Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (1)Каталог журналов библиотеки ИФ СО РАН (1)
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Halides<.>)
Общее количество найденных документов : 22
Показаны документы с 1 по 10
 1-10    11-20   21-22 
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Golovnev N. N., Gerasimova M. A., Molokeev M. S., Plyaskin M. E., Baronin M. E.
Заглавие : Photoluminescence of pefloxacindi-ium manganese(II) and zinc(II) tetrahalides
Место публикации : J. Mol. Struct. - 2022. - Vol. 1248. - Ст.131468. - ISSN 00222860 (ISSN), DOI 10.1016/j.molstruc.2021.131468
Примечания : Cited References: 42. - The research was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-43-240007. Authors thank the Centre for Equipment Joint User of School of Petroleum and Natural Gas Engineering of Siberian Federal University, Institute of Chemistry and Chemical Technology SB RAS for their technical support
Аннотация: Mn2+-based hybrid materials have become the hotspot of current research studies owing to their high photoluminescence quantum yield (PLQY), low-cost, environmental friendliness and stability. For the first time, we report the hydrothermal synthesis of two lead-free zero-dimensional luminescent organic-inorganic hybrid compounds, PefH2[MnBr4] (1) and PefH2[MnCl4] (2) (Pef = pefloxacin). They were characterized by elemental analysis, TG-DSC, single-crystal and powder XRD. Compounds 1–2 exhibit a distorted tetrahedral geometry around the manganese(II) metal center, which is isolated from the same centers by bulky pefloxacindi-ium (PefH22+) ions with a Mn···Mn distance of 7.3 Å. Their structures are stabilized by N—H···O, O—H···X (X = Br, Cl), C—H···O and C—H···X hydrogen bands and π–π stacking interaction. Thermal decomposition starts at T › 230°С for 1 and T › 210°С for 2 and proceeds for several stages. Upon UV excitation compounds exhibit a bright green emission with a moderate PLQY of 45% for 1 and 30% for 2. The influence of the halide ion and metal ion on the photoluminescence properties of isostructural compounds PefH2[MX4] (M = Mn, Zn and X = Br, Cl) is discussed.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Deng, Chenkai, Hao, Shiqiang, Liu, Kunjie, Molokeev M. S., Wolverton, Christopher, Fan, Liubing, Zhou, Guojun, Chen, D.a., Zhao, Jing, Liu, Quanlin
Заглавие : Broadband light emitting zero-dimensional antimony and bismuth-based hybrid halides with diverse structures
Коллективы : Beijing Municipal Natural Science FoundationBeijing Natural Science Foundation [2182080]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51972021, 51702329]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [FRF-IDRY-19-005]; RFBRRussian Foundation for Basic Research (RFBR) [19-52-80003]; Department of Energy, Office of Science Basic Energy SciencesUnited States Department of Energy (DOE) [DE-SC0014520]
Место публикации : J. Mater. Chem. C. - 2021. - Vol. 9, Is. 44. - P.15942-15948. - ISSN 2050-7526, DOI 10.1039/d1tc04198c. - ISSN 2050-7534(eISSN)
Примечания : Cited References: 52. - This work was supported by Beijing Municipal Natural Science Foundation (2182080) and the National Natural Science Foundation of China (51972021 and 51702329). The work was partly supported by the Fundamental Research Funds for the Central Universities (FRF-IDRY-19-005) and by the RFBR according to the research project No. 19-52-80003. S. H. and C. W. (DFT calculations) acknowledge support from the Department of Energy, Office of Science Basic Energy Sciences under Grant DE-SC0014520. Access to QUEST, the supercomputing resources facilities at Northwestern University, is also acknowledged
Предметные рубрики: CRYSTAL-STRUCTURE
LONE-PAIR
EMISSION
PEROVSKITES
