Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (4)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Gold<.>)
Общее количество найденных документов : 48
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-48 
1.


   
    Heterostructures based on Pd–Au nanoparticles and cobalt phthalocyanine for hydrogen chemiresistive sensors / N. S. Nikolaeva, D. D. Klyamer, S. M. Zharkov [et al.] // Int. J. Hydrogen Energy. - 2021. - Vol. 46. Is. 37. - P. 19682-19692, DOI 10.1016/j.ijhydene.2021.03.082. - Cited References: 74. - The work on the synthesis of Au MOCVD precursor and deposition of gold nanoparticles on various surfaces were funded by Russian Science Foundation (RSF) (research project № 20-15-00222 ). The TEM and electron diffraction investigations were conducted in the SFU Joint Scientific Center supported by the State assignment ( #FSRZ-2020-0011 ) of the Ministry of Science and Higher Education of the Russian Federation . - ISSN 0360-3199
   Перевод заглавия: Гетероструктуры, основанные на наночастицах Pd-Au и фтолоцианине кобальта, для хемирезисторных сенсоров водорода
Кл.слова (ненормированные):
Palladium nanoparticles -- Gold nanoparticles -- Bimetallic nanoparticles -- Metal phthalocyanine -- Chemiresistive sensors -- Hydrogen
Аннотация: In this work, the effect of Pd, Au and PdAu nanoparticles on sensor response of cobalt phthalocyanine films to hydrogen was studied. For this purpose, novel heterostructures based on cobalt phthalocyanine and PdAu nanoalloys were obtained by a combination of vacuum thermal evaporation and pulsed metalorganic chemical vapor deposition (MOCVD) and investigated as active layers for hydrogen detection. The structural features and phase composition of the prepared heterostructures were studied by the techniques of X-ray diffraction, transmission electron microscopy and electron diffraction. The concentration of metal nanoparticles in the samples was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The chemiresistive sensor response of CoPc/M (M = Pd, Au, Pd0.2Au0.8 and Pd0.8Au0.2) to hydrogen (100–400 ppm, room temperature) was compared with that of bare CoPc films. It was shown that the sensor response of the investigated heterostructures to hydrogen (300 ppm) increased in the order CoPc (0.2%) < CoPc/Pd0.2Au0.8 (1.9%) ~ CoPc/Au (2.2%) < CoPc/Pd (2.7%) < CoPc/Pd0.8Au0.2 (5.6%).

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Nikolaev Institutes of Inorganic Chemistry SB RAS, Lavrentiev Pr. 3, Novosibirsk, 630090, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50/38, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Nikolaeva, N. S.; Klyamer, D. D.; Zharkov, S. M.; Жарков, Сергей Михайлович; Tsygankova, A. R.; Sukhikh, A. S.; Morozova, N. B.; Basova, T. V.
}
Найти похожие
2.


   
    Manganese-gold-manganese complex with vinylidene and acetylide units / V. V. Verpekin, A. M. Shor, A. D. Vasiliev [et al.] // Dalton Trans. - 2020. - Vol. 49, Is. 48. - P. 17527-17531, DOI 10.1039/d0dt03530k. - Cited References: 27. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, in frameworks of the project “New compounds based on gold and noble metals: synthesis, physico-chemical properties, catalytic activity” (grant no. 18-43-240010). This work was conducted within the frame-work of the budget project АААА-А17-117021310221-7 for Institute of Chemistry and Chemical Technology SB RAS using the equipment of Krasnoyarsk Regional Research Equipment Centre of SB RAS. The calculations were carried out at the Siberian Supercomputer Center of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia). Authors are grateful to Nina I. Pavlenko for IR data, and to Anatoly I. Rubaylo and Nikolai A. Ustynyuk for useful discussions . - ISSN 1477-9226
   Перевод заглавия: Комплекс марганец-золото-марганец с винилиденовыми и ацетилидными блоками
Аннотация: A series of reactions of Cp(CO)2Mn[double bond, length as m-dash]C[double bond, length as m-dash]CHPh with different gold(I) complexes of [Au–C[triple bond, length as m-dash]C–R]n (R = 4-C5H4N, C6H5) and (tht)AuCl yielded one novel trinuclear MnAuMn cluster. The structure of this cluster can be rationalized as being formed of a vinylidene Mn–Au binuclear and Mn–acetylide fragments, and the binding between those is achieved mainly through the sharing of the electron pair of the single Mn–C σ-bond of an acetylide unit with the gold center.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50-24, Krasnoyarsk, 660036, Russian Federation
Institute of Physics SB RAS, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50-38, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Verpekin, V. V.; Shor, A. M.; Vasiliev, A. D.; Васильев, Александр Дмитриевич; Kondrasenko, A. A.; Chudin, O. S.; Ivanova-Shor, E. A.
}
Найти похожие
3.


