Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (58)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Dynamics<.>)
Общее количество найденных документов : 353
Показаны документы с 1 по 20
1.


    Zinenko, V. I.
    Lattice dynamics of BiFeO3 under hydrostatic pressure / V. I. Zinenko, M. S. Pavlovsky // 9th Russai/CIS/Baltic/Japan symposium on ferroelectricity : abstracts book : June 15-19, 2008, Vilnius, Lithuania. - p. 137


Доп.точки доступа:
Pavlovsky, M. S.; Павловский, Максим, Сергеевич; Зиненко, Виктор Иванович; Russia/CIS/Baltic/Japan Symposium on Ferroelectricity(9 ; 2008 ; May ; Vilnus, Lithuania)
}
Найти похожие
2.


   
    The lattice dynamics, ferroelectric and antiferroelectric instability and ferroelectric phase transition in disorder solid solutions PbB’1/2B”1/2O3 (B’ = Ga, In, Lu; B” = Nb, Ta) [Text] / Zhandun V.S., Zamkova N.G., Zinenko V.I. // 9th Russai/CIS/Baltic/Japan symposium on ferroelectricity : abstracts book : June 15-19, 2008, Vilnius, Lithuania. - p. 32


Доп.точки доступа:
Zhandun, V. S.; Жандун, Вячеслав, Сергеевич; Zamkova, N. G.; Замкова, Наталья, Геннадьевна; Zinenko, V. I.; Зиненко, Виктор, Иванович; Russia/CIS/Baltic/Japan Symposium on Ferroelectricity(9 ; 2008 ; May ; Vilnus, Lithuania)
}
Найти похожие
3.


    Orlov, Yu. S.
    Photoinduced nonlinear dynamics of strongly correlated systems with spin crossover: Autocatalytic spin transition / Yu. S. Orlov, S. V. Nikolaev, N. N. Paklin // JETP Lett. - 2024. - Vol. 119, Is. 3. - P. 227-232, DOI 10.1134/S0021364023603962. - Cited References: 25. - This work was supported by the Russian Science Foundation (project no. 22-22-20007) and by the Krasnoyarsk Regional Science Foundation (project "Nonlinear Dynamics and Photoinduced Dynamic Phase Transitions in Strongly Correlated Systems with Spin Crossover") . - ISSN 0021-3640. - ISSN 1090-6487
Аннотация: Nonlinear phenomena similar to the Belousov–Zhabotinsky reaction (autocatalytic oscillations of the population of high-spin and low-spin multielectron states of a transition metal ion) in open systems with spin crossover near bistability are considered. The conditions for possible experimental observation of autocatalytic oscillations of the magnetization in magnetically ordered systems with spin crossover are analyzed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Орлов, Юрий Сергеевич. Фотоиндуцированная нелинейная динамика сильно коррелированных систем со спиновым кроссовером: автокаталитический спиновый переход [Текст] / Ю. С. Орлов, С. В. Николаев, Н. Н. Паклин. - 6 с. // Письма в ЖЭТФ. - 2024. - Т. 119 Вып. 3. - С. 228-233

Держатели документа:
Siberian Federal University, 660041, Krasnoyarsk, Russia
Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia

Доп.точки доступа:
Nikolaev, S. V.; Николаев, Сергей Викторович; Paklin, N. N.; Орлов, Юрий Сергеевич
}
Найти похожие
4.


   
    Magnetic anisotropy and ferromagnetic resonance in inhomogeneous demagnetizing fields near edges of thin magnetic films / P. N. Solovev, B. A. Belyaev, N. M. Boev [et al.] // J. Phys. Condens. Matter. - 2024. - Vol. 36, Is. 19. - Ст. 195803, DOI 10.1088/1361-648X/ad258c. - Cited References: 38 . - ISSN 0953-8984. - ISSN 1361-648X
Кл.слова (ненормированные):
edge domain -- demagnetizing fields -- demagnetizing fields -- film edges -- magnetic anisotropy -- magnetization dynamics
Аннотация: Using local ferromagnetic resonance spectroscopy, we have studied the magnetic properties near edges of thin tangentially magnetized permalloy films, in which a well-defined uniaxial magnetic anisotropy was induced perpendicular to one of the edges. In the experiment, two samples with thicknesses of 90 and 300 nm and with slightly different compositions were examined. To explain the magnetization dynamics near edges, we propose a simple yet effective model of a film in the form of a rectangular prism, which yields the modified Kittel formula for the resonance frequency. In this formula, the locally averaged distance-dependent demagnetizing field that emerges near the edges is included as an additional uniaxial anisotropy term. The measurements reveal that at a certain distance from the edge, the resulting (apparent) anisotropy, determined from the angular dependencies of the resonance field, almost vanishes. Moreover, its easy axis reorients to become parallel to the edge. The model predictions agree well with these results, proving that the main resonance mode behavior near the film edges can be accurately described by introducing additional effective uniaxial anisotropy, provided the measuring area is relatively large. However, for the thick (300 nm) sample, additional precession modes are also observed. These modes distort the angular dependence of the main mode, thus demonstrating the limitations of the model.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia

Доп.точки доступа:
Solovev, P. N.; Соловьев, Платон Николаевич; Belyaev, B. A.; Беляев, Борис Афанасьевич; Boev, N. M.; Боев, Никита Михайлович; Skomorokhov, G. V.; Скоморохов, Георгий Витальевич; Izotov, A. V.; Изотов, Андрей Викторович
}
Найти похожие
5.


