Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Photoluminescence<.>)
Общее количество найденных документов : 116
Показаны документы с 1 по 20
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Dai X., Zou X., Zhang H., Chen W., Yang C., Molokeev M. S., Xia Z., Liu Y., Zhang X., Zheng M., Lei B.
Заглавие : Novel Cr3+-doped garnet phosphor with broadband efficient far-red emission for photochrome matching plant-lighting
Колич.характеристики :9 с
Место публикации : Adv. Opt. Mater. - 2024. - Vol. 12, Is. 11. - Ст.2302380. - ISSN 21951071 (eISSN), DOI 10.1002/adom.202302380
Примечания : Cited References: 54. - The work was supported by the National Natural Science Foundations of China (No. 12274144), the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (No. 2023KJ122), the Key Realm R&D Program of Guangdong Province (No. 2021B0707010003), the Guangdong Provincial Science and Technology Project (No. 2022A1515010229), and the Project of GDUPS (2018) for Prof. Bingfu LEI
Аннотация: Cr3+-doped phosphors are highly recognized in various fields for their remarkable luminous efficiency and spectral flexibility, including modern agriculture and horticulture. However, the shortage of suitable Cr3+-doped phosphors for far-red LED devices has inhibited their popularization in plant lighting. Herein, an innovative Cr3+-doped phosphor Ca2YAl3Ge2O12:Cr3+ (CYAG:Cr3+), achieving a broad far-red emission at 770 nm upon 450 nm blue light excitation is designed. The optimal CYAG:Cr3+ phosphor exhibits a high internal quantum yield of 78.2% and low thermal-quenching behavior of 85%@373 K. Thus, the fabricated phosphor-converted LEDs (pc-LEDs) for plant far-red lighting have a high output power of 33.3 mW and photovoltaic conversion efficiency of 11.5% at 100 mA. The potential of CYAG:Cr3+ in plant lighting is assessed by supplementing the far-red lighting of Italian lettuce with fabricated pc-LEDs, and the biomass of Italian lettuce is significantly increased by 33%. The successful development of CYAG:Cr3+ phosphors provides a high-quality option for plant far-red light devices and further stimulates the development of new Cr3+-doped plant-lighting phosphors.
Смотреть статью,
Scopus
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou G., Wang Y., Mao Y., Guo C., Zhang J., Molokeev M. S., Xia Z., Zhang X.-M.
Заглавие : Temperature/component-dependent luminescence in lead-free hybrid metal halides for temperature sensor and anti-counterfeiting
Колич.характеристики :9 с
Место публикации : Adv. Funct. Mater. - 2024. - Ст.2401860. - Article in press. - ISSN 1616301X (ISSN), DOI 10.1002/adfm.202401860. - ISSN 16163028 (eISSN)
Примечания : Cited References: 89. - G.J.Z. and Y.T.W. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (No.52202177, 22271211), Fundamental Research Program of Shanxi Province (No.20210302124054), Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (No.2021L262), 1331 Project of Shanxi Province, Postgraduate Innovation Project of Shanxi Province (No.2023KY462), and supported by the Ministry of Science and High Education of Russian Federation (No.FSRZ-2023-0006). The authors would like to thank Prof. Haijun Jiao, Leibniz-Institut für Katalyse e.V., Germany, for the theoretical support on the electron-transition mechanism
Аннотация: Hybrid metal halides (HMHs) have emerged as a promising platform for optically functional crystalline materials, but it is extremely challenging to thoroughly elucidate the electron transition coupled to additional ligand emission. Herein, to discover sequences of lead-free HMHs with distinct optically active metal cations are aimed, that is, Sb3+ (5s2) with the lone-pair electron configuration and In3+ (4d10) with the fully-filled electron configuration. (Me2NH2)4MCl6·Cl (Me = −CH3, M = Sb, In) exhibits the superior temperature/component-dependent luminescence behaviors resulting from the competition transition between triplet-states (Tn-S0) self-trapped excitons (STEs) of inorganic units and singlet-state (S1-S0) of organic cations, which is manipulated by the optical activity levels of [SbCl6]3− and [InCl6]3−. The bonding differences between Sb3+/In3+ and Cl− in terms of electronic excitation and hybridization are emphasized, and the different electron-transition mechanisms are established according to the PL spectra at the extreme temperature of 5 to 305 K and theoretical calculations. By fine-tuning the B-site Sb3+/In3+ alloying, the photoluminescence quantum yield (PLQY = 81.5%) and stability are optimized at 20% alloying of Sb3+. This research sheds light on the rules governing PL behaviors of HMHs, as well as exploring the optical-functional application of aviation temperature sensors and access-control systems.
Смотреть статью
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Golovnev, Nicolay N., Gerasimova, Marina A., Ostapenko, Ivan A., Zolotov, Andrey O., Molokeev M. S.