   
    Magnetic and optical properties of nanoparticles of iron and nickel decorated with gold and the possibility of their medical use / A. V. Kurilova, A. Е. Sokolov, A. V. Sherepa [et al.] // Pulsed lasers and laser applications (AMPL-2019) : abstracts of XIV Int. conf. - 2019. - Ст. Y-30. - P. 30 . - ISBN 978-5-93629-634-5

Материалы конференции

Доп.точки доступа:
Kurilova, A. V.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Sherepa, A. V.; Volochaev, M. N.; Волочаев, Михаил Николаевич; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Goncharova, D. A.; Shabalina, A. V.; Svetlichnyi, V.; Светличный В.; Pulsed Lasers and Laser Applications, International Conference(14 ; 2019 ; 15-20 Sept. ; Tomsk)
}
Найти похожие
4.


   
    Gold-coated Janus-like Fe-Si magnetic nanoparticles for biomedical applications / A. V. Lukyanenko, I. A. Yakovlev, I. A. Tarasov [et al.] // International conference "Functional materials" : book of abstracts / ed. V. N. Berzhansky ; org. com. S. G. Ovchinnikov [et al.]. - Simferopol, 2021. - P. 297. - Библиогр.: 3 назв.

Материалы конференции,
Читать в сети ИФ

Доп.точки доступа:
Berzhansky, V. N. \ed.\; Бержанский, Владимир Наумович; Ovchinnikov, S. G. \org. com.\; Овчинников, Сергей Геннадьевич; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Yakovlev, I. A.; Яковлев, Иван Александрович; Tarasov, I. A.; Тарасов, Иван Анатольевич; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Nemtcev, I.V.; Volochaev, M. N.; Varnakov, S. N.; Варнаков, Сергей Николаевич; Ovchinnikov, S. G.; "Functional materials", International conference(2021 ; Oct. 4-8 ; Alushta, Russia); Крымский федеральный университет имени В.И. Вернадского
}
Найти похожие
5.


   
    Trimetallic magnetite-Ti-Au nanoparticle formation: A theoretical approach / A. S. Fedorov, E. A. Kovaleva, A. E. Sokolov [et al.] // Mater. Chem. Phys. - 2021. - Vol. 271. - Ст. 124847, DOI 10.1016/j.matchemphys.2021.124847. - Cited References: 46. - The reported study was funded by Joint Research Project of Russian Foundation for Basic Research # 19-52-52002 and Ministry of Science and Technology, Taiwan MOST # 109-2112-M-153-003 and # 108-2923-M-153-001-MY3 . - ISSN 0254-0584
Кл.слова (ненормированные):
Magnetite -- Gold core-shell nanoparticles -- DFT calculations -- Magnetite -- Nanomedicine
Аннотация: Geometric, electronic and magnetic structure of planar slabs consisting of magnetite Fe3O4, titanium and gold layers are investigated by DFT-GGA calculations. It is assumed that these slabs can be used to simulate the upper layers of magnetite nanoparticles covered with an intermediate layer of titanium and a gold layer on the surface. Specific energies and spreading parameters (wettability) of the magnetite-gold, magnetite-titanium and titanium-gold interfaces are calculated. The specific energy and spreading parameter of the magnetite-gold interface is found to be negative, while these values of the magnetite-titanium (for thin Ti layer) and magnetite-titan-gold interfaces are significantly positive. This allows us to hope that the intermediate thin layer of titanium at the boundary between the surface of the magnetite nanoparticle and the gold layer stabilizes this three-layer structure and allows obtaining magnetite nanoparticles covered with continuous gold coating.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Tomsk State University, Tomsk, 634050, Russian Federation
National Pingtung University, Pingtung City, Pingtung County 90003, Taiwan

Доп.точки доступа:
Fedorov, A. S.; Федоров, Александр Семенович; Kovaleva, E. A.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Visotin, M. A.; Высотин, Максим Александрович; Lin, C. R.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
6.


