Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (2)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Expansion<.>)
Общее количество найденных документов : 86
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-60      
1.


   
    Crystal structure of bismuth-containing samarium iron–aluminium borates Sm1−xBixFe3−yAly(BO3)4 (x = 0.05–0.07, y = 0–0.28) in the temperature range of 25–500 K / E. S. Smirnova, O. A. Alekseeva, V. V. Artemov [et al.] // Crystals. - 2023. - Vol. 13, Is. 7. - Ст. 1128, DOI 10.3390/cryst13071128. - Cited References: 59. - This work was supported by the Russian Science Foundation (project No 23-22-00286) . - ISSN 2073-4352
Кл.слова (ненормированные):
rare-earth iron–aluminium borates -- solid solutions -- low-temperature X-ray diffraction -- single crystals -- temperature structural dynamics -- negative thermal expansion
Аннотация: Structural features of new mixed bismuth-containing samarium iron–aluminium borate single crystals Sm1−xBixFe3−yAly(BO3)4 (x = 0.05–0.07, y = 0–0.28) were studied using X-ray diffraction analysis based on aluminium content and temperature in the range 25–500 K. The crystals were grown using the solution-in-melt technique with Bi2Mo3O12 in a flux. The composition of the single crystals was analyzed using energy-dispersive X-ray fluorescence and energy-dispersive X-ray elemental analysis. Temperature dependencies of Sm1−xBixFe3−yAly(BO3)4 unit-cell parameters were studied. Negative thermal expansion was identified below 100 K and represented by characteristic surfaces of the thermal expansion tensor. (Sm,Bi)–O, (Sm,Bi)–(Fe,Al), (Fe,Al)–(Fe,Al), and (Fe,Al)–O interatomic distances decreased with the addition of aluminium atoms. An increase in the (Fe,Al)–(Fe,Al) intrachain bond length at low temperatures in the magnetically ordered state weakened this bond, whereas a decrease in the (Fe,Al)–(Fe,Al) interchain distance strengthened super-exchange paths between different chains. It was found that the addition of aluminium atoms influenced interatomic distances in Sm1−xBixFe3−yAly(BO3)4 much more than lowering the temperature from 293 K to 25 K. The effect of aluminium doping on magnetoelectric properties and structural symmetry of rare-earth iron borates is also discussed.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’, Russian Academy of Sciences, Moscow 119333, Russia
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Smirnova, E. S.; Alekseeva, O. A.; Artemov, V. V.; Sorokin, T. A.; Khmelenin, D. N.; Sidorova, E. V.; Frolov, K. V.; Gudim, I. A.; Гудим, Ирина Анатольевна
}
Найти похожие
2.


   
    Achieving excellent thermostable red emission in singly Mn2+-doped near zero thermal expansion (NZTE) material Li2Zn3(P2O7)2 / Q. Liu, P. Dang, G. Zhang [et al.] // J. Mater. Chem. C. - 2023. - Vol. 11, Is. 31. - P. 10684-10693, DOI 10.1039/D3TC01683H. - Cited References: 62. - This work wasfinancially supported by the National Science and Technology Major Project (2022YFB3503800), the Projects for Science and Technology Development Plan of Jilin Province (20210402046GH), the National Natural Science Foundation of China (NSFC No. 51932009, 51929201, 52072349, 52172166), the Natural Science Foundation of Zhejiang Province (LR22E020004), the Project funded by China Postdoctoral Science Foundation (2022TQ0365), and the Ministry of Science and High Education of Russian Federation (Project No. FSRZ2023-0006), M.S. Molokeev and S.P. Polyutov acknowledge the support by the Ministry of Science and High Education of Russian Federation (Project No. FSRZ-2023-0006) . - ISSN 2050-7526. - ISSN 2050-7534
   Перевод заглавия: Достижение превосходной термостабильной красной эмиссии в однократно легированном Mn2+ материале с почти нулевым тепловым расширением (NZTE) Li2Zn3(P2O7)2
Аннотация: The design of thermostable phosphor is still a pivotal challenge in pc-WLED applications. Herein, an efficient strategy is proposed to design excellent thermostable red emission in singly Mn2+-doped near zero thermal expansion (NZTE) material Li2Zn3(P2O7)2. Under the excitation of 412 nm wavelength, the emission could be tuned from 636 to 672 nm by increasing the Mn2+ doping level via synthetic effect among crystal field, the exchange coupling interaction in Mn-Mn dimers and energy transfer in different luminescence centers. The PL intensity of LZPO:Mn2+ maintains 97% at 150 °C and 94% at 200 °C of initial intensity at the room temperature. During the heat process, the LZPO presents near zero thermal expansion, which contributes to the nearly unaffected PL intensity. The traps assist energy transfer to luminescent center is also compensated for the emission loss. This work not only offers a perspective idea for elucidating the correlation between crystal structure and optical properties, but also opens a new way in line with that of designing excellent thermostable luminescent materials based on NZTE materials in self-reduction system.