Заглавие : Two organic-inorganic manganese(II) halide hybrids containing protonated N,N’-dialkylthioureas with efficient green-emission
Место публикации : J. Mol. Struct. - 2023. - Vol. 1277. - Ст.134851. - ISSN 0022-2860 (ISSN), DOI 10.1016/j.molstruc.2022.134851
Примечания : Cited References: 42. - The reported study was funded by RFBR according to the research project № 19-52-80003. X-ray data from single crystals and powders were obtained with the analytical equipment of Krasnoyarsk Center of collective use of SB RAS
Аннотация: Luminescent (C5H13N2S)2[MnBr4] (1) and (C7H17N2S)2[MnBr4] (2) (C5H12N2S = N,N′-diethylthiourea, C7H16N2S = N,N′-diisopropylthiourea) were prepared via solvothermal method, and the structures of these compounds have been resolved using X-ray single crystal diffraction. The structures consist of electrostatically bound MnBr42− anions and organic C5H13N2S+ and C7H17N2S+ cations. The intermolecular N−H···Br and N−H···S hydrogen bonds additionally stabilize crystal structures of 1-2. Upon excitation over broadband covering the range 265 to 515 nm, these compounds show green emission peaking at 526 nm for 1 and 522 nm for 2, which is assigned to the 4T1→ 6A1 electronic transition of Mn2+ from isolated within the crystal structures MnBr42− tetrahedra. The photoluminescence quantum yield (PLQY) of powder 1 is 97 ± 7% for excitation at 440 nm and that of powder 2 is 83 ± 7% for excitation at 365 nm. The high PLQY indicates the absence of noticeable concentration quenching at shortest Mn···Mn distance of 8.11 and 8.73 Å between Mn2+ ions within the structures of 1 and 2. The high-performance photoluminescence of 0D (C5H13N2S)2[MnBr4] and (C7H17N2S)2[MnBr4] compounds demonstrated promising applications in photonics.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Molchanova, Anastasiia, Boldyrev, Kirill, Kuzmin, Nikolai, Veligzhanin, Alexey, Khaydukov, Kirill, Khaydukov, Evgeniy, Kondratev, Oleg, Gudim I. A., Mikliaeva, Elizaveta, Popova, Marina
Заглавие : Manganese luminescent centers of different valence in yttrium aluminum borate crystals
Место публикации : Materials. - 2023. - Vol. 16, Is. 2. - Ст.537. - ISSN 19961944 (eISSN), DOI 10.3390/ma16020537
Примечания : Cited References: 49. - This work was supported in part by the Russian Science Foundation under Grant No. 21-72-00134. K.B. and M.P. acknowledge financial support from the Ministry of Science and Higher Education of Russia under Grant 0039-2019-0004
Аннотация: We present an extensive study of the luminescence characteristics of Mn impurity ions in a YAl3(BO3)4:Mn crystal, in combination with X-ray fluorescence analysis and determination of the valence state of Mn by XANES (X-ray absorption near-edge structure) spectroscopy. The valences of manganese Mn2+(d5) and Mn3+(d4) were determined by the XANES and high-resolution optical spectroscopy methods shown to be complementary. We observe the R1 and R2 luminescence and absorption lines characteristic of the 2E ↔ 4A2 transitions in d3 ions (such as Mn4+ and Cr3+) and show that they arise due to uncontrolled admixture of Cr3+ ions. A broad luminescent band in the green part of the spectrum is attributed to transitions in Mn2+. Narrow zero-phonon infrared luminescence lines near 1060 nm (9400 cm−1) and 760 nm (13,160 cm−1) are associated with spin-forbidden transitions in Mn3+: 1T2 → 3T1 (between excited triplets) and 1T2 → 5E (to the ground state). Spin-allowed 5T2 → 5E Mn3+ transitions show up as a broad band in the orange region of the spectrum. Using the data of optical spectroscopy and Tanabe–Sugano diagrams we estimated the crystal-field parameter Dq and Racah parameter B for Mn3+ in YAB:Mn as Dq = 1785 cm−1 and B = 800 cm−1. Our work can serve as a basis for further study of YAB:Mn for the purposes of luminescent thermometry, as well as other applications.
