Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Cells<.>)
Общее количество найденных документов : 59
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-59 
1.


   
    Influence of arabinogalactan-coated selenium nanoparticles on the formation of free radicals in Ehrlich ascites carcinoma cells / K. V. Shadrin, Yu. A. Yakovleva, O. V. Kryukova [et al.] // BioNanoScience. - 2024. - Vol. 14, Is. 1. - P. 268-275, DOI 10.1007/s12668-023-01251-6. - Cited References: 40 . - ISSN 2191-1630. - ISSN 2191-1649
Кл.слова (ненормированные):
Selenium -- Nanoparticles -- Microwave radiation -- Antioxidant properties -- Ehrlich ascitic carcinoma
Аннотация: The antioxidant properties of selenium nanoparticles coated with arabinogalactan have been studied. The nanoparticles were characterized by transmission electron microscopy and infrared spectroscopy. Arabinogalactan-coated selenium nanoparticles were incubated together with Ehrlich ascitic carcinoma cells and then exposed to microwave radiation. The antioxidant properties of selenium nanoparticles were evaluated using chemiluminescent analysis. The viability of Ehrlich ascitic carcinoma cells under microwave irradiation and incubation with selenium nanoparticles was assessed by flow cytometry. Under conditions of exposure to experimental tumor cells of microwave radiation, the concentration of free radicals in the cells did not change. The effect of arabinogalactan-coated selenium nanoparticles on tumor cells is expressed as an increase in the delay time for the activation of the antioxidant system.

Смотреть статью,
Scopus
Держатели документа:
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zeleznyak street, 1, 660022, Krasnoyarsk, Russia
Krasnoyarsk Science Center, Federal Research Center KSC SB RAS, Akademgorodok 50, 660036, Krasnoyarsk, Russia
Siberian Federal University, Svobodny, 79, 660041, Krasnoyarsk, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50, bld. 38, 660036, Krasnoyarsk, Russia
Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia

Доп.точки доступа:
Shadrin, K. V.; Yakovleva, Yu. A.; Kryukova, O. V.; Makarskaya, G. V.; Tarskikh, S. V.; Pyankov, V. F.; Pakhomova, V. G.; Gerasimova, Yu. V.; Герасимова, Юлия Валентиновна; Yaroslavtsev, R. N.; Ярославцев, Роман Николаевич; Vorobyev, S. A.; Stolyar, S. V.; Столяр, Сергей Викторович
}
Найти похожие
2.


   
    Original concept of cracked template with controlled peeling of the cells perimeter for high performance transparent EMI shielding films / A. S. Voronin, Y. V. Fadeev, F. S. Ivanchenko [et al.] // Surf. Interfaces. - 2023. - Vol. 38. - Ст. 102793, DOI 10.1016/j.surfin.2023.102793. - Cited References: 73. - The development of the processes of synthesis of a cracked template and conceptualization and optimization parameters peeling cells perimeter of the cracked template for the requirements of the final products were carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of state task No. 0287–2021–0026. The development of the processes of the formation of metal films and the study of the structural, optical, electrical and shielding properties of the samples were carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of state assignment No. FSFN-2022–0007. The physicochemical analysis of materials was carried out on equipment from the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center «Krasnoyarsk Science Center SB RAS». We would like to thank Anastasia Tamarovskaya for the macro photo of thick Ag mesh samples. . - ISSN 2468-0230
Кл.слова (ненормированные):
Transparent conductor -- Cracked template -- Cells perimeter peeling -- EMI shielding films
Аннотация: The problem of sputtering of thick metal films on micro and nanotemplates is important for obtaining mesh transparent conductors with excellent optoelectric characteristics. In this work, we demonstrate for the first time the possibility of controlling the degree of peeling of the cell perimeter from the substrate for a cracked template based on egg white by alternating the operations of moistening the template with saturated water vapor and shock drying with hot air. Local peeling of the cracked template cells perimeter makes it possible to increase the thickness of the metal sputtered on the cracked template by more than 1 µm, which is not achievable for other lithographic approaches. Our technique was used to obtain thick Ag meshes with a low sheet resistance of no more than 1.59 Ω/sq and a transparency of about 89.1%. The thick Ag meshes show a shielding efficiency (SE) of 49 dB or 99.998% of the incident power of an electromagnetic wave at a frequency of 1 GHz. In a sandwich geometry, thick Ag meshes, which simulates a real shielding window, the shielding efficiency (SE) reaches 71 dB with a transparency of more than 80%.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Federal Research Center «Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences» (FRC KSC SB RAS), Krasnoyarsk, Russia 660036
Siberian Federal University, Krasnoyarsk, Russia 660041
Bauman Moscow State Technical University, Moscow Russia 105005
N.N. Semenov Federal Research Center of Chemical Physics of Russian Academy of Sciences, Moscow, Russia 119334
Reshetnev Siberian University Science and Technology, Krasnoyarsk, Russia 660037
Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk Russia 660036
LLC Research and Production Company “Spectehnauka”, Krasnoyarsk, Russia 660043
Tomsk Polytechnic University, Tomsk, Russia 634050
V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia 634055