   
    Dynamics of asphaltene aggregates under high-pressure CO2 revealed by pulsed-field gradient NMR / E. V. Morozov, S. N. Trukhan, I. V. Kozhevnikov [et al.] // Energy & Fuels. - 2023. - Vol. 37, Is. 22. - P. 17215-17226, DOI 10.1021/acs.energyfuels.3c02862. - Cited References: 90. - The present research was performed with the financial support of the Russian Science Foundation (project no. 21-13-00171, http://rscf.ru/project/21-13-00171/) using the equipment of the Krasnoyarsk Regional Center of Research Equipment of the Federal Research Center “Krasnoyarsk Science Center SB RAS” . - ISSN 0887-0624. - ISSN 1520-5029
Аннотация: The work demonstrates the results of the first experimental PFG NMR study in situ of the complex phase behavior of asphaltenes in the presence of high-pressure CO2. To perform the experiments, a series of sealed, thick-walled quartz capillaries were prepared with a mixture of CO2 and asphaltenes dissolved either in chloroform or benzene at different initial concentrations. Then, the temperature dependence of the diffusion coefficients of the asphaltene aggregates was measured for each sample after the mixture reached its equilibrium state, at which, in accordance with the solubility limit, only part of the initial asphaltenes remained dissolved. Despite quite low residual asphaltene concentrations in solution, experimental data clearly demonstrated the presence of aggregated structures (up to 70–80 wt %) attributed solely to nanoaggregates, with no signs of the presence of macroaggregates in the samples. Temperature dependencies of aggregate diffusivity clearly showed that the scenario, according to which the evolution of the asphaltene aggregates will develop, strongly depends on the initial asphaltene concentration, mass fraction of CO2 loaded into the system, and chemical nature of the solvent used. In particular, the most diluted asphaltene solution, expected to be the most resistive to the aggregation processes in a high-pressure CO2 environment, revealed the most pronounced aggregation-dependent translational dynamics as compared to those with a moderate initial asphaltene concentration. Contrarily, the concentrated asphaltene solution may not show drastic aggregation processes if the mass fraction of the CO2 loaded will not appear to be so high. Finally, the experimental results provide evidence that the temperature-triggered structural transformation of asphaltene aggregates due to the noncovalent bond breakup is not hindered under high-pressure CO2, but instead becomes more emphasized. The results obtained shed new light on asphaltene aggregate dynamics and brought new knowledge about the fundamental behavior of asphaltene in high-pressure CO2 conditions.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Chemistry and Chemical Technology, Federal Research Center “Krasnoyarsk Science Center of Siberian Branch of the Russian Academy of Sciences”, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Center of Siberian Branch of the Russian Academy of Sciences”, Akademgorodok 50/38, Krasnoyarsk 660036, Russia
Federal Research Center “Krasnoyarsk Science Center of Siberian Branch of the Russian Academy of Sciences”, Akademgorodok 50, Krasnoyarsk 660036, Russia
Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Ak. Lavrentieva 5, Novosibirsk 630090, Russia

Доп.точки доступа:
Morozov, E. V.; Морозов, Евгений Владимирович; Trukhan, Sergey N.; Kozhevnikov, Ivan V.; Peterson, Ivan V.; Martyanov, Oleg N.
}
Найти похожие
6.


   
    Получение высокоселективных аптамеров к онколитическому вирусу VV-GMCSF-Lact. Теоретические и экспериментальные подходы / М. А. Дымова, Е. В. Кулигина, В. А. Рихтер [и др.] // Сиб. мед. обозрение. - 2023. - № 5. - С. 95-101 ; Sib. Med. Rev., DOI 10.20333/25000136-2023-5-95-101. - Библиогр.: 21. - Исследование выполнено за счет гранта Российского научного фонда № 22-64-00041, https://rscf.ru/project/22-64-00041/. Работа также поддержана в рамках государственного задания ИХБФМ СО РАН No121030200173-6 (наработка вируса). Авторы благодарят Межведомственный суперкомпьютерный центр Российской академии наук (МСЦ РАН) за предоставление вычислительных мощностей . - ISSN 1819-9496. - ISSN 2500-0136
   Перевод заглавия: Obtaining highly selective aptamers to the VV-GMCSF-Lact oncolytic virus. Theoretical and experimental approaches
Кл.слова (ненормированные):
аптамеры -- SELEX -- онколитический вирус VV-GMCSF-Lact -- цитофлуориметрия -- молекулярная динамика -- компьютерное моделирование -- aptamers -- SELEX -- VV-GMCSF-Lact oncolytic virus -- cytofluorimetry -- molecular dynamics -- computer modelling
Аннотация: Введение. Деструкция злокачественных опухолей с помощью онколитических вирусов – один из наиболее эффективных и безопасных способов противоопухолевой терапии. Для получения доступа к опухолевым клеткам вирус должен длительное время циркулировать в кровотоке, избегая действия иммунной системы. Однако при введении вируса в организм он провоцирует выработку вируснейтрализующих антител, снижающих его противоопухолевый эффект. Наиболее эффективным способом защиты вируса от нейтрализующих антител является его экранирование, в частности, с помощью селективных к нему ДНК-аптамеров. Цель исследования. С помощью экспериментальных методов и теоретических расчётов разработать подходящие для создания противоопухолевого препарата на основе онколитического вируса VV-GMCSF-Lact ДНК-аптамеры, эффективно экранирующие вирусы и способные защитить их от вируснейтрализующих антител. Материал и методы. Моделирование вторичных структур аптамеров выполнено в программе для фолдинга нуклеиновых кислот mFold, моделирование соответствующих пространственных полноатомных структур аптамеров – в программах SimRNA и VMD. Расчёты молекулярной динамики проведены в программном пакете GROMACS 2018.8. Кластерный анализ полученных молекулярно-динамических траекторий выполнен в программе VMD. Оценка связывания Cy5-модифицированных аптамеров с вирусом проведена с помощью проточной цитометрии на цитофлуориметре BD FACSCanto II (Becton Dickinson, г. Франклин Лейкс, Нью-Джерси, США). Результаты. Модификация аптамеров, экспериментально полученных с помощью технологии SELEX, позволила получить пять укороченных олигонуклеотидов NV1t_72, NV4t_64, NV4t_53, NV14t_41 и NV14t_57, экранирующих онколитический вирус VV-GMCSF-Lact, самым эффективным из которых оказался аптамер NV14t_57. Теоретические расчёты показали, что аффинность аптамеров определяется их трёхмерной структурой, зависящей от способа модификации. Заключение. Получен высокоселективный аптамер NV14t_57, который является наиболее перспективным кандидатом для дальнейшей работы по созданию препарата для противоопухолевой терапии онкологических заболеваний на основе онколитического вируса осповакцины VVGMCSF-Lact.
Introduction. Destruction of malignant tumours with oncolytic viruses is one of the most effective and safe methods of antitumor therapy. To gain access to tumour cells, the virus must circulate in the bloodstream for a long time, avoiding the action of the immune system. However, when a virus is introduced into the body, it provokes the production of virus-neutralising antibodies that reduce its antitumor effect. The most effective way to protect a virus from antibodies that neutralise it is to screen it: in particular, using selective DNA aptamers. The aim of the research. Using experimental methods and theoretical calculations, to develop DNA aptamers suitable for creating an antitumor drug based on the VV-GMCSF-Lact oncolytic virus, which effectively screen viruses and can protect them from virus-neutralising antibodies. Material and methods. Modelling of the secondary structures of aptamers was performed using the mFold program for nucleic acid folding, modelling of the corresponding spatial full-atom structures of aptamers was performed using the SimRNA and VMD programs. Molecular dynamics calculations were carried out using the GROMACS 2018.8 software package. Cluster analysis of the obtained molecular dynamic trajectories was performed using the VMD program. Binding of Cy5-modified aptamers to the virus was assessed using flow cytometry on a BD FACSCanto II cytometer (Becton Dickinson, Franklin Lakes, New Jersey, USA). Results. Modification of aptamers experimentally obtained using the SELEX technology made it possible to obtain five truncated oligonucleotides NV1t_72, NV4t_64, NV4t_53, NV14t_41, and NV14t_57, which screen the oncolytic virus VV-GMCSF-Lact, the most effective of which was the NV14t_57 aptamer. Theoretical calculations have shown that the affinity of aptamers is determined by their three-dimensional structure, which depends on the method of modification. Conclusion. A highly selective aptamer NV14t_57 has been obtained, which is the most promising candidate for further work on the creation of a drug for antitumor therapy of oncological diseases based on the VV-GMCSF-Lact oncolytic vaccinia virus.