Смотреть статью,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen, Yu, Yang, Zhiyu, Jin, Jiance, Qiao, Jianwei, Wang, Yuzhen, Molokeev M. S., Swart, Hendrik C., Xia, Zhiguo
Заглавие : Site occupation engineering toward giant red-shifted photoluminescence in (Ba,Sr)2LaGaO5:Eu2+ phosphors
Колич.характеристики :8 с
Место публикации : Chem. Mater. - 2023. - Vol. 35, Is. 20. - P.8714-8721. - ISSN 08974756 (ISSN), DOI 10.1021/acs.chemmater.3c01980. - ISSN 15205002 (eISSN)
Примечания : Cited References: 35. - This research was supported by the National Key Research and Development Program of China (2021YFB3500401 and 2021YFE0105700), the National Natural Science Foundations of China (Grant Nos. 51972118 and 52102169), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137), the China Postdoctoral Science Foundation (2021M691053), and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (No. YESS20200053). This work was also supported by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: “Advanced Digital Technologies”, contract no. 075-15-2022-314
Аннотация: Exploring oxide-based red-emitting phosphors is essential for improving the color rendering index (Ra) and reducing the correlated color temperature (CCT) of white-light-emitting diode (LED) lighting sources. Especially, it is challenging to design Eu2+ red emission in inorganic solids. Here, the Eu2+-activated oxide phosphor Sr2LaGaO5:Eu2+ was synthesized with red emission peaking at 618 nm under 450 nm excitation. The crystal structure and spectral analysis indicate that Eu2+ tends to occupy [Sr1/LaO8] polyhedrons with a smaller coordination number, resulting in a large crystal field splitting at the 5d level and realizing the broadband 4f–5d red emission. When Sr is substituted by Ba atoms, density functional theory calculations verify that Ba tends to enter [Sr2O10] with a large coordination number, further giving rise to the lattice distortion and a giant spectral redshift (618–800 nm). The white LED device fabricated by mixing red Sr1.8Ba0.2GaO5:Eu2+ and green Lu3Al5O12:Ce3+ phosphors exhibits a high color rendering index (Ra = 92.1) and a low color-dependent temperature (CCT = 4570 K). This study will give guidance for exploring new Eu2+ activated oxide-based red phosphors as well as achieving tunable emission through cations’ substitution.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Liu, Gaochao, Molokeev M. S., Xia, Zhiguo
Заглавие : Structural rigidity control toward Cr3+-based broadband near-infrared luminescence with enhanced thermal stability
Коллективы : International Cooperation Project of the National Key Research and Development Program of China [2021YFE0105700]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51972118, 51961145101]; Guangzhou Science & Technology Project [202007020005]; Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program [2017BT01X137]; RFBRRussian Foundation for Basic Research (RFBR) [19-52-80003]
Место публикации : Chem. Mat. - 2022. - Vol. 34, Is. 3. - P.1376-1384. - ISSN 0897-4756, DOI 10.1021/acs.chemmater.1c04131. - ISSN 1520-5002(eISSN)
Примечания : Cited References: 59. - This work was supported by the International Cooperation Project of the National Key Research and Development Program of China (2021YFE0105700) , National Natural Science Foundation of China (Nos.: 51972118 and 51961145101) , Guangzhou Science & Technology Project (202007020005) , and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137) . This work was also funded by RFBR according to the research Project No. 19-52-80003
Предметные рубрики: PHOSPHOR
PHOTOLUMINESCENCE
EFFICIENT
EMISSION
CR3+
Аннотация: Broadband near-infrared (NIR) light sources based on phosphor-converted light-emitting diodes (pc-LEDs) are desirable for biochemical analysis and medical diagnosis applications; however, the development of target NIR phosphor is still a challenge. Herein, broadband NIR phosphors, Cr3+-activated CaSc1–xAl1+xSiO6 (λem = 950 nm), are designed and optimized by chemical substitution toward enhanced quantum efficiency and thermal stability. Structural and spectral analyses along with density functional theory calculations reveal that Sc3+/Al3+ substitution contributes to enhancing the structural rigidity and the local symmetry of the [Sc/AlO6] octahedron so that the nonradiative relaxation of Cr3+ emission centers is suppressed significantly. The as-fabricated phosphor-in-glass-based NIR LED light source demonstrates great potential in the detection of alcohol concentration. This study provides a local structure design principle for exploring NIR phosphors with enhanced thermal stability and will also stimulate further studies on material discovery and quantitative analysis of NIR spectroscopy.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ming, Hong, Zhao, Yifei, Zhou, Yayun, Molokeev M. S., Wang, Yuanjing, Zhang, Shuai, Song, Enhai, Ye, Shi, Xia, Zhiguo, Zhang, Qinyuan
Заглавие : Shining Mn4+ in 0D organometallic fluoride hosts towards highly efficient photoluminescence
