ; Budapest, Hungary)
}
Найти похожие
7.


   
    Phase transitions and thermodynamic properties of (NH4)(3)VO2F4 cryolite / V. D. Fokina [et al.] // Solid State Sci. - 2009. - Vol. 11, Is. 4. - P. 836-840, DOI 10.1016/j.solidstatesciences.2008.11.004. - Cited Reference Count: 17. - Гранты: The authors are grateful to Dr. SM. Mel'nikova for the permission to use the unpublished results.; This work was supported by the Russian Foundation for Basic Research (project 06-02-16102). - Финансирующая организация: Russian Foundation for Basic Research [06-02-16102] . - ISSN 1293-2558
Рубрики:
PEROVSKITE-LIKE OXYFLUORIDES
   (NH4)(3)TIOF5

   CS

   (NH4)(3)WO3F3

   DIFFRACTION

   (NH4)3VO2F4

   ELPASOLITE

   METALS

   RB

Кл.слова (ненормированные):
Oxyfluorides -- Phase transition -- Calorimetry -- Phase diagram -- Ferroelectricity -- Calorimetry -- Ferroelectricity -- Oxyfluorides -- Phase diagram -- Phase transition -- Calorimetry -- Ferroelectricity -- Halide minerals -- Phase diagrams -- Sugar (sucrose) -- Thermodynamic properties -- Calorimetric measurements -- Cubic phase -- First-order phase transitions -- Heat capacities -- Oxyfluorides -- Phase transition temperatures -- Pressure dependences -- Structural transformations -- Temperature ranges -- Phase transitions
Аннотация: Calorimetric measurements performed in a wide temperature range on (NH4)(3)VO2F4 have shown the presence of four heat capacity anomalies at T-1 = 438 K, T-2 = 244 K, T-3 = 210.2 K, T-4 = 205.1 K associated with the first order phase transitions. In accordance with the permittivity behavior, the structural transformations are of nonferroelectric nature. Pressure dependence of the phase transition temperatures has been studied by DTA under pressure. The entropy of phase transitions is analyzed mainly in the framework of the orientational disordering of NH4+ and VO2F43- ions in a cubic phase. (C) 2008 Elsevier Masson SAS. All rights reserved.

WOS,
Scopus,
eLibrary
Держатели документа:
RAS, Siberian Branch, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Siberian Fed Univ, Krasnoyarsk 660074, Russia

Доп.точки доступа:
Fokina, V. D.; Фокина, Валентина Дмитриевна; Gorev, M. V.; Горев, Михаил Васильевич; Kocharova, A. G.; Кочарова, Алла Георгиевна; Flerov, I. N.; Флёров, Игорь Николаевич; Pogoreltsev, E.I.
}
Найти похожие
8.


   
    Thermokinetic study of intermetallic phase formation in an Al/Cu multilayer thin film system / E. T. Moiseenko, V. V. Yumashev, R. R. Altunin [et al.] // Materialia. - 2023. - Vol. 28. - Ст. 101747, DOI 10.1016/j.mtla.2023.101747. - Cited References: 53. - This work was supported by the Russian Science Foundation under grant # 22-13-00313 . - ISSN 2589-1529
   Перевод заглавия: Термокинетическое исследование образования интерметаллических фаз в многослойной тонкопленочной системе Al/Cu
Кл.слова (ненормированные):
Intermetallics -- Thin film -- Solid-state reaction -- Kinetics -- Differential scanning calorimetry -- Electron diffraction
Аннотация: The solid-state reaction process in a multilayer thin film system (Al/Cu)50 has experimentally been studied using the methods of simultaneous thermal analysis (STA) and in situ electron diffraction. A detailed kinetic analysis of the phase formation processes during the solid-state reaction has shown that the observed solid-state transformations can be described by a statistically significant kinetic model where each stage corresponds to the reaction of the n-th order with autocatalysis. The low-temperature stage has been demonstrated to be attributable to the formation of the θ-Al2Cu phase, with the medium-temperature and high-temperature ones corresponding to the α2-AlCu3 and γ1-Al4Cu9 phases, respectively. The kinetic parameters for the formation of the phases θ-Al2Cu, α2-AlCu3 and γ1-Al4Cu9 have been determined. It has been shown that the kinetic model describing the solid-state reaction in the Al–Cu multilayer thin film system is in best agreement with the experimental data in the case of a competition between the formation stages of the α2-AlCu3 and γ1-Al4Cu9 phases.