Смотреть статью,
РИНЦ,
Scopus
Держатели документа:
Институт химической биологии и фундаментальной медицины СО РАН, Новосибирск 630090, Российская Федерация
Красноярский государственный медицинский университет имени профессора В. Ф. Войно-Ясенецкого, Красноярск 660022, Российская Федерация
Федеральный исследовательский центр «Красноярский научный центр» СО РАН, Красноярск 660036, Российская Федерация
Сибирский федеральный университет, Красноярск 660041, Российская Федерация
Институт физики им. Л. В. Киренского СО РАН, Красноярск 660036, Российская Федерация

Доп.точки доступа:
Дымова, М. А.; Кулигина, Е. В.; Рихтер, В. А.; Артюшенко, П. В.; Рогова, А. В.; Щугорева, И. А.; Томилин, Феликс Николаевич; Tomilin, F. N.; Кичкайло, А. С.; Замай, Т. Н.

}
Найти похожие
7.


   
    Spin dynamics in ensembles of ultrafine ferrihydrite nanoparticles / Yu. V. Knyazev, D. A. Balaev, S. A. Skorobogatov [et al.] // Phys. Rev. B. - 2023. - Vol. 107, Is. 11. - Ст. 115413, DOI 10.1103/PhysRevB.107.115413. - Cited References: 66. - The electron microscopy study and ac susceptibility measurements were carried out on the equipment of the Krasnoyarsk Territorial Center for Collective Use, Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences. This study was supported by the Russian Science Foundation, Project No. 21-72-00025 Tuning the Magnetic Properties of Ultrafine Biocompatible Ferrihydrite Nanoparticles through Interparticle Interactions [66] . - ISSN 2469-9950. - ISSN 2469-9969
Аннотация: Features of the spin dynamics in ensembles of interacting (FH-chem) and weakly interacting (FH-coated) magnetic ultrasmall (‹d› ∼ 2 nm) ferrihydrite nanoparticles have been explored. The dc and ac magnetic susceptibilities [χ'(T ) and χ''(T )] of the investigated samples have been thoroughly measured in a weak magnetic field (2 Oe) around the temperatures of superparamagnetic blocking of the nanoparticle magnetic moments (19 and 50.4 K for FH-coated and FH-chem, respectively, according to the dc magnetization data). It has been shown that the magnetic interactions between nanoparticles induce the formation of the cluster spin-glass state below the superparamagnetic blocking temperature (Tg = 18 and 49.5 K for FH-coated and FH-chem, respectively). It has been found that coating of nanoparticles increases the critical scaling index from zν = 5.9 (FH-chem) to zν = 8.0 (FH-coated). This indicates a general slowdown of the dynamics of correlated spins, which is also expressed as an increase in relaxation time τ0 after switching on the interparticle interactions. We attribute this phenomenon to a consequence of a change in the volume of correlated spins with the increasing size of a cluster of interacting nanoparticles. It has been demonstrated using the simulated χ''(T ) dependence that the dissipation of the magnetic energy occurs in two independent stages. The first stage is directly related to the blocking of the nanoparticle magnetic moments, while the second stage reflects the spin-glass behavior of surface spins and depends strongly on the intensity of the interparticle interactions.

Смотреть статью,
Смотреть статью,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50, bld. 38, Krasnoyarsk 660036, Russia
Siberian Federal University, Svobodniy 79, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Knyazev, Yu. V.; Князев, Юрий Владимирович; Balaev, D. A.; Балаев, Дмитрий Александрович; Skorobogatov, S. A.; Скоробогатов, Станислав Алексеевич; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Bayukov, O. A.; Баюков, Олег Артемьевич; Stolyar, S. V.; Столяр, Сергей Викторович; Yaroslavtsev, R. N.; Ярославцев, Роман Николаевич; Iskhakov, R. S.; Исхаков, Рауф Садыкович
}
Найти похожие
8.


   
    Lattice dynamics of the BaMg1/3Ta2/3O3 complex perovskite / S. N. Krylova, E. A. Popova, Yu. E. Kitaev, S. G. Lushnikov // Materials Science and Nanotechnology (MSN-2023) : abstract book of International conference / Ural Federal University; org. com. A. N. Vtyurin [et al.]. - Ekaterinburg, 2023. - Ст. O14. - P. 54. - Cited References: 9. - Russian Foundation for Basic Research and DFG project No 21-52-12018 . - ISBN 978-5-9500624-6-9

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics SB RAS

Доп.точки доступа:
Vtyurin, A. N. \org. com.\; Втюрин, Александр Николаевич; Krylova, S. N.; Крылова, Светлана Николаевна; Popova, E. A.; Kitaev, Yu. E.; Lushnikov, S. G.; Уральский Федеральный университет им. Первого Президента России Б.Н. Ельцина; Ural Federal University; "Materials science and nanotechnology", International conference(2023 ; Aug. 27-30 ; Ekaterinburg)
}
Найти похожие
9.


   
    Raman scattering, absorption and luminescence spectroscopy of CoSiF6·6H2O crystal and CoSiF6·6H2O:Mn4+ red-emitting phosphor / Y. V. Gerasimova, A. S. Aleksandrovsky, N. M. Laptash [et al.] // Opt. Mater. - 2023. - Vol. 144. - Ст. 114343, DOI 10.1016/j.optmat.2023.114343. - Cited References: 30. - The reported study was funded by Russian Science Foundation , Government of Krasnoyarsk Territory and Krasnoyarsk Regional Foundation of Science according to the research project ‘‘Synthesis, spectral and magnetic properties of ABF6·6H2O systems, new materials for photonics.” No. 23-22-10037 . https://rscf.ru/en/project/23-22-10037/ . Usage of equipment of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS is acknowledged. We thank A. Yu. Mamaev for recording the luminesce spectra of CoSiF6·6H2O:Mn 4+ . - ISSN 0925-3467. - ISSN 1873-1252
Кл.слова (ненормированные):
Phase transition -- Dynamics -- Raman -- Electronic excitations -- Luminescence -- Tanabe-Sugano
Аннотация: CoSiF6·6H2O and CoSiF6·6H2O:Mn4+ crystals were investigated by means of Raman, optical absorption, and luminescence spectroscopy. Absorption spectra of CoSiF6·6H2O are analyzed by Tanabe-Sugano technique and are proved to be well-describable at crystal field strength Dq = 1000 cm−1, and Racah parameters B = 896 cm−1, C = 4408 cm−1, Dq/B = 1.116. Raman spectroscopy reveals a phase transition associated with the ordering of both the CoO6 and SiF6 octahedra, which occurs through the ordering of the H2O subsystem. Luminescence spectrum of Mn4+ ions in CoSiF6·6H2O lattice consists of six components corresponding to Stokes and anti-Stokes emission from 2E state of Mn4+ ion at vibrational frequencies of MnF6 octahedron ν6 = 230 cm−1, ν4 = 335 cm−1, and ν3 = 645 cm−1. Quantum efficiency of red emission maximizes at excitation wavelength 357 nm and equals to 5%. Decrease of quantum efficiency in comparison to other related materials is explained by absorption of Co2+ ions and non-radiative relaxation in the Co2+ subsystem.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Kirensky Institute of Physics, Siberian Branch of RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Chemistry, Far Eastern Branch of RAS, Vladivostok, 690022, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Gerasimova, Yu. V.; Герасимова, Юлия Валентиновна; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Laptash, N. M.; Krylov, A. S.; Крылов, Александр Сергеевич; Gerasimov, M. A.; Герасимов, Максим Алексеевич; Dubrovskiy, A. A.; Дубровский, Андрей Александрович
}
Найти похожие
10.