Смотреть статью
Держатели документа:
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
Faculty of Materials Science and Chemistry, China University of Geoscience, Wuhan 430074, P. R. China
International Research Center of Spectroscopy and Quantum Chemistry — IRC SQC, Siberian Federal University, Krasnoyarsk, 660041, Russia
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China

Доп.точки доступа:
Liu, Qin; Dang, Peipei; Zhang, Guodong; Molokeev, M. S.; Молокеев, Максим Сергеевич; Polyutov, Sergey; Lian, Hongzhou; Cheng, Ziyong; Li, Guogang; Lin, Jun
}
Найти похожие
3.


   
    Effect of the size of the central atom on the stability of crystalline phases in solid solutions (NH4)3TixSn1-xF7 / E. V. Bogdanov, E. I. Pogoreltsev, M. V. Gorev [et al.] // J. Solid State Chem. - 2023. - Vol. 328. - Ст. 124373, DOI 10.1016/j.jssc.2023.124373. - Cited References: 20. - The study was supported by a grant from the Russian Science Foundation № 23-22-00115, https://rscf.ru/project/23-22-00115/. - X-ray and dilatometric data and SEM images were obtained using the equipment of the Krasnoyarsk Regional Center for Collective Use of the Federal Research Center — Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences. We are grateful to Dr. A.V. Shabanov for examination of the SEM images . - ISSN 0022-4596. - ISSN 1095-726X
Кл.слова (ненормированные):
Phase transition -- Fluorides -- Heat capacity -- Entropy -- Thermal expansion -- Birefringence -- Solid solution -- Internal pressure
Аннотация: The effect of a change in internal pressure as a result of partial substitution of the central atom on the realization and stability of the initial and distorted crystalline phases in (NH4)3TixSn1-xF7 solid solutions has been studied. It was found that at a Ti concentration in the range of x = 0.15–0.40, the reconstructive transition Pm-3m ↔ Pa-3 is transformed into a sequence of phase transitions Pm-3m ↔ P4/mbm ↔ P4/mnc ↔ Pa-3. In the (NH4)3Ti0.15Sn0.85F7 solid solution, the first-order phase transition between two cubic phases at T0 = 352 K is characterized by a significant volume jump δ(ΔV/V0) ≈ 1 %, comparable with that in (NH4)3SnF7. An increase of the Ti concentration leads to a strong decrease in the stability of the Pm-3m cubic phase: the first tetragonal P4/mbm phase appears in (NH4)3Ti0.4Sn0.6F7 at T0 = 400 K, which proves the existence of the predicted high-temperature cubic phase in (NH4)3TiF7. In solid solutions, a decrease in birefringence and entropy of phase transitions was observed in comparison with the initial compounds with Sn and Ti as central atoms. The role of critical parameters (unit cell volume, temperature, external pressure) in the formation of cubic and distorted phases is discussed.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia
Institute of Engineering Systems and Energy, Krasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia
Institute of Engineering Physics and Radioelectronics, Siberian Federal University, 660074, Krasnoyarsk, Russia
Institute of Chemistry, Far Eastern Department of RAS, 690022, Vladivostok, Russia

Доп.точки доступа:
Bogdanov, E. V.; Богданов, Евгений Витальевич; Pogoreltsev, E. I.; Погорельцев, Евгений Ильич; Gorev, M. V.; Горев, Михаил Васильевич; Mel'nikova, S. V.; Мельникова, Светлана Владимировна; Molokeev, M. S.; Молокеев, Максим Сергеевич; Laptash, N. M.; Flerov, I. N.; Флёров, Игорь Николаевич
}
Найти похожие
4.