Доп.точки доступа:
Voronin, A. S.; Fadeev, Y. V.; Ivanchenko, F. S.; Dobrosmyslov, S. S.; Makeev, M. O.; Mikhalev, P. A.; Osipkov, A. S.; Damaratsky, I. A.; Ryzhenko, D. S.; Yurkov, G. Y.; Simunin, M. M.; Volochaev, M. N.; Волочаев, Михаил Николаевич; Tambasov, I. A.; Тамбасов, Игорь Анатольевич; Nedelin, S. V.; Неделин, С. В.; Zolotovsky, N. A.; Золотовский, Н. А.; Bainov, D. D.; Khartov, S. V.
}
Найти похожие
3.


   
    Core–shell Fe3O4@C nanoparticles for the organic dye adsorption and targeted magneto-mechanical destruction of Ehrlich ascites carcinoma cells / O. S. Ivanova, I. S. Edelman, Ch.-R. Lin [et al.] // Materials. - 2023. - Vol. 16, Is. 1. - Ст. 23, DOI 10.3390/ma16010023. - Cited References: 65. - This research was funded partly by the Ministry of Science and Higher Education of the Russian Federation, project FWES-2021-0035. C.-R.L., Y.-Z.C. and A.A.S. thank the National Science and Technology Council of Taiwan for the financial support, Grants NSTC № 108-2923-M-153-001-MY3 and № 110-2112-M-153-005-. Magnetic investigations were carried out in the Center for Collective Use of the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” . - ISSN 1996-1944
Кл.слова (ненормированные):
magnetite nanoparticles -- adsorption -- organic dyes -- aptamers -- magnetically induced cell destruction
Аннотация: The morphology, structure, and magnetic properties of Fe3O4 and Fe3O4@C nanoparticles, as well their effectiveness for organic dye adsorption and targeted destruction of carcinoma cells, were studied. The nanoparticles exhibited a high magnetic saturation value (79.4 and 63.8 emu/g, correspondingly) to facilitate magnetic separation. It has been shown that surface properties play a key role in the adsorption process. Both types of organic dyes—cationic (Rhodomine C) and anionic (Congo Red and Eosine)—were well adsorbed by the Fe3O4 nanoparticles’ surface, and the adsorption process was described by the polymolecular adsorption model with a maximum adsorption capacity of 58, 22, and 14 mg/g for Congo Red, Eosine, and Rhodomine C, correspondingly. In this case, the kinetic data were described well by the pseudo-first-order model. Carbon-coated particles selectively adsorbed only cationic dyes, and the adsorption process for Methylene Blue was described by the Freundlich model, with a maximum adsorption capacity of 14 mg/g. For the case of Rhodomine C, the adsorption isotherm has a polymolecular character with a maximum adsorption capacity of 34 mg/g. To realize the targeted destruction of the carcinoma cells, the Fe3O4@C nanoparticles were functionalized with aptamers, and an experiment on the Ehrlich ascetic carcinoma cells’ destruction was carried out successively using a low-frequency alternating magnetic field. The number of cells destroyed as a result of their interaction with Fe3O4@C nanoparticles in an alternating magnetic field was 27%, compared with the number of naturally dead control cells of 6%.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
Department of Applied Physics, National Pingtung University, Pingtung City 90003, Taiwan
Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Ivanova, O. S.; Иванова, Оксана Станиславовна; Edelman, I. S.; Эдельман, Ирина Самсоновна; Lin, Chun-Rong; Svetlitsky, E. S.; Светлицкий, Евгений Сергеевич; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Lukyanenko, Kirill A.; Sukhachev, A. L.; Сухачев, Александр Леонидович; Shestakov, N. P.; Шестаков, Николай Петрович; Chen, Ying-Zhen; Spivakov, Aleksandr A.
}
Найти похожие
4.