   
    Crystal structure of bismuth-containing samarium iron–aluminium borates Sm1−xBixFe3−yAly(BO3)4 (x = 0.05–0.07, y = 0–0.28) in the temperature range of 25–500 K / E. S. Smirnova, O. A. Alekseeva, V. V. Artemov [et al.] // Crystals. - 2023. - Vol. 13, Is. 7. - Ст. 1128, DOI 10.3390/cryst13071128. - Cited References: 59. - This work was supported by the Russian Science Foundation (project No 23-22-00286) . - ISSN 2073-4352
Кл.слова (ненормированные):
rare-earth iron–aluminium borates -- solid solutions -- low-temperature X-ray diffraction -- single crystals -- temperature structural dynamics -- negative thermal expansion
Аннотация: Structural features of new mixed bismuth-containing samarium iron–aluminium borate single crystals Sm1−xBixFe3−yAly(BO3)4 (x = 0.05–0.07, y = 0–0.28) were studied using X-ray diffraction analysis based on aluminium content and temperature in the range 25–500 K. The crystals were grown using the solution-in-melt technique with Bi2Mo3O12 in a flux. The composition of the single crystals was analyzed using energy-dispersive X-ray fluorescence and energy-dispersive X-ray elemental analysis. Temperature dependencies of Sm1−xBixFe3−yAly(BO3)4 unit-cell parameters were studied. Negative thermal expansion was identified below 100 K and represented by characteristic surfaces of the thermal expansion tensor. (Sm,Bi)–O, (Sm,Bi)–(Fe,Al), (Fe,Al)–(Fe,Al), and (Fe,Al)–O interatomic distances decreased with the addition of aluminium atoms. An increase in the (Fe,Al)–(Fe,Al) intrachain bond length at low temperatures in the magnetically ordered state weakened this bond, whereas a decrease in the (Fe,Al)–(Fe,Al) interchain distance strengthened super-exchange paths between different chains. It was found that the addition of aluminium atoms influenced interatomic distances in Sm1−xBixFe3−yAly(BO3)4 much more than lowering the temperature from 293 K to 25 K. The effect of aluminium doping on magnetoelectric properties and structural symmetry of rare-earth iron borates is also discussed.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’, Russian Academy of Sciences, Moscow 119333, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Smirnova, E. S.; Alekseeva, O. A.; Artemov, V. V.; Sorokin, T. A.; Khmelenin, D. N.; Sidorova, E. V.; Frolov, K. V.; Gudim, I. A.; Гудим, Ирина Анатольевна
}
Найти похожие
11.


    Oreshonkov, A. S.
    Phonon dynamics in MoSi2N4: insights from DFT calculations / A. S. Oreshonkov, E. V. Sukhanova, Z. I. Popov // Phys. Chem. Chem. Phys. - 2023. - Vol. 25, Is. 43. - P. 29831-29841, DOI 10.1039/D3CP02921B. - Cited References: 74. - The authors acknowledge financial support from Russian Science Foundation (project №21-73-20183, https://rscf.ru/project/21-73-20183/) . - ISSN 1463-9076. - ISSN 1463-9084
Кл.слова (ненормированные):
monolayer -- bulk -- Raman spectrum -- nanostructure -- stability
Аннотация: We have reported the density functional theory investigations on the monolayer, 2 layered and bulk MoSi2N4 in three structural modifications called as α1 [Science, DOI: 10.1126/science.abb7023], α2 and α3 [Adv. Funct. Mater., DOI: 10.1002/adfm.202214050]. We showed that in the case of monolayers the difference in total energies is less than 0.1 eV between α1 and α3 phases, and less than 0.2 eV between α1 and α2 geometries. The most energetically favorable layer stacking for the bulk structures of each phase was investigated. All considered modifications are dynamically stable from a single layer to a bulk structure in energetically favorable stacking. Raman spectra for the monolayer, 2 layered and bulk structures were simulated and the vibrational analysis was performed. The main difference between in the obtained spectra is associated with the position of the strongest band which depends on the Mo-N bond length. According to the obtained data, we can conclude that Raman line at 348 cm–1 in the experimental spectra of MoSi2N4, can have more complex explanation then just Γ-point Raman-active vibration as was discussed before in [Science, DOI: 10.1126/science.abb7023].

Смотреть статью,
Scopus,
WOS
Держатели документа:
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, Federal Research Center, KSC SB RAS, Krasnoyarsk 660036, Russia
School of Engineering and Construction, Siberian Federal University, Krasnoyarsk 660041, Russia
Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region, Russia

Доп.точки доступа:
Sukhanova, E. V.; Popov, Z. I.; Орешонков, Александр Сергеевич
}
Найти похожие
12.


    Muraev, P. S.
    Quantum manifestation of the classical bifurcation in the driven dissipative Bose–Hubbard dimer / P. S. Muraev, D. N. Maksimov, A. R. Kolovsky // Entropy. - 2023. - Vol. 25, Is. 1 : Special Issue: Quantum Chaos—Dedicated to Professor Giulio Casati on the Occasion of His 80th Birthday. - Ст. 117, DOI 10.3390/e25010117. - Cited References: 18. - This work has been supported by Russian Science Foundation through grant N19-12-00167 . - ISSN 1099-4300
Кл.слова (ненормированные):
open quantum system -- non-linear dynamics -- chaotic attractors
Аннотация: We analyze the classical and quantum dynamics of the driven dissipative Bose–Hubbard dimer. Under variation of the driving frequency, the classical system is shown to exhibit a bifurcation to the limit cycle, where its steady-state solution corresponds to periodic oscillation with the frequency unrelated to the driving frequency. This bifurcation is shown to lead to a peculiarity in the stationary single-particle density matrix of the quantum system. The case of the Bose–Hubbard trimer, where the discussed limit cycle bifurcates into a chaotic attractor, is briefly discussed.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia
IRC SQC, Siberian Federal University, 660041 Krasnoyarsk, Russia

Доп.точки доступа:
Maksimov, D. N.; Максимов, Дмитрий Николаевич; Kolovsky, A. R.; Коловский, Андрей Радиевич; Мураев, Павел Сергеевич
}
Найти похожие
13.