   
    Negative thermal expansion in the polymorphic modification of double sulfate β-AEu(SO4)2 (A–Rb+, Cs+) / Yu. G. Denisenko, M. S. Molokeev, X. Jiang [et al.] // Inorg. Chem. - 2023. - Vol. 62, Is. 31. - P. 12423-12433, DOI 10.1021/acs.inorgchem.3c01624. - Cited References: 71. - The work was partly carried out within the framework of the Strategic Academic Leadership Program ″Priority-2030″ for the Siberian Federal University, Tyumen State University, Kazan Federal University and the state assignment of Kirensky Institute of Physics. The calculations were performed in part using facilities of JSCC supercomputer center of RAS . - ISSN 0020-1669. - ISSN 1520-510X
   Перевод заглавия: Отрицательное термическое расширение при полиморфной модификации двойного сульфата бета-AEu(SO4)2 (A–Rb+, Cs+)
Аннотация: New polymorphic modifications of double sulfates β-AEu(SO4)2 (A–Rb+, Cs+) were obtained by the hydrothermal method, the structure of which differs significantly from the monoclinic modifications obtained earlier by solid-state methods. According to single-crystal diffraction data, it was found that the compounds crystallize in the orthorhombic system, space group Pnna, with parameters β-RbEu(SO4)2: a = 9.4667(4) Å, b = 13.0786(5) Å, c = 5.3760(2) Å, V = 665.61(5) Å3; β-CsEu(SO4)2: a = 9.5278(5) Å, b = 13.8385(7) Å, c = 5.3783(3) Å, V = 709.13(7) Å3. The asymmetric part of the unit cell contains one-half Rb+/Cs+ ion, one-half Eu3+ ion, both in special sites, and one SO42– ion. Both compounds exhibit nonlinear negative thermal expansion. According to the X-ray structural analysis and theoretical calculations, the polarizing effect of the alkali metal ion has a decisive influence on the demonstration of this phenomenon. Experimental indirect band gaps of β-Rb and β-Cs are 4.05 and 4.11 eV, respectively, while the direct band gaps are 4.48 and 4.54 eV, respectively. The best agreement with theoretical calculations is obtained using the ABINIT package employing PAW pseudopotentials with hybrid PBE0 functional, while norm-conserving pseudopotentials used in the frame of CASTEP code and LCAO approach in the Crystal package gave worse agreement. The properties of alkali ions also significantly affect the luminescent properties of the compounds, which leads to a strong temperature dependence of the intensity of the 5D0 → 7F4 transition in β-CsEu(SO4)2 in contrast to much weaker dependence of this kind in β-RbEu(SO4)2.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 17, Gießen 35392, Germany
Regional Center ″New Generation″, Physics and Mathematics School of the Tyumen Region, Tyumen 625051, Russia
Department of Science and Innovation, Tyumen State University, Tyumen 625003, Russia
Laboratory of Crystal Physics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
Department of Engineering Physics and Radioelectronic, Siberian Federal University, Krasnoyarsk 660041, Russia
Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
School of Engineering and Construction, Siberian Federal University, Krasnoyarsk 660041, Russia
Solid State Spectroscopy Department, Ioffe Institute, St. Petersburg 194021, Russia
Chemistry Institute, Kazan Federal University, Kazan 420008, Russia
Department of Inorganic and Physical Chemistry, Tyumen State University, Tyumen 625003, Russia
Laboratory of the Chemistry of Rare Earth Compounds, Institute of Solid State Chemistry, UB RAS, Yekaterinburg 620137, Russia
Center for Materials Research (LaMa), Justus-Liebig-University of Giessen, Gießen 35392, Germany

Доп.точки доступа:
Denisenko, Yu. G.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Jiang, X.; Sedykh, A. E.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Roginskii, E. M.; Zhernakov, M. A.; Heuler, D.; Seuffert, M.; Lin, Zh.; Andreev, O. V.; Muller-Buschbaum, K.
}
Найти похожие
5.