Место публикации : Adv. Opt. Mater. - 2022. - Vol. 10, Is. 7. - Ст.2102141. - ISSN 2195-1071, DOI 10.1002/adom.202102141
Примечания : Cited References: 40. - This work is financially supported by the National Science Foundation of China (Grants Nos. 51472088, 51972117, and U1601205), Basic and Applied Basic Research Foundation of Guangdong Province (2021A1515012415), Guangzhou Science and Technology Planning Project (202002030098 and 202102020125), and Fundamental Research Funds for the Central Universities (2020ZYGXZR050). This work was also funded by RFBR according to the research project No. 19-52-80003
Предметные рубрики: RED PHOSPHOR
Аннотация: The design and discovery of Mn4+-activated fluoride phosphors that can secure both high luminescence efficiency and short fluorescence lifetime simultaneously are crucial and urgent for constructing high-quality wide-color gamut (WCG) backlight display applications. Herein, a series of brand-new Mn4+-activated narrow-band red-emitting phosphors with both high external quantum efficiency (EQE, 50%) and short fluorescence lifetime (τ ≤ 3.8 ms) are designed by introducing Mn4+ into newfound tetramethylammonium (Me4N)-based organometallic fluoride (Me4N)2BF6 (B = Ge, Ti, Zr) hosts. These intriguing properties of Mn4+ arise from the larger steric hindrance of (Me4N)+ cations and low local structure symmetry in the 0D (Me4N)2BF6, as verified by the structural and spectral analyses. (Me4N)2GeF6:Mn4+, as a representative, shows a high EQE of ≈64.6% and a short lifetime of ≈3.78 ms. A prototype projector with superb performance is assembled by employing a remote (Me4N)2GeF6:Mn4+-based white light-emitting diode with high luminous efficiency (≈143.09 lm W−1) and WCG (≈112.02% National Television System Committee (NTSC)) to demonstrate their great potentials for backlight applications. The research brings up a promising alternative as the host materials for Mn4+-doped fluoride phosphors and provides a deeper understanding on the correlation between structure and luminescence.
Смотреть статью,
Scopus,
WOS
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Yang, Zhiyu, Liu, Gaochao, Zhao, Yifei, Zhou, Yayun, Qiao, Jianwei, Molokeev M. S., Swart, Hendrik C., Xia, Zhiguo
Заглавие : Competitive site occupation toward improved quantum efficiency of SrLaScO4:Eu red phosphors for warm white LEDs
Коллективы : International Cooperation Project of National Key Research and Development Program of China [2021YFE0105700]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51972118, 51961145101]; Guangzhou Science & Technology Project [202007020005]; State Key Laboratory of Luminescent Materials and Devices [Skllmd-2021-09]; China Postdoctoral Science FoundationChina Postdoctoral Science Foundation [2021M691053]; Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program [2017BT01X137]; RFBRRussian Foundation for Basic Research (RFBR) [19-52-80003]; NRF International: SA/China Joint Research Programme 2021 [CHIN2002265 06921 UID 132785]
Место публикации : Adv. Opt. Mater. - 2022. - Vol. 10. Is. 6. - Ст.2102373. - ISSN 2195-1071, DOI 10.1002/adom.202102373
Примечания : Cited References: 42. - This research was supported by the International Cooperation Project of National Key Research and Development Program of China (Program No. 2021YFE0105700), National Natural Science Foundation of China (Grant Nos. 51972118 and 51961145101), Guangzhou Science & Technology Project (Project No. 202007020005), the State Key Laboratory of Luminescent Materials and Devices (Grant No. Skllmd-2021-09), China Postdoctoral Science Foundation (Grant No. 2021M691053), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (Program No. 2017BT01X137). This work was also funded by RFBR according to the research Project No. 19-52-80003 and the NRF International: SA/China Joint Research Programme 2021 - CHIN2002265 06921 UID 132785
Предметные рубрики: LUMINESCENCE
EUROPIUM
BLUE
EU2+
STABILIZATION
EPR
Аннотация: The discovery of Eu2+-doped high-efficiency red phosphors remains a vital challenge for white light-emitting diode (WLED) applications. It is therefore urgent to find effective strategies managing the oxidation state to help reduce Eu3+ to Eu2+ and accordingly increase the photoluminescence quantum yield (PLQY). Herein, a new red-emitting SrLaScO4:Eu phosphor is designed, and the PLQY is enhanced from 13% to 67% under 450 nm excitation by employing (NH4)2SO4-assisted sintering. Combined structural analysis, optical spectroscopy, and theoretical calculation reveal that predominant Eu2+ prefers to occupy the Sr2+ sites in the SrLaScO4 enabling red emission, and a competitive site occupation of Eu3+ in La3+ can be restrained, and the reduction mechanism of Eu3+ to Eu2+ originating from the (NH4)2SO4 addition is analyzed. The fabricated WLED device using red-emitting SrLaScO4:Eu and yellow-emitting Y3(Al,Ga)5O12:Ce3+ exhibits a high color-rendering index of 86.7 at a low correlated color temperature of 4005 K. This work provides a feasible reduction strategy for guiding the development of high-efficiency Eu2+-doped red phosphor for WLED applications.