   
    Antiferromagnetic resonance and magnetic anisotropy in PrxY1−xFe3(BO3)4 crystals in the region of the magnetic structure transformation “easy axis – easy plane” / A. I. Pankrats, S. M. Zharkov, G. M. Zeer, I. A. Gudim // J. Alloys Compd. - 2022. - Vol. 909. - Ст. 164821, DOI 10.1016/j.jallcom.2022.164821. - Cited References: 37. - The authors acknowledge the assistance of R. Mironov in some resonance measurements. The SEM and EDS investigations were conducted in the SFU Joint Scientific Center supported by the State assignment (#FSRZ-2020–0011) of the Ministry of Science and Higher Education of the Russian Federation . - ISSN 0925-8388
Кл.слова (ненормированные):
Magnetically ordered materials -- Rare earth alloys and compounds -- Spin dynamics -- Anisotropy -- Magnetic measurements -- Scanning electron microscopy, SEM
Аннотация: The spin dynamics, magnetic structures and magnetic anisotropy of single crystals PrxY1−xFe3(BO3)4 have been studied using antiferromagnetic resonance (AFMR) in a wide range of frequencies, magnetic fields, and temperatures. The frequency-field dependences of AFMR for the crystals with x = 0.25 and 0.45 are characteristic of antiferromagnets with the easy plane (EP) anisotropy. The crystals with x = 0.75 and 1.0 exhibit frequency-field dependences that are typical for antiferromagnets with the easy axis (EA) anisotropy. In these crystals, a significant decrease in the effective anisotropy fields of praseodymium upon the transition to the spin-flop state has been found. It is shown that this is the main reason for the large lability intervals, within which the regions of coexistence of the collinear and spin-flop states overlap. In the crystal with x = 0.67, the magnetic field applied along the trigonal axis of the crystal leads to the spin reorientation transition from the EA to the EP state. A magnetic phase diagram of the states on the plane "magnetic field - temperature" is built. In this crystal, the effective anisotropy field of praseodymium also decreases upon the transition to the field-induced EP state. Diamagnetic dilution of the praseodymium subsystem leads to the contribution of this subsystem to the total anisotropy field depending almost linearly on the praseodymium concentration.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50/38, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny st., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Pankrats, A. I.; Панкрац, Анатолий Иванович; Zharkov, S. M.; Жарков, Сергей Михайлович; Zeer, G. M.; Gudim, I. A.; Гудим, Ирина Анатольевна
}
Найти похожие
14.


    Nesterov, A. I.
    Quench dynamics and defects formation in the Ising chain in a transverse magnetic field / A. I. Nesterov, M. F. Ramirez, S. G. Ovchinnikov // Eur. Phys. J. B. - 2022. - Vol. 95, Is. 4. - Ст. 73, DOI 10.1140/epjb/s10051-022-00331-y. - Cited References: 36. - AIN acknowledges the support by the CONACyT. The work by SGO is supported by the Russian Scientific Foundation under the grant 18-12-00022 . - ISSN 1434-6028
Кл.слова (ненормированные):
Defects -- Excited states -- Magnetic fields
Аннотация: We study quench dynamics and defects formation in the one-dimensional quantum Ising chain in a time-dependent transverse magnetic field, given by a semi-infinite pulse and as the pulse of the finite width. The system’s final state depends on the quench time and pulse amplitude, resulting in the emergence of topological defects, and consists of a mixture of ground and excited states. We obtain a new analytical expression, generalizing the Landau–Zener (LZ) and adiabatic-impulse (AI) approximation formulas for the asymptotic probability of remaining in the ground state. We show that our theoretical predictions are in good agreement with the results of the numerical simulations, even when the LZ and AI approximations fail.

Смотреть статью,
Scopus
Держатели документа:
Departamento de Fisica, CUCEI, Universidad de Guadalajara, Jalisco, Guadalajara, CP 44430, Mexico
Tepatitlan’s Institute for Theoretical Studies, Jalisco, Tepatitlan, Mexico
L.V. Kirensky Institute of Physics, SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Ramirez, M. F.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
15.


   
    Unfolding the terahertz spectrum of soft porous crystals: rigid unit modes and their impact on phase transitions / A. E.J. Hoffman, I. Senkovska, J. Wieme [et al.] // J. Mater. Chem. A. - 2022. - Vol. 10, Is. 33. - P. 17254-17266, DOI 10.1039/d2ta01678h. - Cited References: 80. - This work was financially supported by the Fund for Scientific Research Flanders (FWO), the Research Board of the Ghent University (BOF), the Deutsche Forschungsgemeinschaft (DFG, project number 448809307), and the Russian Foundation for Basic Research (RFBR, project number 21-52-12018). The authors thank Kerstin Zechel for sample synthesis. The computational resources and services used in this work were provided by the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government . - ISSN 2050-7488
Кл.слова (ненормированные):
Calculations -- Crystalline materials -- Lattice vibrations -- Phonons -- Vibration analysis -- Ab initio -- Building blockes -- Dynamics calculations -- Low-frequency phonon -- Metalorganic frameworks (MOFs) -- Phase transition mechanisms -- Porous crystals -- Rigid unit modes -- Terahertz spectrum -- Unfoldings -- Organometallics
Аннотация: Phase transitions in flexible metal-organic frameworks or soft porous crystals are mediated by low-frequency phonons or rigid-unit modes. The alteration of specific building blocks may change the lattice dynamics of these frameworks, which can influence the phase transition mechanism. In this work, the impact of building block substitution on the rigid-unit modes in flexible MIL-53 analogs with a winerack topology will be investigated via ab initio lattice dynamics calculations. First, the accuracy of the theoretical simulations is verified via experimental Raman measurements, which provide unique fingerprint vibrations in the terahertz range to characterize the phase transition. Following analysis of the low-frequency vibrations shows that there exists a set of universal rigid-unit modes inducing translations and/or rotations of the building blocks. The theoretical results demonstrate that linker substitutions have a large effect on the rigid-unit mode frequencies, whereas this is less so for inorganic chain substitutions. These findings may help to rationally tune the phonon frequencies in soft porous crystals.

Смотреть статью,
Scopus
Держатели документа:
Center for Molecular Modeling, Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
Inorganic Chemistry I, Technische Universitat Dresden, Bergstra?e 66, Dresden, 01187, Germany
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Hoffman, A. E.J.; Senkovska, I.; Wieme, J.; Krylov, A. S.; Крылов, Александр Сергеевич; Kaskel, S.; Van Speybroeck, V.
}
Найти похожие
16.