   
    Integration of negative, zero and positive linear thermal expansion makes borate optical crystals light transmission temperature-independent / X. Jiang, N. Wang, L. Dong [et al.] // Mater. Horizons. - 2022. - Vol. 9, Is. 8. - P. 2207-2214, DOI 10.1039/d2mh00273f. - Cited References: 50. - The authors acknowledge Zhuohong Yin for useful discussions and Anqi Dai from Guangzhou Design Institute for image processing. This work was supported by the National Scientific Foundations of China (Grants 11974360 and 51872297), the Young Elite Scientist Sponsorship Program by CAST (YESS), Key deployment projects of Rare Earth Research Institute (Grant ZDRW-CN-2021-3), and the CAS Project for Young Scientists in Basic Research (Grants YSBR-024) . - ISSN 2051-6347
   Перевод заглавия: Суммирование отрицательного, нулевого и положительного линейного теплового расширения делает светопропускание оптических кристаллов бората независимым от температуры
Кл.слова (ненормированные):
Lattice vibrations -- Light transmission -- Chemical component -- Harmful effects -- HEAT cool -- Heat expansion -- Linear thermal expansions -- Optical crystals -- Physico-chemical mechanisms -- Temperature independents -- Thermal excitation -- Zero thermal expansion -- Thermal expansion
Аннотация: Negative and zero thermal expansion (NTE and ZTE) materials are widely adopted to eliminate the harmful effect from the “heat expansion and cool contraction” effect and frequently embrace novel fundamental physicochemical mechanisms. To date, the manipulation of NTE and ZTE materials has mainly been realized by chemical component regulation. Here, we propose another method by making use of the anisotropy of thermal expansion in noncubic single crystals, with maximal tunability from the integration of linear NTE, ZTE and positive thermal expansion (PTE). We demonstrate this concept in borate optical crystals of AEB2O4 (AE = Ca or Sr) to make the light transmission temperature-independent by counterbalancing the thermal expansion and thermo-optics coefficient. We further reveal that such a unique thermal expansion behavior in AEB2O4 arises from the synergetic thermal excitation of bond stretching in ionic [AEO8] and rotation between covalent [BO3] groups. This work has significant implications for understanding the thermal excitation of lattice vibrations in crystals and promoting the functionalization of anomalous thermal expansion materials.

Смотреть статью,
Scopus
Держатели документа:
Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
University of the Chinese Academy of Sciences, Beijing, 100049, China
School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, China
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China

Доп.точки доступа:
Jiang, X.; Wang, N.; Dong, L.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Wang, S.; Liu, Y.; Guo, S.; Li, W.; Huang, R.; Wu, S.; Li, L.; Lin, Z.
}
Найти похожие
6.


   
    Structural and electronic transitions in thulium-substituted manganese selenide / O. B. Romanova, S. S. Aplesnin, M. N. Sitnikov [et al.] // Ceram. Int. - 2022. - Vol. 48, Is. 20. - P. 29822-29828, DOI 10.1016/j.ceramint.2022.06.244. - Cited References: 40. - This work has been supported by the grants the Russian Science Foundation, RSF 23-42-10002 and F23RSF-055. The morphology of the samples TmXMn1‒XSe (0 ≤ Х ≤ 0.2) was examined using equipment's (SEM) the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center «Krasnoyarsk Science Center SB RAS» . - ISSN 0272-8842
Кл.слова (ненормированные):
Electrical properties -- Thermal expansion -- Acoustic properties -- Spectroscopy
Аннотация: The structural, transport, optical, and acoustic properties of a new TmXMn1‒XSe (0 ≤ Х ≤ 0.2) chalcogenide system have been studied in the temperature range of 80–500 K. The morphology and microstructure of the polycrystalline samples have been studied by scanning electron microscopy. Temperatures of maxima of the thermal expansion and sound attenuation coefficients related to the lattice strain and electronic transitions have been determined. The variation in the energy of activation of carriers near the percolation concentration caused by a change in the thulium valence has been revealed. The type of majority carriers has been established from the thermopower data. The temperature range of the anomalous compressibility associated with delocalization of electrons has been found from the temperature dependence of the thermal expansion coefficient. Jahn‒Teller polarons have been found above the percolation concentration using the infrared spectroscopy data.