Смотреть статью,
Scopus,
WOS
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Molokeev M. S., Su, Binbin, Aleksandrovsky A. S., Golovnev, Nicolay N., Plyaskin M. E., Xia, Zhiguo
Заглавие : Machine learning analysis and discovery of zero-dimensional ns2 metal halides toward enhanced photoluminescence quantum yield
Место публикации : Chem. Mat. - 2022. - Vol. 34, Is. 2. - P.537-546. - ISSN 0897-4756, DOI 10.1021/acs.chemmater.1c02725. - ISSN 1520-5002(eISSN)
Примечания : Cited References: 66. - This work is supported by the National Natural Science Foundation of China (51961145101 and 51972118), International Cooperation Project of National Key Research and Development Program of China (2021YFE0105700), Guangzhou Science and Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project no. 19-52-80003
Предметные рубрики: RANDOM FOREST
CRYSTAL-STRUCTURE
TIN BROMIDE
CLASSIFICATION
Аннотация: The dependence of photoluminescence quantum yield (PLQY) on the crystal structure of existing zero-dimensional ns2 metal halides is analyzed with the help of principal component analysis and random forest methods. The primary role of the distance between metal ions in different compounds is revealed, and the influence of other structural features such as metal-halogen distance and the distortion of metal-halogen polyhedrons are quantified. Accordingly, the two previously unknown Sb3+-based zero-dimensional metal halides were synthesized to verify the obtained model. Experimental studies of the two compounds demonstrated good agreement with the predictions, and the PLQY of (C10H16N)2SbCl5 is found to be 96.5%. Via machine learning analysis, we demonstrate that concentration quenching is the main factor that determines PLQY for all s2 ion metal halides, which will accelerate the discovery of new luminescence metal halides.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Golovnev N. N., Gerasimova M. A., Molokeev M. S., Plyaskin M. E., Baronin M. E.
Заглавие : Photoluminescence of pefloxacindi-ium manganese(II) and zinc(II) tetrahalides
Место публикации : J. Mol. Struct. - 2022. - Vol. 1248. - Ст.131468. - ISSN 00222860 (ISSN), DOI 10.1016/j.molstruc.2021.131468
Примечания : Cited References: 42. - The research was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-43-240007. Authors thank the Centre for Equipment Joint User of School of Petroleum and Natural Gas Engineering of Siberian Federal University, Institute of Chemistry and Chemical Technology SB RAS for their technical support
Аннотация: Mn2+-based hybrid materials have become the hotspot of current research studies owing to their high photoluminescence quantum yield (PLQY), low-cost, environmental friendliness and stability. For the first time, we report the hydrothermal synthesis of two lead-free zero-dimensional luminescent organic-inorganic hybrid compounds, PefH2[MnBr4] (1) and PefH2[MnCl4] (2) (Pef = pefloxacin). They were characterized by elemental analysis, TG-DSC, single-crystal and powder XRD. Compounds 1–2 exhibit a distorted tetrahedral geometry around the manganese(II) metal center, which is isolated from the same centers by bulky pefloxacindi-ium (PefH22+) ions with a Mn···Mn distance of 7.3 Å. Their structures are stabilized by N—H···O, O—H···X (X = Br, Cl), C—H···O and C—H···X hydrogen bands and π–π stacking interaction. Thermal decomposition starts at T › 230°С for 1 and T › 210°С for 2 and proceeds for several stages. Upon UV excitation compounds exhibit a bright green emission with a moderate PLQY of 45% for 1 and 30% for 2. The influence of the halide ion and metal ion on the photoluminescence properties of isostructural compounds PefH2[MX4] (M = Mn, Zn and X = Br, Cl) is discussed.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
11.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Yang, Zhiyu, Zhao, Yifei, Zhou, Yayun, Qiao, Jianwei, Chuang, Yu-Chun, Molokeev M. S., Xia, Zhiguo
Заглавие : Giant red-shifted emission in (Sr,Ba)Y2O4:Eu2+ phosphor toward broadband near-infrared luminescence
Коллективы : International Cooperation Project of National Key Research and Development Program of China [2021YFE0105700]; National Natural Science Foundations of ChinaNational Natural Science Foundation of China (NSFC) [51972118, 51961145101]; Guangzhou Science & Technology Project [202007020005]; Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program [2017BT01X137]; RFBRRussian Foundation for Basic Research (RFBR) [19-52-80003]
Место публикации : Adv. Funct. Mater. - 2022. - Vol. 32, Is. 1. - Ст.2103927. - ISSN 1616-301X, DOI 10.1002/adfm.202103927. - ISSN 1616-3028(eISSN)
Примечания : Cited References: 60. - This research was supported by the International Cooperation Project of National Key Research and Development Program of China (2021YFE0105700), National Natural Science Foundations of China (Grant No. 51972118 and 51961145101), Guangzhou Science & Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project No. 19-52-80003
Предметные рубрики: LIGHT-SOURCES
PHOTOLUMINESCENCE
TRANSITION
CE3+
BLUE