   
    Charge-transfer plasmons of complex nanoparticle arrays connected by conductive molecular bridges / A. S. Fedorov, M. A. Visotin, E. V. Eremkin [et al.] // Phys. Chem. Chem. Phys. - 2022. - Vol. 24, Is. 32. - P. 19531-19540, DOI 10.1039/d2cp01811j. - Cited References: 43. - The work is supported (ASF, EVE, POK, and SPP) by the Russian Science Foundation (project no. 18-13-00363) . - ISSN 1463-9076
Кл.слова (ненормированные):
Charged nanoparticles -- Complex nanoparticles -- Coulombs energy -- External electromagnetic field -- Molecular bridges -- Molecular dynamics algorithms -- Molecular linkers -- Nanoparticle array -- Plasmon frequency -- Statistic approaches
Аннотация: Charge-transfer plasmons (CTP) in complexes of metal nanoparticles bridged by conductive molecular linkers are theoretically analysed using a statistic approach. The applied model takes into account the kinetic energy of carriers inside the linkers including its dissipation and the Coulomb energy of the charged nanoparticles. The plasmons are statistically investigated for systems containing a large number of complexes of bridged nanoparticles of realistic sizes generated using a simplified molecular dynamics algorithm, where the geometries of the complexes are dependent on the rate of connection of the linkers with the nanoparticles. As illustrated, the distribution of CTP frequencies in the generated nanoparticle complexes is very inhomogeneous. It has a narrow peak, corresponding to CTP plasmons in dimers, and two broad peaks, corresponding mainly to low and high-frequency oscillations in chains of connected nanoparticles. It is found that in general the plasmon frequencies depend inversely on the value of the complex dipole moment of the plasmon oscillation, where the assumption follows that low-frequency plasmons will be more efficiently excited in an external electromagnetic field. To calculate the CTP energy absorption in this field two model modifications are proposed: a system-external electromagnetic field interaction model and a simplified broadening plasmon peak model where the plasmons are calculated at first without damping and where the delta-shaped oscillation peaks are broadened then due to the damping. It is demonstrated that both modifications lead to a wide and almost monotonic absorption in the IR region for all generated systems containing a large number of bridged nanoparticles due to the presence of a large number of CTPs in this region.

Смотреть статью,
Scopus
Держатели документа:
International Research Center of Spectroscopy and Quantum Chemistry - IRC SQC, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
Federal Siberian Research Clinical Center under FMBA of Russia, Krasnoyarsk, 660037, Russian Federation

Доп.точки доступа:
Fedorov, A. S.; Федоров, Александр Семенович; Visotin, M. A.; Высотин, Максим Александрович; Eremkin, E. V.; Krasnov, P. O.; Agren, H.; Polyutov, S. P.
}
Найти похожие
17.


   
    Quaternary selenides EuLnCuSe3: Synthesis, structures, properties and in silico studies / M. V. Grigoriev, L. A. Solovyov, A. V. Ruseikina [et al.] // Int. J. Mol. Sci. - 2022. - Vol. 23, Is. 3. - Ст. 1503, DOI 10.3390/ijms23031503. - Cited References: 90 . - ISSN 1422-0067
   Перевод заглавия: Четвертичные селениды EuLnCuSe3: синтез, структура, свойства и компьютерное моделирование
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
RARE-EARTH
   CRYSTAL-STRUCTURES

   MAGNETIC-PROPERTIES

   THERMOELECTRIC PERFORMANCE

Кл.слова (ненормированные):
inorganic materials -- ab initio calculations -- magnetic measurements -- lattice dynamics -- vibrational spectroscopy -- optical spectroscopy -- negative magnetization
Аннотация: In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t’, and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 → Eu2CuS3 → KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87–2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Univ Tyumen, Lab Theory & Optimizat Chem & Technol Processes, Tyumen 625003, Russia.
SB RAS, Inst Chem & Chem Technol, Fed Res Ctr KSC, Krasnoyarsk 660036, Russia.
Univ Tyumen, Inst Chem, Tyumen 625003, Russia.
Siberian Fed Univ, Dept Photon & Laser Technol, Krasnoyarsk 660079, Russia.
RAS, SB, Fed Res Ctr KSC, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Ural Fed Univ, Inst Nat Sci & Math, Mira Str 19, Ekaterinburg 620002, Russia.
Univ Tyumen, Inst Phys & Technol, Tyumen 625003, Russia.
Kemerovo State Univ, Res & Dev Dept, Kemerovo 650000, Russia.
Siberian Fed Univ, Inst Engn Phys & Radioelect, Krasnoyarsk 660079, Russia.
Siberian Fed Univ, Sch Engn & Construct, Krasnoyarsk 660041, Russia.
Univ Tyumen, Engn Ctr Composite Mat Based Wolfram Cpds & Rare, Tyumen 625003, Russia.
Univ Stuttgart, Inst Inorgan Chem, D-70569 Stuttgart, Germany.
Kurgan State Univ, Adv Mat Ind & Biomed Lab, Sovetskaya Str 63-4, Kurgan 640020, Russia.
Ural Fed Univ, Innovat Ctr Chem & Pharmaceut Technol, Mira Str 19, Ekaterinburg 620002, Russia.

Доп.точки доступа:
Grigoriev, Maxim V.; Solovyov, Leonid A.; Ruseikina, Anna V.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Chernyshev, Vladimir A.; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Garmonov, Alexander A.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Shestakov, N. P.; Шестаков, Николай Петрович; Matigorov, Alexey V.; Volkova, Svetlana S.; Ostapchuk, Evgeniy A.; Kertman, Alexander V.; Schleid, Thomas; Safin, Damir A.
}
Найти похожие
18.


   
    Structure- and interaction-based design of anti-SARS-CoV-2 Aptamers / V. Mironov, I. A. Shchugoreva, P. V. Artyushenko [et al.] // Chem. - Eur. J. - 2022. - Vol. 28, Is. 12. - Ст. e202104481, DOI 10.1002/chem.202104481. - Cited References: 85. - The authors are grateful to JCSS Joint Super Computer Center of the Russian Academy of Sciences – Branch of Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences” for providing supercomputers for computer simulations. The authors thank the RSC Group (www.rscgroup.ru) and personally Mr. Oleg Gorbachev for the constant support and establishment of “The Good Hope Net Project” (www.thegoodhope.net) multifunctional non-profit anti-CoVID research project. The authors also thank the Helicon Company (www.helicon.ru) and personally Olesya Kucenko, Alexander Kolobov, Leonid Klimov for instrumental support and help with conducting fluorescence polarization assays, which were performed on a demo instrument Clariostar Plus microplate reader (BMG LABTECH, Germany). We thank Dr. Yong-Zhen Zhang for providing the genome sequence of 2019-nCoV and Dr. Xinquan Wang for providing the crystal structure of the binding domain of the SARS-2 Spike protein. The authors are grateful to Aptamerlab LCC financial support (www.aptamerlab.com). Y.A.’s work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357. The work of D.M. and G.G. has been done as part of the BioExcel CoE (www.bioexcel.eu), a project funded by the European Union contracts H2020-INFRAEDI-02-2018-823830 and H2020-EINFRA-2015-1-675728. D.M. and G.G. also thank the CSC-IT center in Espoo, Finland, as well as PRACE for awarding access to resource Curie-Rome based in France at GENCI. V.M. thanks Russian Foundation for Basic Research (project number 19-03-00043). A.B.’s and N.K.’s work was supported by the Ministry of Science and Higher Education of Russian Federation (state assignment of the Research Center of Biotechnology RAS). V. deF. G.C., N.B and G.O. are grateful to FISR2020 _00177 Shield, Italian Ministry of Education and Research, for funding. GC is grateful to the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement: cONCReTE 872391; PRISAR2 872860. Use of the 13 A BioSAXS beamtime at the Taiwan Photon Source is acknowledged. The work of M.V.B was funded by the Canadian Institutes of Health Research grant OV1-170353. SAXS measurements and PIEDA analyses were funded by the Russian Science Foundation (project No 21-73-20240 for A.S.K.) . - ISSN 0947-6539. - ISSN 1521-3765
РУБ Chemistry, Multidisciplinary
Рубрики:
BIOLOGICAL MACROMOLECULES
   SOLUTION SCATTERING