Смотреть статью
Держатели документа:
Siberian Federal University, 660041 79 Svobodny ave., Krasnoyarsk, Russia
Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50/38, 660036 Krasnoyarsk, Russia

Доп.точки доступа:
Moiseenko, E. T.; Yumashev, V. V.; Altunin, R. R.; Solovyov, L. A.; Volochaev, M. N.; Волочаев, Михаил Николаевич; Belousov, O. V.; Zharkov, S. M.; Жарков, Сергей Михайлович
}
Найти похожие
9.


   
    The Sm2S3-X-SmS-Sm2O2S refractory system: thermal analysis, phase diagram, and properties of the phases / I. O. Yurev, A. S. Aleksandrovsky, D. N. Kamaev [et al.] // J. Therm. Anal. Calorim. - 2024. - Vol. 149, Is. 5. - P. 2057-2073, DOI 10.1007/s10973-023-12792-z. - Cited References: 90. - The authors thank Prof. P.P. Fedorov, Chief Researcher of Prokhorov Institute of General Physics, Russian Academy of Sciences, for scientific advices. The authors thank N.I. Lozhkin, engineer of the Department of Inorganic and Physical Chemistry, Tyumen State University for the technical support of the visual thermal analysis setup. The authors thank N.A. Shulaev, research engineer of the Center for Nature-Inspired Engineering, Tyumen State University, for determining the elemental composition of samples by scanning electron microscopy. The authors thank I.V. Palamarchuk, research engineer of the Center for Collective Use "Rational Nature Management and Physical and Chemical Research" of the Tyumen State University, for measuring the diffuse reflectance spectra. The authors thank Doctor of Philology O.V. Trofimova, Professor at the Institute of Social Sciences and Humanities of the Tyumen State University, for her advices on academic writing. - This study was funded by the Russian Science Foundation, Project No. 23–23-00488 “Search for EMF generation conditions in gradient ceramics of samarium monosulfide (SmS)” . - ISSN 1388-6150. - ISSN 1588-2926
Кл.слова (ненормированные):
Samarium sulfides -- Refractory system -- Thermal analysis -- Ternary eutectic -- Phase diagram -- Band gap
Аннотация: Samarium monosulfide, a strain gauge and barometric material, exists in equilibrium with Sm3S4 and Sm2O2S in the S-Sm–O system. Therefore, studying phase equilibria in the refractory Sm2S3-X-SmS-Sm2O2S system is a scientifically interesting task. In this system, 49 samples were synthesized and studied by powder XRD, differential scanning calorimetry, visual thermal analysis, and microstructural analysis. Melting points of Sm3S4, SmS, and Sm2O2S compounds were determined. Eutectic diagrams of Sm3S4-Sm2O2S, SmS-Sm2O2S, SmS-Sm3S4 systems were constructed. Temperatures and compositions of the binary eutectic points were determined. Fusion enthalpies for Sm3S4, SmS, and Sm2O2S phases were estimated using the Schröder–Le Chatelier equation. The liquidus lines were calculated using second-degree polynomials and Redlich–Kister model. Coordinates of the ternary eutectic point in the Sm3S4-SmS-Sm2O2S system were calculated using the cutting-plane method and the Scheffé method. The calculated compositions of ternary eutectic points were averaged at one most probable point, in accordance with the data on the samples microstructure. The experimental temperature of the ternary eutectic point coincides with the calculated values within the margin of error. Positions of eutectic valleys and approximate positions of isotherms in the system were established. Thermodynamic parameters of the α-Sm2S3 → γ-Sm2S3 polymorphic transition and the dependence of the Sm2S3-X composition on heat treatment conditions were determined. According to the scanning electron microscopy data, the approximate composition of the crystallized from the melt Sm2S3 sample is Sm2S2.95. The Sm10S14O phase decomposes at 1470 ± 15 °C in the course of a solid-phase reaction. The phase diagram of the Sm2S3-X-Sm2O2S system was revisited. Optical band gaps of Sm10S14O and Sm2O2S phases were determined. The Sm10S14O compound was optically characterized for the first time; its direct and indirect optical bandgaps were found equal to 2.48 and 2.37 eV, respectively. The determined direct and indirect optical bandgaps of Sm2O2S (4.4 eV and 3.95 eV, respectively) agree with the earlier measurements, thus confirming the accuracy of the chosen synthesis procedures.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Institute of Chemistry, Tyumen State University, Volodarsky Str. 6, Tyumen, 625003, Russia
Department of Physical and Applied Chemistry, Kurgan State University, Sovetskaya Str. 63/4, Kurgan, 640020, Russian Federation
Federal Research Center KSC SB RAS, Kirensky Institute of Physics, Akademgorodok Str. 50, Building 38, Krasnoyarsk, 660036, Russia
Siberian Federal University, Svobodnyj Av. 79, Krasnoyarsk, 660079, Russia
Institute of Physical Materials Science, SB RAS, Sakhyanova Str. 6, Ulan-Ude, 670047, Russian Federation
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Pervomaiskaya Str. 91, Yekaterinburg, 620990, Russian Federation