TIN
LUMINESCENCE
Аннотация: Low-dimensional organic–inorganic metal halides have recently attracted extensive attention because of their various structures and distinguished photoelectric properties. Herein, we report a series of new zero-dimensional organic–inorganic hybrid metal halides: (TMEDA)3Bi2Cl12·H2O, (TMEDA)3Bi2Br12·H2O, (TMEDA)3Sb2Br12·H2O, and (TMEDA)5Sb6Cl28·2H2O [TMEDA = N,N,N′·trimethylethylenediamine]. (TMEDA)3M2X12·H2O (M = Bi or Sb, X = Cl or Br) crystallizes in the monoclinic space group P21/n, and (TMEDA)5Sb6Cl28·2H2O crystallizes in the orthorhombic space group Pnma. (TMEDA)3M2X12 possesses a zero-dimensional structure with the metal halide ions of [MBr6]3− isolated by the organic TMEDA2+ cations. Interestingly, the (TMEDA)5Sb6Cl28·2H2O structure consists of a combination of corner-connected octahedra [Sb4Cl18]6− and edge-shared [Sb2Cl10]4−, which is quite rare. The light emission of all these compounds was measured, and (TMEDA)3Sb2Br12·H2O exhibits the most intense luminescence. Upon 400 nm ultraviolet light excitation, (TMEDA)3Sb2Br12·H2O exhibited strong broadband yellow emission centered at 625 nm with a full-width at half-maximum of ∼150 nm originating from self-trapped excitons. This work suggests the possibility of new types of hybrid halides by introducing different metal centers and probing the structural evolution and photoluminescent properties, serving as a reference for the relationship between structure and luminescent performance and demonstrating their potential use as phosphors in light-emitting diodes.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou G., Ren Q., Molokeev M. S., Zhou Y., Zhang J., Zhang X. -M.
Заглавие : Unraveling the ultrafast self-assembly and photoluminescence in zero-dimensional Mn2+-based halides with narrow-band green emissions
Место публикации : ACS Appl. Electron. Mater. - 2021. - Vol. 3, Is. 9. - P.4144-4150. - ISSN 26376113 (ISSN), DOI 10.1021/acsaelm.1c00606
Примечания : Cited References: 37. - This work is supported by the Natural Science Foundation of China (no. 21871167) and the 1331 project of Shanxi Province and funded by RFBR according to the research project no. 19-52-80003
Аннотация: The discovery of narrow-band luminescent materials remains an immense challenge to optimize the performance of white light-emitting diodes (LEDs). So far, the zero-dimensional (0D) Mn2+-based halides with near-unity narrow-band emissions have emerged as a class of promising phosphors in solid-state displays, but the related large-scale synthesis strategies have not been proposed and evaluated. Herein, we report an in situ synthetic process of 0D Mn2+-based halides and utilize (C20H20P)2MnBr4 as a case to investigate the photoluminescence characteristics and the structural essence of ultrafast self-assembly. The bright green emission peak at 523 nm with a full width at half maximum of 48 nm for (C20H20P)2MnBr4 is attributed to the d–d transition (4T1–6A1) of tetrahedrally coordinated [MnBr4]2– centers, and the fabricated white LED device shows a wide color gamut of 103.7% National Television System Committee (NTSC) standard. Remarkably, the experimental and theoretical results indicate that there are hydrogen bonding of C–H···Br and weak van der Waals interactions between [C20H20P]+ and [MnBr4]2–, resulting in the root for the realization of ultrafast self-assembly in 0D Mn2+-based halides. This work reveals a feasible and general synthesis method for preparing 0D Mn2+-based halides, thereby providing a possibility for their industrial application in solid-state displays.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Su B., Song G., Molokeev M. S., Golovnev N. N., Lesnikov M. K., Lin Z., Xia Z.