   BINDING

   SPIKE

Кл.слова (ненормированные):
aptamers -- fragment molecular orbitals method -- molecular dynamics -- SARS-CoV-2 -- SAXS
Аннотация: Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Lomonosov Moscow State Univ, Dept Chem, Moscow 119991, Russia.
Kyungpook Natl Univ, Dept Chem, Daegu 702701, South Korea.
Fed Res Ctr KSC SB RAS, Lab Digital Controlled Drugs & Theranost, Krasnoyarsk 660036, Russia.
Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan.
Siberian Fed Univ, Sch Nonferrous Met & Mat Sci, Krasnoyarsk 660041, Russia.
IRCCS Neuromed Ist Neurol Mediterraneo Pozzilli, Via Atinense 18, I-86077 Pozzilli, Italy.
Krasnoyarsk State Med Univ, Lab Biomol & Med Technol, Krasnoyarsk 660022, Russia.
Univ Jyvaskyla, Nanosci Ctr, Jyvaskyla 40014, Finland.
Univ Jyvaskyla, Dept Chem, Jyvaskyla 40014, Finland.
Univ Naples Federico II, Dept Pharm, I-80138 Naples, Italy.
Univ Naples Federico II, Dept Mol Med & Med Biotechnol, I-80131 Naples, Italy.
Kirensky Inst Phys, Lab Phys Magnet Phenomena, Krasnoyarsk 660012, Russia.
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.
Xiamen Univ, Coll Chem & Chem Engn, Dept Chem Biol, Xiamen 361005, Peoples R China.
State Res Ctr Virol & Biotechnol Vector, Koltsov 630559, Russia.
NRC Kurchatov Inst, Moscow 117259, Russia.
Russian Acad Sci, Siberian Branch, Inst Chem Biol & Fundamental Med, Novosibirsk 630090, Russia.
Russian Acad Sci, Res Ctr Biotechnol, AN Bach Inst Biochem, Lab Immunobiochem, Moscow 119071, Russia.
Tomsk State Univ, Lab Adv Mat & Technol, Tomsk 634050, Russia.
Altai State Univ, Barnaul 656049, Russia.
Fed Res Ctr KSC SB RAS, Dept Mol Elect, Krasnoyarsk 660036, Russia.
Krasnoyarsk State Med Univ, Dept Infect Dis & Epidemiol, Krasnoyarsk 660022, Russia.
Natl Pingtung Univ, Dept Appl Chem, Pingtung 900391, Taiwan.
Natl Synchrotron Radiat Res Ctr, Hsinchu Sci Pk, Hsinchu 30076, Taiwan.
Res Natl Council CNR, Inst Genet & Biomed Res IRGB, I-09042 Milan, Italy.
Shanghai Jiao Tong Univ, Sch Med, Renji Hosp, Inst Mol Med, Shanghai 200127, Peoples R China.
Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat, Tsukuba, Ibaraki 3058560, Japan.
Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China.
Argonne Natl Lab, Computat Sci Div, Lemont, IL 60439 USA.
Dept Chem & Biomol Sci, Ottawa, ON K1N 6N5, Canada.

Доп.точки доступа:
Mironov, Vladimir; Shchugoreva, I. A.; Artyushenko, P. V.; Артюшенко, Полина Владимировна; Morozov, D. I.; Морозов, Дмитрий И.; Borbone, N.; Oliviero, G.; Zamay, T. N.; Замай, Т. Н.; Moryachkov, R. V.; Морячков, Роман Владимирович; Kolovskaya, .; Коловская О. С.; Lukyanenko, K. A.; Лукьяненко Кирилл А.; Song, Y. L.; Merkuleva, I. A.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Peters, G.; Koroleva, L. S.; Veprintsev, D. V.; Glazyrin, Y. E.; Volosnikova, E. A.; Belenkaya, S. V.; Esina, T. I.; Isaeva, A. A.; Nesmeyanova, .; Shanshin, D. V.; Berlina, A. N.; Komova, N. S.; Svetlichnyi, V. A.; Silnikov, V. N.; Shcherbakov, D. N.; Zamay, G. S.; Замай, Галина Сергеевна; Zamay, S. S.; Замай, С. С.; Smolyarova, T. E.; Смолярова, Татьяна Евгеньевна; Tikhonova, E. P.; Chen, U. S.; Jeng, G.; Condorelli, V.; Franciscis, G.; Groenhof, C. Y.; Yang, A. A.; Moskovsky, D. G.; Fedorov, F. N.; Tomilin, F. N.; Томилин, Феликс Николаевич; Tan, Y.; Alexeev, M. V.; Berezovski, A. S.; Kichkailo, A.S.; Aptamerlab LCC; U.S. Department of Energy, Office of ScienceUnited States Department of Energy (DOE) [DE-AC02-06CH11357]; European UnionEuropean Commission [H2020-INFRAEDI-02-2018-823830, H2020-EINFRA-2015-1-675728, 872391, PRISAR2 872860]; CSC-IT center in Espoo, Finland; PRACE; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-03-00043]; Ministry of Science and Higher Education of Russian Federation (state assignment of the Research Center of Biotechnology RAS); Italian Ministry of Education and ResearchMinistry of Education, Universities and Research (MIUR) [FISR2020 _00177]; Canadian Institutes of Health ResearchCanadian Institutes of Health Research (CIHR) [OV1-170353]; Russian Science FoundationRussian Science Foundation (RSF) [21-73-20240]
}
Найти похожие
19.