   
    Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells / A. S. Kichkailo, A. A. Narodov, M. A. Komarova [et al.] // Mol. Ther. - Nucleic Acids. - 2023. - Vol. 32. - P. 267-288, DOI 10.1016/j.omtn.2023.03.015. - Cited References: 69. - The authors are grateful to all the patients and hospital staff participating in this research. We acknowledge the assistance of the AptamerLab LCC (www.aptamerlab.com) and personally Mr. Vasily Mezko for the aptamer 3D structure optimization and financial and technical support. The authors thank Mr. Alexey Kichkailo, Dr. Arkady B. Kogan, and Dr. Rinat G. Galeev for their general support. Mrs. Valentina L. Grigoreva, and Irina V. Gildebrand for the help with histological staining. Technical and instrumental support was provided by the Multiple-Access Center at Tomsk State University; the Krasnoyarsk Inter-District Ambulance Hospital, named after N.S. Karpovich; John L. Holmes Mass Spectrometry Facility at the University of Ottawa; Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency; Shared Core Facilities of Molecular and Cell Technologies at Krasnoyarsk State Medical University and Krasnoyarsk Regional Centre for Collective Use at the Federal Research Centre “KSC SB RAS”. The confocal fluorescence microscopy research was carried out with the equipment of the Tomsk Regional Core Shared Research Facilities Center of the National Research Tomsk State University. The Center was supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2021-693 (no. 13.RFC.21.0012). Acute toxicity studies were performed in a laboratory certified for preclinical studies, Laboratory of Biological Testing, Institute of Bioorganic Chemistry named after academics M.M. Shemyakin and Y.A. Ovchinnikov Russian Academy of Sciences. The authors are grateful to the Joint Super Computer Center of the Russian Academy of Sciences for providing supercomputers for computer simulations. Development of the glioma tumor model in immunosuppressed mice was supported by the Russian Science Foundation grant No. 22-64-00041 (M.A.D.), https://rscf.ru/en/project/22-64-00041/. Synthesis of 11C-aptamer and PET/CT visualization was funded by the Federal Medical Biological Agency; project 122041800132-2 (A.V.O.). Aptamer selection and their clinical applications were funded by the Ministry of Healthcare of the Russian Federation; project АААА-Б19-219090690032-5 (T.N.Z.). The Ministry of Science and Higher Education of the Russian Federation project FWES-2022-0005 (A.S.K.) supported aptamer characterization, molecular modelling, and in vivo experiments. Mass spectrometry analyses, DNA sequencing, and synthesis were supported by NSERC Discovery Grant (M.V.B.). We acknowledge the European Synchrotron Radiation Facility for SAXS experiments and thank Dr. Bart Van Laer for assistance in using a beamline BM29. SAXS measurements were supported by RFBR № 18-32-00478 for young scientists (R.V.M.). The synchrotron SEC-SAXS data for Gli-55 aptamer were also collected at beamline P12 operated by EMBL Hamburg at the PETRA III storage ring (DESY, Hamburg, Germany) . - ISSN 2162-2531
Аннотация: Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
Krasnoyarsk Inter-District Ambulance Hospital named after N.S. Karpovich, 17 Kurchatova, Krasnoyarsk 660062, Russia
Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
Department of Molecular Electronics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, Krasnoyarsk 660036, Russia
National Research Center Kurchatov Institute, 1 Akademika Kurchatova, Moscow 123182, Russia
Laboratory of Advanced Materials and Technology, Siberian Physical-Technical Institute of Tomsk State University, 36 Lenina, Tomsk 634050, Russia
Krasnoyarsk Regional Pathology-Anatomic Bureau, 3d Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie gory, Moscow 119991, Russia
Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, South Korea
Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland
A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” RAS, 59 Leninsky pr., Moscow, 119333, Russia
Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency, Krasnoyarsk, Russia
Krasnoyarsk Regional Clinical Cancer Center, 16 1-ya Smolenskaya, Krasnoyarsk 660133, Russia
Institute of Chemistry and Chemical Technology SB RAS – The Branch of Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N6N5, Canada
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 8 Lavrentyev Avenue, 630090 Novosibirsk, Russia