Заглавие : Role of metal-chloride anions in photoluminescence regulations for hybrid metal halides
Место публикации : J. Phys. Chem. Lett. - 2021. - Vol. 12, Is. 7. - P.1918-1925. - ISSN 19487185 (ISSN), DOI 10.1021/acs.jpclett.1c00182
Примечания : Cited References: 40. - This work is supported by the National Natural Science Foundation of China (51961145101 and 51972118), the Fundamental Research Funds for the Central Universities (D2190980), the Guangzhou Science & Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project No. 19-52-80003
Аннотация: Organic–inorganic hybrid metal halides with emissive organic cations are of great interest due to their structural diversity and interesting photophysical properties. Here, we assemble emissive organic cations (EnrofloH22+) with different metal–chloride anions (Pb2Cl62– to Bi2Cl104– to SnCl62–) to form the new single crystal phases, and thus the photoluminescence properties of the metal halides, including Stokes shift, full width at half-maximum (FWHM), and photoluminescence quantum yield (PLQY) have been studied accordingly. (EnrofloH2)SnCl6·H2O, as an example, possesses narrow FWHM and high PLQY, which are caused by the strong π–π stacking and inter- and intramolecular hydrogen bonds interactions. Compared with EnrofloH22+ cation in solution, the interactions generate a restraining effect and increase the rigid degree of EnrofloH22+ cation in the bulk single crystals. Our work clarifies the photophysical properties of the EnrofloH22+ organic cations by constructing the inter- and intramolecular interactions and boosts the further study of organic–inorganic hybrid metal halides materials with different luminescence mechanisms.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Huang J., Su B., Song E., Molokeev M. S., Xia Z.
Заглавие : Ultra-broad-band-excitable Cu(I)-based organometallic halide with near-unity emission for light-emitting diode applications
Место публикации : Chem. Mater. - 2021. - Vol. 33, Is. 12. - P.4382-4389. - ISSN 08974756 (ISSN), DOI 10.1021/acs.chemmater.1c00085
Примечания : Cited References: 43. - This research was supported by the National Natural Science Foundation of China (Grant Nos. 51961145101 and 51972118), the Fundamental Research Funds for the Central Universities (D2190980), the Guangzhou Science and Technology Project (202007020005), International Cooperation Project of National Key Research and Development Program of China (2021YFE0105700), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). The reported study was also funded by RFBR according to research project no. 19-52-80003
Аннотация: Low-dimensional hybrid metal halides demonstrate broad-band emission and high photoluminescence quantum yield (PLQY) acting as excellent candidates for a new generation of luminescent materials in lighting fields. However, most luminescent metal halides can only be excited by ultraviolet radiation, and the discovery of high-efficient emitters with broad-band excitation characteristics, especially upon efficient blue light irradiation, is a challenge. Herein, a zero-dimensional (0D) Cu(I)-based organometallic halide (18-crown-6)2Na2(H2O)3Cu4I6 (CNCI) was prepared with a green emission band centered at 536 nm and a near-unity PLQY (91.8%) upon excitation of 450 nm. Importantly, the ultrabroad excitation band covering a 300-500 nm range was observed in CNCI, and the luminescence mechanism has been discussed in detail. A white light-emitting diode (WLED) was fabricated with high luminous efficiency of 156 lm/W and a high color rendering index of 89.6. This work provides guidance for designing high-performance luminescent metal halides with suitable excitation characteristics and also promotes the application prospects of such materials in WLED fields.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Molokeev M. S., Su, Binbin, Aleksandrovsky A. S., Golovnev, Nicolay N., Plyaskin M. E., Xia, Zhiguo
Заглавие : Machine learning analysis and discovery of zero-dimensional ns2 metal halides toward enhanced photoluminescence quantum yield
Место публикации : Chem. Mat. - 2022. - Vol. 34, Is. 2. - P.537-546. - ISSN 0897-4756, DOI 10.1021/acs.chemmater.1c02725. - ISSN 1520-5002(eISSN)
Примечания : Cited References: 66. - This work is supported by the National Natural Science Foundation of China (51961145101 and 51972118), International Cooperation Project of National Key Research and Development Program of China (2021YFE0105700), Guangzhou Science and Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project no. 19-52-80003
Предметные рубрики: RANDOM FOREST
CRYSTAL-STRUCTURE
TIN BROMIDE
CLASSIFICATION
Аннотация: The dependence of photoluminescence quantum yield (PLQY) on the crystal structure of existing zero-dimensional ns2 metal halides is analyzed with the help of principal component analysis and random forest methods. The primary role of the distance between metal ions in different compounds is revealed, and the influence of other structural features such as metal-halogen distance and the distortion of metal-halogen polyhedrons are quantified. Accordingly, the two previously unknown Sb3+-based zero-dimensional metal halides were synthesized to verify the obtained model. Experimental studies of the two compounds demonstrated good agreement with the predictions, and the PLQY of (C10H16N)2SbCl5 is found to be 96.5%. Via machine learning analysis, we demonstrate that concentration quenching is the main factor that determines PLQY for all s2 ion metal halides, which will accelerate the discovery of new luminescence metal halides.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Golovnev, Nicolay N., Gerasimova, Marina A., Ostapenko, Ivan A., Zolotov, Andrey O., Molokeev M. S.