Смотреть статью,
Scopus
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation
Scientific-Practical Materials Research Center NAS, Minsk, Belarus

Доп.точки доступа:
Romanova, O. B.; Романова, Оксана Борисовна; Aplesnin, S. S.; Аплеснин, Сергей Степанович; Sitnikov, M. N.; Udod, L. V.; Удод, Любовь Викторовна; Shabanov, A. V.; Шабанов, Александр Васильевич; Yanushkevich, K. I.; Galyas, A. I.; Zhivulko, A. M.
}
Найти похожие
7.


   
    Exploration of the crystal structure and thermal and spectroscopic properties of monoclinic praseodymium sulfate Pr2(SO4)3 / Y. G. Denisenko, V. V. Atuchin, M. S. Molokeev [et al.] // Molecules. - 2022. - Vol. 27, Is. 13. - Ст. 3966, DOI 10.3390/molecules27133966. - Cited References: 95. - This research was funded by the Russian Science Foundation (project 21-19-00046, in part of conceptualization). Some parts of the experiments were performed in the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” . - ISSN 1420-3049
   Перевод заглавия: Исследование кристаллической структуры, термических и спектроскопических свойств моноклинного сульфата празеодима Pr2(SO4)3
Кл.слова (ненормированные):
praseodymium sulfate -- crystal structure -- thermal analysis -- thermal expansion anisotropy -- photoluminescence -- band structure -- vibrational properties
Аннотация: Praseodymium sulfate was obtained by the precipitation method and the crystal structure was determined by Rietveld analysis. Pr2(SO4)3 is crystallized in the monoclinic structure, space group C2/c, with cell parameters a = 21.6052 (4), b = 6.7237 (1) and c = 6.9777 (1) Å, β = 107.9148 (7)°, Z = 4, V = 964.48 (3) Å3 (T = 150 °C). The thermal expansion of Pr2(SO4)3 is strongly anisotropic. As was obtained by XRD measurements, all cell parameters are increased on heating. However, due to a strong increase of the monoclinic angle β, there is a direction of negative thermal expansion. In the argon atmosphere, Pr2(SO4)3 is stable in the temperature range of T = 30–870 °C. The kinetics of the thermal decomposition process of praseodymium sulfate octahydrate Pr2(SO4)3·8H2O was studied as well. The vibrational properties of Pr2(SO4)3 were examined by Raman and Fourier-transform infrared absorption spectroscopy methods. The band gap structure of Pr2(SO4)3 was evaluated by ab initio calculations, and it was found that the valence band top is dominated by the p electrons of oxygen ions, while the conduction band bottom is formed by the d electrons of Pr3+ ions. The exact position of ZPL is determined via PL and PLE spectra at 77 K to be at 481 nm, and that enabled a correct assignment of luminescent bands. The maximum luminescent band in Pr2(SO4)3 belongs to the 3P0 → 3F2 transition at 640 nm.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Department of Inorganic and Physical Chemistry, Tyumen State University, Tyumen, 625003, Russian Federation
Department of General and Special Chemistry, Industrial University of Tyumen, Tyumen, 625000, Russian Federation
Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Giessen, 35392, Germany
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, 630090, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation
Department of Applied Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation
R&D Center “Advanced Electronic Technologies”, Tomsk State University, Tomsk, 634034, Russian Federation
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
School of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
School of Engineering and Construction, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Research Department, Northern Trans-Ural Agricultural University, Tyumen, 625003, Russian Federation
Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Giessen, 35392, Germany

Доп.точки доступа:
Denisenko, Y. G.; Atuchin, V. V.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Sedykh, A. E.; Khritokhin, N. A.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Shestakov, N. P.; Шестаков, Николай Петрович; Adichtchev, S. V.; Pugachev, A. M.; Sal’nikova, E. I.; Andreev, O. V.; Razumkova, I. A.; Muller-Buschbaum, K.
}
Найти похожие
8.