Доп.точки доступа:
Kichkailo, A. S.; Narodov, A. A.; Komarova, M. A.; Zamay, T. N.; Zamay, G. S.; Kolovskaya, O. S.; Erakhtin, E. E.; Glazyrin, Y. E.; Veprintsev, D. V.; Moryachkov, R. V.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Shchugoreva, I.; Artyushenko, P.; Mironov, V. A.; Morozov, D. I.; Gorbushin, A. V.; Khorzhevskii, V. A.; Koshmanova, A. A.; Nikolaeva, E. D.; Grinev, I. P.; Voronkovskii, I. I.; Grek, D. S.; Belugin, K. V.; Volzhentsev, A. A.; Badmaev, O. N.; Luzan, N.; Lukyanenko, K. A.; Peters, G.; Lapin, I. N.; Лапин, И. Н.; Kirichenko, A. K.; Konarev, P. V.; Morozov, E. V; Mironov, G. G.; Gargaun, A.; Muharemagic, D.; Zamay, S. S.; Kochkina, E. V.; Dymova, M. A.; Smolyarova, T. E.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Modestov, A. A.; Tokarev, N. A.; Shepelevich, N.; Ozerskaya, A. V.; Chanchikova, N. G.; Krat, A. V.; Zukov, R. A.; Bakhtina, V. I.; Shnyakin, P. G.; Shesternya, P. A.; Svetlichnyi, V. A.; Petrova, M. M.; Artyukhov, I. P.; Tomilin, F. N.; Томилин, Феликс Николаевич; Berezovski, Maxim V.
}
Найти похожие
5.