Заглавие : Two organic-inorganic manganese(II) halide hybrids containing protonated N,N’-dialkylthioureas with efficient green-emission
Место публикации : J. Mol. Struct. - 2023. - Vol. 1277. - Ст.134851. - ISSN 0022-2860 (ISSN), DOI 10.1016/j.molstruc.2022.134851
Примечания : Cited References: 42. - The reported study was funded by RFBR according to the research project № 19-52-80003. X-ray data from single crystals and powders were obtained with the analytical equipment of Krasnoyarsk Center of collective use of SB RAS
Аннотация: Luminescent (C5H13N2S)2[MnBr4] (1) and (C7H17N2S)2[MnBr4] (2) (C5H12N2S = N,N′-diethylthiourea, C7H16N2S = N,N′-diisopropylthiourea) were prepared via solvothermal method, and the structures of these compounds have been resolved using X-ray single crystal diffraction. The structures consist of electrostatically bound MnBr42− anions and organic C5H13N2S+ and C7H17N2S+ cations. The intermolecular N−H···Br and N−H···S hydrogen bonds additionally stabilize crystal structures of 1-2. Upon excitation over broadband covering the range 265 to 515 nm, these compounds show green emission peaking at 526 nm for 1 and 522 nm for 2, which is assigned to the 4T1→ 6A1 electronic transition of Mn2+ from isolated within the crystal structures MnBr42− tetrahedra. The photoluminescence quantum yield (PLQY) of powder 1 is 97 ± 7% for excitation at 440 nm and that of powder 2 is 83 ± 7% for excitation at 365 nm. The high PLQY indicates the absence of noticeable concentration quenching at shortest Mn···Mn distance of 8.11 and 8.73 Å between Mn2+ ions within the structures of 1 and 2. The high-performance photoluminescence of 0D (C5H13N2S)2[MnBr4] and (C7H17N2S)2[MnBr4] compounds demonstrated promising applications in photonics.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou G., Wang Y., Mao Y., Guo C., Zhang J., Molokeev M. S., Xia Z., Zhang X.-M.
Заглавие : Temperature/component-dependent luminescence in lead-free hybrid metal halides for temperature sensor and anti-counterfeiting
Колич.характеристики :9 с
Место публикации : Adv. Funct. Mater. - 2024. - Ст.2401860. - Article in press. - ISSN 1616301X (ISSN), DOI 10.1002/adfm.202401860. - ISSN 16163028 (eISSN)
Примечания : Cited References: 89. - G.J.Z. and Y.T.W. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (No.52202177, 22271211), Fundamental Research Program of Shanxi Province (No.20210302124054), Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (No.2021L262), 1331 Project of Shanxi Province, Postgraduate Innovation Project of Shanxi Province (No.2023KY462), and supported by the Ministry of Science and High Education of Russian Federation (No.FSRZ-2023-0006). The authors would like to thank Prof. Haijun Jiao, Leibniz-Institut für Katalyse e.V., Germany, for the theoretical support on the electron-transition mechanism
Аннотация: Hybrid metal halides (HMHs) have emerged as a promising platform for optically functional crystalline materials, but it is extremely challenging to thoroughly elucidate the electron transition coupled to additional ligand emission. Herein, to discover sequences of lead-free HMHs with distinct optically active metal cations are aimed, that is, Sb3+ (5s2) with the lone-pair electron configuration and In3+ (4d10) with the fully-filled electron configuration. (Me2NH2)4MCl6·Cl (Me = −CH3, M = Sb, In) exhibits the superior temperature/component-dependent luminescence behaviors resulting from the competition transition between triplet-states (Tn-S0) self-trapped excitons (STEs) of inorganic units and singlet-state (S1-S0) of organic cations, which is manipulated by the optical activity levels of [SbCl6]3− and [InCl6]3−. The bonding differences between Sb3+/In3+ and Cl− in terms of electronic excitation and hybridization are emphasized, and the different electron-transition mechanisms are established according to the PL spectra at the extreme temperature of 5 to 305 K and theoretical calculations. By fine-tuning the B-site Sb3+/In3+ alloying, the photoluminescence quantum yield (PLQY = 81.5%) and stability are optimized at 20% alloying of Sb3+. This research sheds light on the rules governing PL behaviors of HMHs, as well as exploring the optical-functional application of aviation temperature sensors and access-control systems.