   
    XMCD and ab initio study of interface-engineered ultrathin Ru/Co/W/Ru films with perpendicular magnetic anisotropy and strong Dzyaloshinskii-Moriya interaction / A. S. Samardak, A. V. Ognev, A. G. Kolesnikov [et al.] // Phys. Chem. Chem. Phys. - 2022. - Vol. 24, Is. 14. - P. 8225-8232, DOI 10.1039/d1cp05456b. - Cited References: 47. - A. V. O., I. G. I. and T. O. thank the Russian Ministry of Science and Higher Education for state support of scientific research conducted under the supervision of leading scientists in Russian institutions of higher education, scientific foundations and state research centers (Project No. 075-15-2021-607) in parts of sample preparation and its magnetic characterization. The micromagnetic simulations performed by M. E. S. were supported by the Russian Ministry of Science and Higher Education under the state task (0657-2020-0013). A. A. P. (ab initio calculations) acknowledges the support from the Russian Foundation for Basic Research (Project No. 19-32-60020) and the Russian Federation President Scholarship for Young Scientists (SP-1640.2021.5). The work of A. S. S. related to the experimental and analytical study of DMI and skyrmion bubbles was supported by the Russian Science Foundation (Project No. 21-42-00041). The authors acknowledge the use of computational resources of the Skoltech supercomputer Zhores47 to obtain the theoretical results presented in this paper. The authors thank ID12 beamline staff for their help during the XMCD experiment and gratefully acknowledge the provision of beamtime (Proposal MA-3661) by the ESRF. The research contribution of M. P. (XMCD anaysis) was partially funded by the Russian Ministry of Science and Higher Education via the budget project of SRF SKIF, Boreskov Institute of Catalysis . - ISSN 1463-9076. - ISSN 1463-9084
РУБ Chemistry, Physical + Physics, Atomic, Molecular & Chemical
Рубрики:
TOTAL-ENERGY CALCULATIONS
   CIRCULAR-DICHROISM

   MOLECULAR-DYNAMICS

Аннотация: Understanding the nature of recently discovered spin–orbital induced phenomena and a definition of a general approach for “ferromagnet/heavy-metal” layered systems to enhance and manipulate spin–orbit coupling, spin–orbit torque, and the Dzyaloshinskii–Moriya interaction (DMI) assisted by atomic-scale interface engineering are essential for developing spintronics and spin-orbitronics. Here, we exploit X-ray magnetic circular dichroism (XMCD) spectroscopy at the L2,3-edges of 5d and 4d non-magnetic heavy metals (W and Ru, respectively) in ultrathin Ru/Co/W/Ru films to determine their induced magnetic moments due to the proximity to the ferromagnetic layer of Co. The deduced orbital and spin magnetic moments agree well with the theoretically predicted values, highlighting the drastic effect of constituting layers on the system's magnetic properties and the strong interfacial DMI in Ru/Co/W/Ru films. As a result, we demonstrate the ability to simultaneously control the strength of magnetic anisotropy and intermixing-enhanced DMI through the interface engineered inversion asymmetry in thin-film chiral ferromagnets, which are a potential host for stable magnetic skyrmions.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Far Eastern Fed Univ, Inst High Technol & Adv Mat, Vladivostok 690922, Russia.
Skolkovo Inst Sci & Technol, Moscow 121205, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Boreskov Inst Catalysis SB RAS, Synchrotron Radiat Facil SKIF, Koltsov 630559, Russia.
Kyoto Univ, Inst Chem Res, Uji, Kyoto, Japan.
ESRF European Synchrotron, F-38043 Grenoble 9, France.

Доп.точки доступа:
Samardak, Alexander S.; Ognev, Alexey, V; Kolesnikov, Alexander G.; Stebliy, Maksim E.; Samardak, Vadim Yu; Iliushin, Ilia G.; Pervishko, Anastasiia A.; Yudin, Dmitry; Platunov, M. S.; Платунов, Михаил Сергеевич; Ono, Teruo; Wilhelm, Fabrice; Rogalev, Andrey; Russian Ministry of Science and Higher Education [075-15-2021-607, 0657-2020-0013]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-32-60020]; Russian Federation President Scholarship for Young Scientists [SP-1640.2021.5]; Russian Science FoundationRussian Science Foundation (RSF) [21-42-00041]; Russian Ministry of Science and Higher Education
}
Найти похожие
20.


   
    Subterahertz and terahertz spin and lattice dynamics of the insulating ferromagnet PbMnBO4 / M. A. Prosnikov, M. E. Bal, M. I. Kolkov [et al.] // Phys. Rev. Res. - 2022. - Vol. 4, Is. 1. - Ст. 013004, DOI 10.1103/PhysRevResearch.4.013004. - Cited References: 62. - M.A.P. greatly acknowledges D. A. Andronikova for aid, B. T. Crow for fruitful discussions, and P. Albers for technicalassistance. Crystal growth was supported by RFBR and the Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, through Research Project No. 20-42-240006. The theoretical part of the spin dynamics calculations was supported by BASIS Foundation Grant No. 21-1-4-33-1. The support of HFML-RU/NWO-I, a member of the European Magnetic Field Laboratory (EMFL) , is acknowledged . - ISSN 2643-1564
РУБ Physics, Multidisciplinary
Рубрики:
LIGHT-SCATTERING
   ANTI-STOKES

   BRILLOUIN-SCATTERING

Аннотация: Orthorhombic PbMnBO4 is a rare example of an insulating ferromagnet in which the magnetic properties, in particular the strong magnetic anisotropy, are determined by the Mn3+ Jahn-Teller ion. Here, we report on the detailed investigation of magnetic excitations in the subterahertz and terahertz frequency ranges, as well as lattice excitations in the terahertz range. Using polarized azimuthally resolved Raman spectroscopy, four branches of magnetic excitations were observed and assigned to one acoustic and three optical one-magnon modes. The coupling between ferromagnetic ordering at TC=31K and the Jahn-Teller distortions of [MnO6] octahedra due to the spin-phonon interaction was directly observed for some specific phonon modes involved in these distortions. A spin-wave Hamiltonian was developed that allowed us to determine a unique set of exchange and effective anisotropy parameters. The intensity ratio of the anti-Stokes to Stokes acoustic magnon peaks is found to be anomalous and directly indicates the involvement of the magneto-optical parameters in the magnetic Raman scattering process.

WOS,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Radboud Univ Nijmegen, High Field Magnet Lab, EMFL, Toernooiveld 7, NL-6525 ED Nijmegen, Netherlands.
Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands.
Ioffe Inst, St Petersburg 194021, Russia.
Russian Acad Sci, Siberian Branch, Fed Res Ctr KSC, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Sch Engn Phys & Radio Elect, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Prosnikov, M. A.; Bal, M. E.; Kolkov, M. I.; Колков, Максим Игоревич; Pankrats, A. I.; Панкрац, Анатолий Иванович; Pisarev, R., V; Christianen, P. C. M.; RFBRRussian Foundation for Basic Research (RFBR); Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science [20-42-240006]; BASIS Foundation [21-1-4-33-1]; HFML-RU/NWO-I, a member of the European Magnetic Field Laboratory (EMFL)
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)