   
    Monitoring of breast cancer progression via aptamer-based detection of circulating tumor cells in clinical blood samples / O. S. Kolovskaya, A. V. Zyuzyukina, J. P. Dassie [et al.] // Front. Mol. Biosci. - 2023. - Vol. 10. - Ст. 1184285, DOI 10.3389/fmolb.2023.1184285. - Cited References: 37. - CTCs isolation method development and clinical sample analyses were supported by the Ministry of Healthcare of Russian Federation project REYC-2023-0012. The Ministry of Science and Higher Education of the Russian Federation project FWES-2022-0005 supported aptamer characterization, molecular modeling. MDA-231/LUC cells were from R. Domann (Jenkin et al. Breast Cancer Research, 2005). Technical and instrumental support was provided by the Shared Core Facilities of Molecular and Cell Technologies at Krasnoyarsk State Medical University and Krasnoyarsk Regional Centre for Collective Use at the Federal Research Centre “KSC SB RAS.” The confocal fluorescence microscopy research was carried out with the equipment of the Tomsk Regional Core Shared Research Facilities Center of the National Research Tomsk State University. The Center was supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2021-693 (No. 13.RFC.21.0012). - The authors are grateful to all the patients and hospital staff participating in this research. We acknowledge the assistance of the AptamerLab LCC (www.aptamerlab.com) and personally Vasily Mezko for the technical support. The authors thank Valentina L. Grigoreva, and Irina V. Gildebrand for the help with СTC staining . - ISSN 2296-889X
Аннотация: Introduction: Breast cancer (BC) diagnostics lack noninvasive methods and procedures for screening and monitoring disease dynamics. Admitted CellSearch® is used for fluid biopsy and capture of circulating tumor cells of only epithelial origin. Here we describe an RNA aptamer (MDA231) for detecting BC cells in clinical samples, including blood. The MDA231 aptamer was originally selected against triple-negative breast cancer cell line MDA-MB-231 using cell-SELEX. Methods: The aptamer structure in solution was predicted using mFold program and molecular dynamic simulations. The affinity and specificity of the evolved aptamers were evaluated by flow cytometry and laser scanning microscopy on clinical tissues from breast cancer patients. CTCs were isolated form the patients’ blood using the developed method of aptamer-based magnetic separation. Breast cancer origin of CTCs was confirmed by cytological, RT-qPCR and Immunocytochemical analyses. Results: MDA231 can specifically recognize breast cancer cells in surgically resected tissues from patients with different molecular subtypes: triple-negative, Luminal A, and Luminal B, but not in benign tumors, lung cancer, glial tumor and healthy epithelial from lungs and breast. This RNA aptamer can identify cancer cells in complex cellular environments, including tumor biopsies (e.g., tumor tissues vs. margins) and clinical blood samples (e.g., circulating tumor cells). Breast cancer origin of the aptamer-based magnetically separated CTCs has been proved by immunocytochemistry and mammaglobin mRNA expression. Discussion: We suggest a simple, minimally-invasive breast cancer diagnostic method based on non-epithelial MDA231 aptamer-specific magnetic isolation of circulating tumor cells. Isolated cells are intact and can be utilized for molecular diagnostics purposes.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Krasnoyarsk, Russia
Department of Oncology and Radiation Therapy, Faculty of Medicine, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
Krasnoyarsk Regional Clinical Cancer Center Named After A.I. Kryzhanovsky, Krasnoyarsk, Russia
Department of Internal Medicine, University of Iowa, Iowa, IA, United States
Department of General Surgery, Named After Prof. M.I. Gulman, Faculty of Medicine, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
Department of Pathological Anatomy, Faculty of Medicine, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
Krasnoyarsk Regional Pathology-Anatomic Bureau, Krasnoyarsk, Russia
Laboratory of Advanced Materials and Technology, Siberian Physical Technical Institute, Tomsk State University, Tomsk, Russia
School of Non-Ferrous Metals and Materials Science, Siberian Federal University, Krasnoyarsk, Russia
Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, Krasnoyarsk, Russia
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
Russian Scientific Center of Roentgenoradiology, Moscow, Russia
Alferov Federal State Budgetary Institution of Higher Education and Science, Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg, Russia
Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
Platform Discovery Sciences, Biology, Wave Life Sciences, Cambridge, MA, United States

Доп.точки доступа:
Kolovskaya, Olga S.; Zyuzyukina, Alena V.; Dassie, Justin P.; Zamay, Galina S.; Zamay, Tatiana N.; Boyakova, Nina V.; Khorzhevskii, Vladimir A.; Kirichenko, Daria A.; Lapin, I. N.; Лапин, И. Н.; Shchugoreva, Irina A.; Artyushenko, Polina V.; Tomilin, F. N.; Томилин, Феликс Николаевич; Veprintsev, Dmitry V.; Glazyrin, Yury E.; Minic, Zoran; Bozhenko, Vladimir K.; Kudinova, Elena A.; Kiseleva, Yana Y.; Krat, Alexey V.; Slepov, Eugene V.; Bukatin, Anton S.; Zukov, Ruslan A.; Shesternya, Pavel A.; Berezovski, Maxim V.; Giangrande, Paloma H.; Kichkailo, Anna S.
}
Найти похожие
6.