   
    Hybrid nanoparticles based on cobalt ferrite and gold: Preparation and characterization / S. Saikova, A. Pavlikov, T. Trofimova [et al.] // Metals. - 2021. - Vol. 11, Is. 5. - Ст. 705, DOI 10.3390/met11050705. - Cited References: 74 . - ISSN 2075-4701
   Перевод заглавия: Гибридные наночастицы, основанные на феррите кобальта и золоте: получение и ислледование
Кл.слова (ненормированные):
CoFe2O4/Au nanoparticles -- Toxicity -- X-ray photoelectron spectroscopy -- Anion-exchange resin precipitation -- Hybrid nanoparticles -- Synthesis -- Magnetic hysteresis loops
Аннотация: During the past few decades, hybrid nanoparticles (HNPs) based on a magnetic material and gold have attracted interest for applications in catalysis, diagnostics and nanomedicine. In this paper, magnetic CoFe2O4/Au HNPs with an average particle size of 20 nm, decorated with 2 nm gold clusters, were prepared using methionine as a reducer and an anchor between CoFe2O4 and gold. The methionine was used to grow the Au clusters to a solid gold shell (up to 10 gold deposition cycles). The obtained nanoparticles (NPs) were studied by X-Ray diffraction (XRD), transmis-sion electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, X-Ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy techniques. The TEM images of the obtained HNPs showed that the surface of cobalt ferrite was covered with gold nanoclusters, the size of which slightly increased with an increase in the number of gold deposition cycles (from 2.12 ± 0.15 nm after 1 cycle to 2.46 ± 0.13 nm after 10 cycles). The density of the Au clusters on the cobalt ferrite surface insignificantly decreased during repeated stages of gold deposition: 21.4 ± 2.7 Au NPs/CoFe2O4 NP after 1 cycle, 19.0 ± 1.2 after 6 cycles and 18.0 ± 1.4 after 10 cycles. The magnetic measurements showed that the obtained HNPs possessed typical ferrimagnetic behavior, which corresponds to that of CoFe2O4 nanoparticles. The toxicity evaluation of the synthesized HNPs on Chlorella vulgaris indicated that they can be applied to biomedical applications such as magnetic hyperthermia, photothermal therapy, drug delivery, bioimaging and biosensing.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
School of Non-Ferrous Metals and Material Science, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Chemistry and Chemical Technology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Krasnoyarsk, 660036, Russian Federation
Institute of Agroecological Technologies, Krasnoyarsk State Agrarian University, Krasnoyarsk, 660049, Russian Federation
Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Saikova, S.; Pavlikov, A.; Trofimova, T.; Mikhlin, Y.; Karpov, D.; Asanova, A.; Grigoriev, Y.; Volochaev, M. N.; Волочаев, Михаил Николаевич; Samoilo, A.; Zharkov, S. M.; Жарков, Сергей Михайлович; Velikanov, D. A.; Великанов, Дмитрий Анатольевич
}
Найти похожие
7.