SUBSTITUTION
Аннотация: Near-infrared (NIR) light-emitting diodes (LEDs) light sources are desirable in photonic, optoelectronic, and biological applications. However, developing broadband red and NIR-emitting phosphors with good thermal stability is always a challenge. Herein, the synthesis of Eu2+-activated SrY2O4 red phosphor with high photoluminescence quantum efficiency and broad emission band ranging from 540 to 770 nm and peaking at 620 nm under 450 nm excitation is designed. Sr/Ba substitution in SrY2O4:Eu2+ has been further utilized to achieve tunable emission by modifying the local environment, which facilitates the giant red-shifted emission from 620 to 773 nm while maintaining the outstanding thermal stability of SrY2O4:Eu2+. The NIR emission is attributed to the enhanced Stokes shift and crystal field strength originated from the local structural distortions of [Y1/Eu1O6] and [Y2/Eu2O6]. The investigation in charge distribution around Y/Eu provides additional insight into increasing covalency to tune the emission toward the NIR region. As-fabricated NIR phosphor-converted LEDs demonstration shows its potential in night-vision technologies. This study reveals the NIR luminescence mechanism of Eu2+ in oxide-based hosts and provides a design principle for exploiting Eu2+-doped NIR phosphors with good thermal stability.
Смотреть статью,
Scopus,
WOS
Найти похожие
12.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Coondoo I., Krylov A. S., Sharma D. K., Krylova S. N., Alikin D., Kumar J. S., Mirzorakhimov A., Melnikova N., Soares M. J., Kholkin A. L.
Заглавие : Temperature dependent structural, dielectric, Raman, piezoresponse and photoluminescence investigations in sol-gel derived BCZT ceramics
Место публикации : Mater. Chem. Phys. - 2022. - Vol. 277. - Ст.125526. - ISSN 02540584 (ISSN), DOI 10.1016/j.matchemphys.2021.125526
Примечания : Cited References: 82. - I.C. and J.S.K would like to acknowledge financial assistance by national funds (OE), through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MCTES. This work was partially developed within the scope of the project i3N, UIDB/50025/2020 & UIDP/50025/2020, financed by national funds through the FCT/MEC. Part of this work (A.K.) was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-15-2021-588). This research used resources of the Ural Center for Shared Use “Modern nanotechnology”, Ural federal University, Russia and the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS”. The authors thank Dr. Gonzalo Irurueta, Center for Mechanical Engineering and Automation, University of Aveiro, Portugal and Dr. E. Venkata Ramana, Department of Physics, University of Aveiro, Portugal
Аннотация: 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 [50BZT-50BCT or BCZT] based compounds have been the focus of a lot of research, particularly motivated by their high piezoelectric effect. However, the literature lacks an elaborate investigation of the phase transition behavior in BCZT ceramics obtained by wet chemistry processing. Here, we present an in-depth study on the temperature dependence of x-ray diffraction (XRD), Raman scattering, dielectric properties, local piezoresponse and photoluminescence (PL) to investigate the sequence of phase transitions in the BCZT ceramic synthesized via a chemical route. Phase formation was determined by Rietveld analysis of XRD data, while compositional homogeneity and elemental quantification of the compound was validated using energy dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS) studies. Detailed fitting of XPS data indicated the existence of Ti3+ species (∼6%) in the prepared BCZT. Phase transitions were examined by analyzing the modifications in the XRD profile of Bragg reflection {200} and anomalies observed in the temperature variation of dielectric and Raman spectra studied over a wide temperature range starting from 10K to beyond Curie temperature. Crystallographic transformation temperatures obtained from dielectric measurement agreed well with those assessed from the temperature evolution of Raman spectra. In addition to other transitions, Raman scattering results revealed the existence of a transition from to phase near −175 °C, a transition that has not been interpreted in BCZT (and generally not observed in parent BaTiO3 compound). The luminescence response was studied by photoluminescence (PL) spectroscopy in the temperature range 15–300 K. The position of the PL peak was observed to shift with temperature and discontinuities in the wavelength shift were noted near phase transitions. Evolution of domain morphology with temperature was examined by piezoresponse force microscopy technique. Consolidated results assign the phase sequence in sol-gel derived BCZT as: R(R3c)→-175±10°CR(R3m)→-50±10°CO→40±10°CT→120±10°CC.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
13.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Atuchin V., Subanakov A., Aleksandrovsky A. S., Bazarov B., Bazarova J., Krylov A. S., Molokeev M. S., Oreshonkov A. S., Pugachev A.