   
    Дозозависимые эффекты наноразмерных форм гуминовых кислот в гидропонной культуре Triticum aestivum: индукция окислительного стресса и увеличение численности пограничных клеток / Н. Г. Мензянова, С. А. Пятина, А. В. Шабанов, Е. И. Шишацкая // Журн. СФУ. Биол. - 2023. - Т. 16, № 1. - С. 64-86 ; J. Sib. Fed. Univ. Biol. - Библиогр.: 63 . - ISSN 1997-1389. - ISSN 2313-5530
   Перевод заглавия: Dose-dependent effects of nanoscale forms of humic acids in a hydroponic culture of Triticum aestivum: Induction of oxidative stress and an increase in the number of border cells
Кл.слова (ненормированные):
гидропонная культура Triticum aestivum -- гуминовые кислоты -- пограничные клетки -- окислительный стресс -- корневой апекс -- ризосфера -- hydroponic culture of Triticum aestivum -- humic acids -- border cells -- oxidative stress -- root apex -- rhizosphere
Аннотация: В гидропонной культуре Triticum aestivum L. изучали биологическую активность гуминовых кислот в форме наночастиц размером 6,5 нм и 68 нм. Гуминовые наночастицы (мелкие и крупные) в изученных концентрациях не ингибировали рост корня и не вызывали деструктивных изменений корневого апекса 2-дневных проростков. На средах с гуминовыми наночастицами в корнях проростков наблюдалось дозозависимое увеличение содержания карбонилированных белков, малонового альдегида и пролина – маркеров индуцированного окислительного стресса. Для мелких наночастиц основным продуктом свободнорадикального окисления был малоновый диальдегид, для крупных – карбонилированные белки. Индуцированный гуминовыми наночастицами окислительный стресс сопровождался дозозависимым увеличением численности свободных пограничных клеток и размеров гелевого чехла в корневом апексе 2-дневных проростков. Для мелких наночастиц (6,5 нм) эти изменения были выражены в значительно большей степени, чем для крупных наночастиц (68 нм). Полученные результаты позволяют рассматривать гуминовые наночастицы в качестве адаптогенов: способствуя увеличению численности популяции пограничных клеток и системы гелевого чехла (как продукта экскреторной активности пограничных клеток), наночастицы увеличивают устойчивость корневого апекса к воздействию неблагоприятных биотических и абиотических факторов.
The biological activity of humic acids in the form of nanoparticles with a size of 6.5 nm and 68 nm was studied in a hydroponic culture of Triticum aestivum L. Both smaller and larger humic nanoparticles at the studied concentrations neither inhibited root growth nor caused destructive changes in the root apexes of 2-day-old seedlings. A dose-dependent increase in the contents of markers of induced oxidative stress such as carbonylated proteins, malonaldehyde, and proline was observed in the roots of seedlings on media with humic nanoparticles. Malondialdehyde was the main product of free radical oxidation for smaller nanoparticles and carbonylated proteins – for larger ones. Oxidative stress induced by humic nanoparticles was accompanied by a dose-dependent increase in the number of free border cells and the size of the mucilaginous sheaths on the root apexes of 2-day-old seedlings. For smaller (6.5 nm) nanoparticles, these changes were much more pronounced than for larger (68 nm) nanoparticles. The results obtained allow us to consider humic nanoparticles as adaptogens: contributing to an increase in the population of border cells and the mucilaginous sheath system (as a product of the excretory activity of border cells), nanoparticles enhance the resistance of the root apex to the effects of unfavorable biotic and abiotic factors.

Смотреть статью,
РИНЦ,
Scopus,
Читать в сети ИФ
Держатели документа:
Сибирский федеральный университет, Российская Федерация, Красноярск
Институт физики им. Л. В. Киренского СО РАН, Российская Федерация, Красноярск

Доп.точки доступа:
Мензянова, Н. Г.; Пятина, С. А.; Шабанов, Александр Васильевич; Shabanov, A. V.; Шишацкая, Е. И.

}
Найти похожие
7.