   
    Tailoring the preferable orientation relationship and shape of α-FeSi2nanocrystals on Si(001): The impact of gold and the Si/Fe flux ratio, and the origin of α/Si boundaries / I. A. Tarasov, T. E. Smolyarova, I. V. Nemtsev [et al.] // CrystEngComm. - 2020. - Vol. 22, Is. 23. - P. 3943-3955, DOI 10.1039/d0ce00399a. - Cited References: 52. - The experimental part of the reported study was funded by the Russian Science Foundation, project no. 16-13-00060-Π. Theoretical analysis of the ORs of the α-FeSi2 nanocrystals grown was supported by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science via research project No. 18-42-243013. We also acknowledge the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” for support with carrying out the microscopic investigations. I. A. Tarasov personally thanks M. A. Visotin for continuous fruitful discussion about the energetics of the formation of the α-FeSi2 nanocrystals . - ISSN 1466-8033
Кл.слова (ненормированные):
Gold -- Morphology -- Nanocrystals -- Silicides
Аннотация: The growth of α-FeSi2 nanocrystal ensembles on gold-activated and gold-free Si(001) surfaces at different Si/Fe flux ratios via molecular beam epitaxy is reported. The study reveals that the utilisation of gold as a catalyst regulates the preferable orientation relationship (OR) of the nanocrystals to silicon and their morphology at a given Si/Fe flux ratio. α-FeSi2 free-standing crystals with continuously tuned sizes from 30 nm up to several micrometres can be grown with an α(001)//Si(001) basic OR under gold-assisted conditions and an α(111)//Si(001) OR under gold-free growth conditions on a Si(001) surface. The preferred morphology of nanocrystals with a particular OR can be altered through changes to the Si/Fe flux ratio. Herein, the microstructure and basic OR between the silicide nanocrystals and the silicon substrate, and the formation of nanocrystal facets were analysed in detail with the help of microscopic techniques and simulation methods based on the analysis of near coincidence site (NCS) distributions at silicide/silicon interfaces. On the basis of the simulations used, we managed to reveal the nature of the interfaces observed for the main types of α-FeSi2 nanocrystals grown. Three types of interfaces typical for nanoplates with an α(001)//Si(001) basic OR, which are (i) stepped, (ii) stressed, and (iii) flat, are explained based on the tendency for the NCS density to increase at the interface. The results presented reveal the potential for the bottom-up fabrication of α-FeSi2 nanocrystals with tuned physical properties as potentially important contact materials and as building blocks for future nanoelectronic devices.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center, KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 660037, Russian Federation
Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Tarasov, I. A.; Тарасов, Иван Анатольевич; Smolyarova, T. E.; Смолярова, Татьяна Евгеньевна; Nemtsev, I. V.; Немцев, Иван Васильевич; Yakovlev, I. A.; Яковлев, Иван Александрович; Volochaev, M. N.; Волочаев, Михаил Николаевич; Solovyov, L. A.; Varnakov, S. N.; Варнаков, Сергей Николаевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич
}
Найти похожие
8.


   
    Реакции фенилацетиленидных комплексов золота (i) и фенилвинилиденов марганца и рения / В. В. Верпекин [и др.] // Полифункциональные химические материалы и технологии : матер. междунар. науч. конф. : в 2-х т. - 2019. - Т. 1. - С. 172-173. - Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта «Новые соединения на основе золота и благородных металлов: синтез, физико-химические свойства, каталитическая способность» (грант №18-43-240010) . - ISBN 978-5-6042143-9-8
   Перевод заглавия: Reactions of gold (i) phenylacetylide complexes with manganese and rhenium phenylvinyidene complexes
Аннотация: A reactivity of gold phenylacetylides (L)Au-C=C-Ph (L = SMe2, C4H8S, C5H5N) towards the vinylidene complexes of rhenium and manganese containing a metallaallene system M=C=C are studied for the first time.

Материалы конференции,
РИНЦ,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Верпекин, Виктор Васильевич; Васильев, Александр Дмитриевич; Vasiliev, A. D.; Павленко, Нина Ивановна; Зимонин, Дмитрий Валерьевич; Бурмакина, Галина Вениаминовна; Полифункциональные химические материалы и технологии(2019 ; май. ; 22-25 ; Томск); Томский государственный университет
}
Найти похожие
9.