Заглавие : New double nonlinear-optical borate Rb3SmB6O12: Synthesis, structure and spectroscopic properties
Место публикации : J. Alloys Compd. - 2022. - Vol. 905. - Ст.164022. - ISSN 09258388 (ISSN), DOI 10.1016/j.jallcom.2022.164022
Примечания : Cited References: 65. - This work was supported by the Ministry of Science and Higher Education of Russia (project 0273-2021-0008) and the Russian Science Foundation (project 21-19-00046, in part of conceptualization). Also, this study was partly funded by RFBR (project No. 20–33-90188а) and State assignment Basic Project of IA&E SB RAS No 121032400052-6
Аннотация: New noncentrosymmetric alkali rare-earth double borate Rb3SmB6O12 was found in the ternary system Rb2O–Sm2O3–B2O3. The Rb3SmB6O12 powder was prepared by the solid state reaction method at 750 °C for 40 h and the crystal structure was obtained by the Rietveld method. Rb3SmB6O12 crystallized in space group R32 with unit cell parameters a = 13.4874 (3) and c = 30.9398 (6) Å, V = 4874.2 (2) Å3, Z = 15. In the three-dimensional framework structure of Rb3SmB6O12, each [B5O10]5− group is linked to four different Sm-O polyhedra and, likewise, each Sm-O polyhedron is connected to four neighboring [B5O10]5− groups. The Sm-O polyhedra are formed by the face-sharing linked SmO6 octahedra. Rb+ cations are located in large cavities of the framework structure. From the thermal stability measurements, the incongruent melting of Rb3SmB6O12 is observed at 1104 K with as high melting enthalpy as Hm = –161.5 J/g. The nonlinear optical response of Rb3SmB6O12 tested via SHG is estimated to be similar to that of K3YB6O12. The Raman spectrum of Rb3SmB6O12 is mainly governed by the vibrations of BO4 and BO3 borate groups observed over the wavenumber range of 287–1550 cm–1. The spectral bands below 270 cm–1 were attributed to rotational, translational and mixed vibrations of Rb3SmB6O12 structural units. The luminescence spectrum of Sm3+ ions in the specific local environment of the Rb3SmB6O12 crystal lattice shows the ability to control the individual band intensity ratio originating from 4G5/2 level.
Смотреть статью,
Scopus,
Читать в сети ИФ
Найти похожие
14.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Denisenko Y. G., Atuchin V. V., Molokeev M. S., Sedykh A. E., Khritokhin N. A., Aleksandrovsky A. S., Oreshonkov A. S., Shestakov N. P., Adichtchev S. V., Pugachev A. M., Sal’nikova E. I., Andreev O. V., Razumkova I. A., Muller-Buschbaum K.
Заглавие : Exploration of the crystal structure and thermal and spectroscopic properties of monoclinic praseodymium sulfate Pr2(SO4)3
Место публикации : Molecules. - 2022. - Vol. 27, Is. 13. - Ст.3966. - ISSN 14203049 (ISSN), DOI 10.3390/molecules27133966
Примечания : Cited References: 95. - This research was funded by the Russian Science Foundation (project 21-19-00046, in part of conceptualization). Some parts of the experiments were performed in the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS”
Аннотация: Praseodymium sulfate was obtained by the precipitation method and the crystal structure was determined by Rietveld analysis. Pr2(SO4)3 is crystallized in the monoclinic structure, space group C2/c, with cell parameters a = 21.6052 (4), b = 6.7237 (1) and c = 6.9777 (1) Å, β = 107.9148 (7)°, Z = 4, V = 964.48 (3) Å3 (T = 150 °C). The thermal expansion of Pr2(SO4)3 is strongly anisotropic. As was obtained by XRD measurements, all cell parameters are increased on heating. However, due to a strong increase of the monoclinic angle β, there is a direction of negative thermal expansion. In the argon atmosphere, Pr2(SO4)3 is stable in the temperature range of T = 30–870 °C. The kinetics of the thermal decomposition process of praseodymium sulfate octahydrate Pr2(SO4)3·8H2O was studied as well. The vibrational properties of Pr2(SO4)3 were examined by Raman and Fourier-transform infrared absorption spectroscopy methods. The band gap structure of Pr2(SO4)3 was evaluated by ab initio calculations, and it was found that the valence band top is dominated by the p electrons of oxygen ions, while the conduction band bottom is formed by the d electrons of Pr3+ ions. The exact position of ZPL is determined via PL and PLE spectra at 77 K to be at 481 nm, and that enabled a correct assignment of luminescent bands. The maximum luminescent band in Pr2(SO4)3 belongs to the 3P0 → 3F2 transition at 640 nm.