   
    Microstructural parameters for modelling of superconducting foams / M. R. Koblischka, A. Koblischka-Veneva, Q. Nouailhetas [et al.] // Materials. - 2022. - Vol. 15, Is. 6. - Ст. 2303, DOI 10.3390/ma15062303. - Cited References: 62 . - ISSN 1996-1944
Кл.слова (ненормированные):
superconducting foams -- YBCO -- microstructure -- modelling parameters -- foam cells -- current flow
Аннотация: Superconducting YBa2Cu3Oy (YBCO) foams were prepared using commercial open-cell, polyurethane foams as starting material to form ceramic Y2 BaCuO5 foams which are then converted into superconducting YBCO by using the infiltration growth process. For modelling the supercon-ducting and mechanical properties of the foam samples, a Kelvin-type cell may be employed as a first approach as reported in the literature for pure polyurethane foams. The results of a first modelling attempt in this direction are presented concerning an estimation of the possible trapped fields (TFs) and are compared to experimental results at 77 K. This simple modelling revealed already useful information concerning the best suited foam structure to realize large TF values, but it also became obvious that for various other parameters like magnetostriction, mechanical strength, percolative current flow and the details of the TF distribution, a refined model of a superconducting foam sample incorporating the real sample structure must be considered. Thus, a proper description of the specific microstructure of the superconducting YBCO foams is required. To obtain a set of reliable data, YBCO foam samples were investigated using optical microscopy, scanning electron microscopy and electron backscatter diffraction (EBSD). A variety of parameters including the size and shape of the cells and windows, the length and shape of the foam struts or ligaments and the respective intersection angles were determined to better describe the real foam structure. The investigation of the foam microstructures revealed not only the differences to the original polymer foams used as base material, but also provided further insights to the infiltration growth process via the large amount of internal surface in a foam sample.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Experimental Physics, Saarland University, P.O. Box 151150, Saarbrucken, D-66041, Germany
GREEN, Universite de Lorraine, Nancy, F-54000, France
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Koblischka, M. R.; Koblischka-Veneva, A.; Nouailhetas, Q.; Hajiri, G.; Berger, K.; Douine, B.; Gokhfeld, D. M.; Гохфельд, Денис Михайлович
}
Найти похожие
8.


   
    Part II. Nanobubbles around plasmonic nanoparticles in terms of modern simulation modeling: what makes them kill the malignant cells? / A. S. Kostyukov, I. L. Isaev, A. E. Ershov [et al.] // J. Phys. D. - 2022. - Vol. 55, Is. 17. - Ст. 175402, DOI 10.1088/1361-6463/ac4c1f. - Cited References: 49. - The research was supported by the Ministry of Science and High Education of Russian Federation (Project No. FSRZ-2020-0008), and was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, Project No. 20-42-240003 . - ISSN 0022-3727. - ISSN 1361-6463
   Перевод заглавия: Часть II. Нанопузырьки вокруг плазмонных наночастиц с точки зрения современного имитационного моделирования: что заставляет их убивать злокачественные клетки?
РУБ Physics, Applied
Рубрики:
STRESS WAVES
   LASER