Доп.точки доступа:
Yurev, I. O.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Kamaev, D. N.; Polkovnikov, A. A.; Grigorchenko, V. M.; Yarovenko, A. A.; Zelenaya, A. E.; Parfenova, M. D.; Andreev, O. V.
}
Найти похожие
10.


   
    Synthesis, structure and magnetic properties of monoclinic lanthanum-chromium borate LaCr3(BO3)4 / E. A. Volkova, M. S. Platunov, A. M. Antipin [et al.] // J. Alloys Compd. - 2024. - Vol. 994. - Ст. 174683, DOI 10.1016/j.jallcom.2024.174683. - Cited References: 38. - Single crystal X-ray analysis was carried out within the State assignment NRC "Kurchatov institute" (research contribution of A.M.A.). The research contribution of M.S.P. was partially supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental assignment for Synchrotron radiation facility "SKIF", Boreskov Institute of Catalysis (project FWUR-2024–0040) . - ISSN 0925-8388. - ISSN 1873-4669
Кл.слова (ненормированные):
Borates -- Flux growth -- Crystal structure -- Differential scanning calorimetry -- Powder X-ray diffraction -- IR spectroscopy -- Antiferromagnet
Аннотация: Single crystals of LaCr3(BO3)4 were synthesized through spontaneous nucleation from a K2Mo3O10 flux melt. The crystal structure was determined using single-crystal X-ray diffraction (XRD) at temperatures of 293 K and 85 K. LaCr-borate crystallizes in the monoclinic C2/c space group with unit cell parameters a = 7.47980(5) Å, b = 9.55180(7) Å, c = 11.48330(8) Å, β= 104.0060(6)°, V = 796.04(1) Å3 (for C1, T = 293 K), and a = 7.47380(5) Å, b = 9.55520(7) Å, c = 11.47100(8) Å, β = 103.9330(6)°, V = 795.08(1) Å3 (for C2, T = 85 K), each with Z = 4. The temperature dependence of the unit cell parameters, including the monoclinic angle (β) and the unit cell volume (V), was investigated over the range of 85–293 K. No structural phase transitions were observed in the low-temperature region down to 85 K. Differential scanning calorimetry (DSC) measurements revealed no high-temperature phase transitions between 50 and 1350°C. Infrared (IR) spectroscopy confirmed the monoclinic structure of LaCr3(BO3)4 crystals, revealing characteristic absorption bands, including the lowest frequency mode associated with the translational vibrations of the La3+ ion.

Смотреть статью,
WOS
Держатели документа:
Faculty of Geology, Lomonosov Moscow State University, Moscow, Russian Federation
Synchrotron radiation facility SKIF, Boreskov Institute of Catalysis SB RAS, Kol’tsovo, Russian Federation
Shubnikov Institute of Crystallography, Complex "Crystallography and Photonics", NRC "Kurchatov institute", Moscow, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk, Russian Federation
Melnikov Research Institute of Comprehensive Exploitation of Mineral Resources of the Russian Academy of Sciences, Moscow, Russian Federation

Доп.точки доступа:
Volkova, E. A.; Platunov, M. S.; Платунов, Михаил Сергеевич; Antipin, A. M.; Alpanova, R. R.; Dubrovskiy, A. A.; Дубровский, Андрей Александрович; Pyastolova, Yu. V.; Пястолова, Юлия Валентиновна; Podobraznyh, A. D.; Kosorukov, V. L.; Koporulina, E. V.; Maltsev, V. V.
}
Найти похожие
 1-10    11-20   21-27 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)