Смотреть статью
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Li B., Jin J., Yin M., Zhang X., Molokeev M. S., Xia Z., Xu Y.
Заглавие : Sequential and reversible phase transformations in zero-dimensional organic-inorganic hybrid Sb-based halides towards multiple emissions
Место публикации : Angew. Chem. Int. Ed. - 2022. - Vol. 61, Is. 49. - Ст.e202212741. - ISSN 14337851 (ISSN), DOI 10.1002/anie.202212741
Примечания : Cited References: 35. - This work was supported by the National Natural Science Foundation of China (Grants No. 22171040 and 51961145101), and the Fundamental Research Funds for the Central Universities, China (No. N2105006)
Аннотация: Zero-dimensional (0D) metal halides have drawn increasing attention due to the attractive structure dependent photoluminescence (PL) properties. Here, we report two new 0D organic–inorganic hybrid Sb-based halides, (MTP)6SbBr6Sb2Br9⋅H2O (MTP=Methyltriphenylphosphonium, crystal 1) and (MTP)2SbBr5 (crystal 2), featuring a reversible structural phase transformation and tunable orange and red emissions upon dehydration and rehydration of H2O molecules. Intriguingly, a subsequent heat treatment further enables the formation of glassy state (MTP)2SbBr5 (glass 3) with near-infrared luminescence, moreover, a sequential reverse phase transformation from glass 3 to crystal 2 and 1 is triggered by acetonitrile and water vapor stepwise. The anti-counterfeiting demo based on the tunable and reversible PL switching is finally achieved and thus the phase structure engineering in 0D metal halides expands their multiple applications in optical fields.
Смотреть статью,
Scopus
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Su B., Jin J., Peng Y., Molokeev M. S., Yang X., Xia Z.
Заглавие : Zero-Dimensional Organic Copper(I) Iodide Hybrid with High Anti-Water Stability for Blue-Light-Excitable Solid-State Lighting
Место публикации : Adv. Opt. Mater. - 2022. - Vol. 10, Is. 12. - Ст.2102619. - ISSN 21951071 (ISSN), DOI 10.1002/adom.202102619
Примечания : Cited References: 55. - This work was supported by the National Natural Science Foundation of China (Nos.: 51961145101 and 51972118), Guangzhou Science & Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01×137). This work was also funded by RFBR according to the research Project No.19-52-80003
Аннотация: The discovery of rare-earth free luminescent materials with blue-light-excitable characteristic is of great importance for solid-sate lighting applications. Herein, a Cu(I)-based 0D luminescent hybrid (1,3-dppH2)2Cu4I8∙H2O is synthesized by a facile solution method, and it shows the orange-red emission peaking at 625 nm upon 460 nm excitation. The structure-related luminescence mechanism has been elaborated by experimental and theoretical investigations. Moreover, the emission intensity remains unchanged even after continuous water treatment for 60 days due to the improved structural stability originating from intermolecular π–π interaction between organic cations. A warm white light-emitting diode (LED) device with the color rendering index of 91.4% has been fabricated by combining the 440 nm LED chip, green-emitting Lu3Al5O12:Ce3+, and (1,3-dppH2)2Cu4I8∙H2O. This work provides a new design route towards 0D cuprous halide materials and will initiate more exploration of their intrinsic luminescence mechanism.
Смотреть статью,
Scopus
Найти похожие
 1-10    11-20   21-22 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)