   MEMBRANE

   DAMAGE

   DEATH

   LYSIS

Кл.слова (ненормированные):
photothermal effect -- plasmonic nanoparticle -- malignant cell membrane -- pulsed laser radiation -- finite elements analysis -- anticancer therapy -- aptamer
Аннотация: We have established numerically the physical pattern and conditions for formation of nanosized bubbles in aqueous medium around biocompatible plasmonic nanoparticles (NPs) selectively bound to the membrane of the malignant cells by means of DNA-aptamers under the action of picosecond laser radiation. The results obtained are based on the finite volume method and hydrodynamic models underlying the ANSYS Fluent package with extended capabilities. We have found the main features and previously unknown dominant factors of the damage effect on the cell membrane at the moment of the bubble nucleation around the plasmonic NPs of different types taking into account the influence of the closely located membrane. Information on the kinetics of spatial distribution of pressure, temperature and the relative proportion of vapor in the 'nanoparticle-membrane-medium' system have been obtained. The attention is drawn to the advantages of using biocompatible, perfectly absorbing core–shell plasmonic NPs for anti-tumor therapy characterized by an increased mechanical effect on malignant cell membranes at lower laser radiation intensity and the spectral position of their plasmon resonance (λ = 700 nm) in the hemoglobin transparency range. This ensures penetration of laser radiation deep into tissues. The paper is provided with an extensive review of key publications and the state-of-art in this area.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Siberian Fed Univ, Int Res Ctr Spect & Quantum Chem IRC SQC, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Inst Computat Modelling, Siberian Branch, Krasnoyarsk 660036, Russia.
Fed Med Biol Agcy Russian Federat, Fed Siberian Res Clin Ctr, Krasnoyarsk 660037, Russia.
Russian Acad Sci, LV Kirensky Inst Phys, Fed Res Ctr KSC, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kostyukov, A. S.; Isaev, I. L.; Ershov, A. E.; Gerasimov, V. S.; Polyutov, S. P.; Karpov, S. V.; Карпов, Сергей Васильевич; Ministry of Science and High Education of Russian Federation [FSRZ-2020-0008]; RFBRRussian Foundation for Basic Research (RFBR); Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science [20-42-240003]
}
Найти похожие
9.


   
    Core-shell Fe3O4@C nanoparticles for magneto-mechanical destroy of Ehrlich ascites carcinoma cells / A. Е. Sokolov, O. S. Ivanova, E. S. Svetlitsky [et al.] // The Sixth Asian school-conference on physics and technology of nanostructured materials : Proceedings. - VLadivostok, 2022. - Ст. IV.o.08. - P. 189-190. - Cited References: 2 . - ISBN 987-5-8044-1716-2
Рубрики:

Аннотация: The core-shell magnetic nanoparticles, Fe3O4@C, were synthesized and surface aptamer-functionalized to use them as destroyers of living cancer Ehrlich's ascitic carcinoma cells. The morphology and features of the structural and magnetic properties of the obtained hybrid nanoparticles are studied.

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, FRC KSC SB RAS
Siberian Federal University
Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science
Department of Applied Physics, National Pingtung University, Taiwan

Доп.точки доступа:
Sokolov, A. Е.; Соколов, Алексей Эдуардович; Ivanova, O. S.; Иванова, Оксана Станиславовна; Svetlitsky, E. S.; Lukyanenko, K. A.; Shabanov, A. V.; Шабанов, Александр Васильевич; Shestakov, N. P.; Шестаков, Николай Петрович; Chen, Y. -Z.; Ying-Zhen Chen; Tseng, Y.-T.; Yaw-Teng Tseng; Lin, C.-R.; Chun-Rong Lin; Asian School-Conference on Physics and Technology of Nanostructured Materials(6 ; 2022 ; Apr. 25-29 ; Vladivostok); Азиатская школа-конференция по физике и технологии наноструктурированных материалов(6 ; 2022 ; 25-29 апр. ; Владивосток)
}
Найти похожие
10.


   
    Nanoparticle shape optimization for Tamm-plasmon-polariton-based organic solar cells in the visible spectral range / R. G. Bikbaev, S. Y. Vetrov, I. V. Timofeev, V. F. Shabanov // Photonics. - 2022. - Vol. 9, Is. 11. - Ст. 786, DOI 10.3390/photonics9110786. - Cited References: 28. - The reported study was funded by a grant of the President of the Russian Federation №MK-46.2021.1.2 . - ISSN 2304-6732
Кл.слова (ненормированные):
photonic crystal -- Tamm plasmon polariton -- organic solar cell
Аннотация: The effect of the shape of the nanoparticles and the polarization of incident light on the surface current density and the efficiency of an organic solar cell based on the Tamm plasmon polariton is investigated. In the cases of both elongated and flattened nanoparticles, it is shown that the efficiency of such a solar cell is increased when the electric field vector is parallel to the largest axis of the spheroid.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Bikbaev, R. G.; Бикбаев, Рашид Гельмединович; Vetrov, S. Y.; Timofeev, I. V.; Тимофеев, Иван Владимирович; Shabanov, V. F.; Шабанов, Василий Филиппович
}
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-59 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)