   
    Anisotropic thermal expansion and electronic transitions in the Co3BO5 ludwigite / N. Kazak, A. Arauzo, J. Bartolome [et al.] // Dalton Trans. - 2022. - Vol. 51, Is. 16. - P6345-6357, DOI 10.1039/d2dt00270a. - Cited References: 57. - We are grateful to the Russian Foundation for Basic Research (project no. 20-02-00559 and 21-52-12033) for supporting this paper. This work was performed within the framework of the budget project no. 0287-2021-0013 for the Institute of Chemistry and Chemical Technology SB RAS. We acknowledge the financial support from the Spanish Ministry of Economy, Industry and Competitiviness (MINECO), (Grant No. MAT2017-83468-R) and from the regional Government of Aragón (E12-20R RASMIA project) . - ISSN 1477-9226
Кл.слова (ненормированные):
Activation energy -- Anisotropy -- Cobalt compounds -- Crystal structure -- Electric conductivity -- Electronic properties -- Magnetic moments -- Magnetic susceptibility -- Negative thermal expansion
Аннотация: The investigations of the crystal structure, magnetic and electronic properties of Co3BO5 at high temperatures were carried out using powder X-ray diffraction, magnetic susceptibility, electrical resistivity, and thermopower measurements. The orthorhombic symmetry (Sp.gr. Pbam) was observed at 300 K and no evidence of structural phase transitions was found up to 1000 K. The compound shows a strong anisotropy of the thermal expansion. A large negative thermal expansion along the a-axis is observed over a wide temperature range (T = 300–600 K) with αa = −35 M K−1 at T = 500 K with simultaneous expansion along the b- and c-axes with αb = 70 M K−1 and αc = 110 M K−1, respectively. The mechanisms of thermal expansion are explored by structural analysis. The activation energy of the conductivity decreases significantly above 700 K. Electronic transport was found to be a dominant conduction mechanism in the entire temperature range. The correlations between the thermal expansion, electrical resistivity, and effective magnetic moment were revealed and attributed to the evolution of the spin state of Co3+ ions towards the spin crossover and gradual charge-ordering transition.

Смотреть статью,
Scopus
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza and Departamento de Fisica de la Materia Condensada, Zaragoza, 50009, Spain
Servicio de Medidas Fisicas, Universidad de Zaragoza, Zaragoza, 50009, Spain
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation
Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kazak, N. V.; Казак, Наталья Валерьевна; Arauzo, A.; Bartolome, J.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Dudnikov, V. A.; Дудников, Вячеслав Анатольевич; Solovyov, L.; Borus, A.; Борус, Андрей Андреевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
9.