   
    Composition and Ligand Microstructure of Arsenopyrite from Gold Ore Deposits of the Yenisei Ridge (Eastern Siberia, Russia) / A. M. Sazonov [et al.] // Minerals. - 2019. - Vol. 9, Is. 12. - Ст. 737, DOI 10.3390/min9120737. - Cited References: 62. - The work was supported by the Russian Foundation for Basic Research (project number 19-35-90017) and the Government of the Russian Federation (project 14.Y26.31.0012). . - ISSN 2075-163X
   Перевод заглавия: Состав и лигандная микроструктура арсенопирита золоторудных месторождений Енисейского хребта (Восточная Сибирь, Россия)
Кл.слова (ненормированные):
arsenopyrite -- crystal lattice -- ligand surroundings -- non-equal positions -- Mössbauer Effect -- gold -- “invisible” gold -- gold ore deposits
Аннотация: The Mössbauer spectroscopy method was used to study the ligand microstructure of natural arsenopyrite (31 specimens) from the ores of the major gold deposits of the Yenisei Ridge (Eastern Siberia, Russia). Arsenopyrite and native gold are paragenetic minerals in the ore; meanwhile, arsenopyrite is frequently a gold carrier. We detected iron positions with variable distribution of sulfur and arsenic anions at the vertexes of the coordination octahedron {6S}, {5S1As}, {4S2As}, {3S3As}, {2S4As}, {1S5As}, {6As} in the mineral structure. Iron atoms with reduced local symmetry in tetrahedral cavities, as well as iron in the high-spin condition with a high local symmetry of the first coordination sphere, were identified. The configuration {3S3As} typical for the stoichiometric arsenopyrite is the most occupied. The occupation degree of other configurations is not subordinated to the statistic distribution and varies within a wide range. The presence of configurations {6S}, {3S3As}, {6As} and their variable occupation degree indicate that natural arsenopyrites are solid pyrite {6S}, arsenopyrite {3S3As}, and loellingite {6As} solutions, with the thermodynamic preference to the formation of configurations in the arsenopyrite–pyrite–loellingite order. It is assumed that in the variations as part of the coordination octahedron, the iron output to the tetrahedral positions and the presence of high-spin Fe cations depend on the physical and chemical conditions of the mineral formation. It was identified that the increased gold concentrations are typical for arsenopyrites with an elevated content of sulfur or arsenic and correlate with the increase of the occupation degree of configurations {5S1As}, {4S2As}, {1S5As}, reduction of the share of {3S3As}, and the amount of iron in tetrahedral cavities.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Mining, Geology and Geotechnology, Siberian Federal University, 79 pr. Svobodny, 660041 Krasnoyarsk, Russia
Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 50 Bld. 38 Akademgorodok, 660036 Krasnoyarsk, Russia
Faculty of Geology and Geography, Tomsk National Research State University, 36 Lenina, 634050 Tomsk, Russia

Доп.точки доступа:
Sazonov, A. M.; Silyanov, S. A.; Bayukov, O. A.; Баюков, Олег Артемьевич; Knyazev, Yu. V.; Князев, Юрий Владимирович; Zvyagina, Y. A.; Tishin, P. A.
}
Найти похожие
10.


   
    Growth of α-FeSi2 nanocrystals on silicon surface: the impact of gold and the Si/Fe flux ratio, the origin and the prediction of α/Si orientation relationships and interface structures / I. A. Tarasov, M. A. Visotin, S. N. Varnakov [et al.] ; чл. орг. ком.: M. Farle [et al.] ; секр. орг. ком. T. E. Smolyarova // International workshop on functional MAX-materials (1st FunMax). - 2020. - P. 11. - Cited references: 2. - The study was carried out with the financial support of the Government of the Russian Federation within the framework of a grant for the creation of world-class laboratories (Agreement No. 075-15-2019-1886)

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Tarasov, I. A.; Тарасов, Иван Анатольевич; Visotin, M. A.; Высотин, Максим Александрович; Varnakov, S. N.; Варнаков, Сергей Николаевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Farle, M.; Farle, M. \чл. орг. ком.\; Tarasov, A. S. \чл. орг. ком.\; Тарасов, Антон Сергеевич; Ovchinnikov, S. G. \чл. орг. ком.\; Smolyarova, T. E. \секр. орг. ком.\; Смолярова, Татьяна Евгеньевна; International workshop on functional MAX-materials(1 ; 2020 ; Aug. 10-12 ; Krasnoyarsk (on-line)); Kirensky Institute of Physics
}
Найти похожие
 1-10    11-20   21-30   31-40   41-48 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)