   
    Two-dimensional negative thermal expansion in a crystal of LiBO2 / X. Zhang, X. Jiang, M. S. Molokeev [et al.] // Chem. Mater. - 2022. - Vol. 34, Is. 9. - P. 4195-4201, DOI 10.1021/acs.chemmater.2c00621. - Cited References: 55. - The authors acknowledge Zhuohong Yin and Jincheng Feng for useful discussions. This work was supported by the National Scientific Foundations of China [Grants 51702330, 11974360, 51872297, and 51890864] and the Young Elite Scientist Sponsorship (YESS) Program by the China Association for Science and Technology [Grant YESS20200149 for X.J.] . - ISSN 0897-4756
   Перевод заглавия: Двумерное отрицательное тепловое расширение в кристалле LiBO2
Кл.слова (ненормированные):
Crystal atomic structure -- Crystals -- Geometry -- Negative thermal expansion -- Thermal expansion
Аннотация: Negative thermal expansion (NTE), violating the common sense of “thermal expansion and cold contraction” effects, is a novel temperature-responding behavior of great scientific and technical significance. Herein, we report a two-dimensional (2D) NTE behavior in a crystal of LiBO2, which is constructed by graphite-like [LiBO2]∞ layers. This intriguing thermal property originates from the synergistic effect of the distortion of in-plane [LiO3] bases in [LiO4] tetrahedra and the rotation of [BO3] triangles in the [LiBO2]∞ layer, driven by the force perpendicular to the layer owing to the large interlayer separation as temperature increases. Remarkably, the in-plane and out-of-plane Li–O bonds within the [LiO4] tetrahedra have nearly the same bond strength and exhibit the similar variation with respect to temperature, and this is quite different from the common sense on the 2D NTE behavior in layered structures that the intralayer atomic interaction must be much stronger than the interlayer ones. Our study deepens the understanding of the 2D NTE mechanism and would promote the exploration for NTE materials.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
University of the Chinese Academy of Sciences, Beijing, 100049, China
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
Department of Engineering Physics and Radioelectronic, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Zhang, X.; Jiang, X.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Wang, N.; Liu, Y.; Lin, Z.
}
Найти похожие
10.


   
    Anisotropic thermal expansion and electronic structure of LiInSe2 / V. V. Atuchin, L. I. Isaenko, S. I. Lobanov [et al.] // Molecules. - 2022. - Vol. 27, Is. 16. - Ст. 5078, DOI 10.3390/molecules27165078. - Cited References: 65. - This work was partly supported by the Ministry of Education and Science of the Russian Federation (grant FSUS-2020-0036), state assignment of IGM SB RAS (preliminary crystal charge composition analysis), Russian Science Foundation (grants #19-12-00085-P, crystal growth, and 21-19-00046, conceptualization), National Scientific Foundations of China (Grants 51702330, 11974360 and 51872297), the Young Elite Scientist Sponsorship Program by CAST (YESS), and the CAS Project for Young Scientists in Basic Research (Grants YSBR-024) and the Government of the Russian Federation (075-15-2022-1132). The XPS measurements were carried out at the Surface Analysis Laboratory of the University of New South Wales, Sydney, Australia . - ISSN 1420-3049
   Перевод заглавия: Тепловое расширение и электронная структура LiInSe2
Кл.слова (ненормированные):
LiInSe2 -- crystal growth -- thermal expansion -- band structure -- XPS -- DFT
Аннотация: Optical quality cm-sized LiInSe2 crystals were grown using the Bridgman–Stockbarger method, starting from pure element reagents, under the conditions of a low temperature gradient of 5–6 degrees/cm and a slight melt overheating. The phase purity of the grown crystal was verified by the powder XRD analysis. The thermophysical characteristics of LiInSe2 were determined by the XRD measurements in the temperature range of 303–703 K and strong anisotropy of the thermal expansion coefficients was established. The following values of thermal expansion coefficients were determined in LiInSe2: αa = 8.1 (1), αb = 16.1 (2) and αc = 5.64 (6) MK−1. The electronic structure of LiInSe2 was measured by X-ray photoelectron spectroscopy. The band structure of LiInSe2 was calculated by ab initio methods.

Смотреть статью,
Scopus
Держатели документа:
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, 630090, Russian Federation
Department of Applied Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation
Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation
R&D Center "Advanced Electronic Technologies", Tomsk State University, Tomsk, 634034, Russian Federation
Laboratory of Crystal Growth, Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, 630090, Russian Federation
Laboratory of Functional Materials, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Engineering Physics and Radioelectronic, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far Eastern State Transport UniversityKhabarovsk 680021, Russian Federation
Australian Science and Technology Organisation (ANSTO), Lucas Heights, Australia
Functional Crystals Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijing 100190, China
University of the Chinese Academy of SciencesBeijing 100049, China

Доп.точки доступа:
Atuchin, V. V.; Isaenko, L. I.; Lobanov, S. I.; Goloshumova, A. A.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zhang, Z.; Zhang, X.; Jiang, X.; Lin, Z.
}
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-60      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)