Смотреть статью,
Scopus,
Читать в сети ИФ
Найти похожие
15.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen J., Zou X., Li W., Zhang H., Zhang X., Molokeev M. S., Liu Y., Lei B.
Заглавие : Strategy to construct high thermal-stability narrow-band green-emitting Si-CDs@MAs phosphor for wide-color-gamut backlight displays
Место публикации : Adv. Opt. Mater. - 2022. - Vol. 10, Is. 21. - Ст.2200851. - ISSN 21951071 (ISSN), DOI 10.1002/adom.202200851
Примечания : Cited References: 47. - The work was supported by the Ministry of Science and Technology of China (No. G2021030022L), the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (No. 2021KJ122), the National Natural Science Foundations of China (No. 52102042), the Independent Research and Development Projects of Maoming Laboratory (No. 2021ZZ004), the Key Realm R&D Program of Guangdong Province (No. 2021B0707010003), the Guangzhou Science & Technology Project (Nos. 202007020005 and 202103000059), the Guangdong Provincial Science and Technology Project (Nos. 2021A0505050006 and 2022A1515010229), and the Project of GDUPS (2018) for B.L.
Аннотация: Developing innovative narrow-band green-emitting phosphors featuring low thermal quenching and eco-friendliness for white light-emitting diode (WLED) backlights is a pivotal challenge. Benefitting from narrowband and low toxicity of green-emitting silanized carbon dots (Si-CDs), an efficient confinement and protection strategy through embedding Si-CDs in mesoporous aluminas (MAs) is proposed to construct MAs and Si-CDs composites (Si-CDs@MAs) with superior luminescence properties. Si-CDs@MAs phosphor exhibits green emission at 526 nm with narrow full width at half maximum of 51 nm, zero-thermal quenching even up to 423 K (104.1%@423 K of the emission peak intensity at 298 K), and the internal quantum efficiency of 64.46%. Compared with broad-band yellow-emitting solid-state Si-CDs (S-Si-CDs), the thermal stability, photostability, and water stability of Si-CDs@MAs phosphor are remarkably improved due to surface protection. The WLED backlight is fabricated with optimized Si-CDs@MAs phosphor, which shows high luminous efficacy of 117.43 lm W?1 and wide color gamut (107% NTSC). Furthermore, this work provides the design principles of realizing stable narrow-band solid-state fluorescence carbon dots, suggesting its great potential for wide-color-gamut display application.
Смотреть статью,
Scopus
Найти похожие
16.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Gao P., Li Q., Li S., Gai S., Li Y., Ma Y., Zhang Z., Molokeev M. S., Zhou Z., Xia M.
Заглавие : Multiple strategies to approach high-efficiency luminescence controllable in blue/cyan/green-emitting Bi3+-activated phosphors
Место публикации : J. Phys. Chem. C. - 2022. - Vol. 126, Is. 21. - P.9195-9206. - ISSN 19327447 (ISSN), DOI 10.1021/acs.jpcc.2c02560
Примечания : Cited References: 53. - The authors would like to gratefully acknowledge funds from the National Natural Science Foundation of China (grant no. 51974123), the Distinguished Youth Foundation of Hunan Province (grant no.2020JJ2018), the Key R&D projects in Hunan Province (2020WK2016, 2020SK2032, 2021SK2047, and 2022NK2044), the Natural Science Foundation of Hunan Province, China (grant no. 2021JJ40261), the Hunan High Level Talent Gathering Project (2019RS1077 and 2020RC5007), the Scientific Research Fund of Hunan Provincial Education Department (19C0903), the Natural Sciences Foundation of Hunan Agricultural University, China (grant no. 19QN11), the Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Resource Utilization Science Foundation (19KFXM12), the Changsha Science and Technology Plan (KH2005114, KH2201428), and the College Students’ Innovative Training (S202110537012)
Аннотация: Cyan gap is a major block in achieving high-quality white light-emitting diodes (WLEDs). Hence, a novel cyan-emitting phosphor Sr2GdGaO5/0.02Bi3+ with optical tuning performance is synthesized based on the local crystal field regulation strategy surrounding the luminescence center. With the substitution of Al3+ for Ga3+, the photoluminescence (PL) spectra of Sr2GdGa1–xAlxO5/0.02Bi3+ (0 ≤ x ≤ 1) phosphors adjust from cyan (466 nm) to blue (450 nm). Moreover, such a Ba2+ doping adjusts the PL spectra of Sr2–xBaxGdGaO5/0.02Bi3+ (0 ≤ x ≤ 0.5) phosphors from cyan (466 nm) to green (482 nm). These phenomena are contributed to the crystal field splitting and nephelauxetic effect. The energy transfer from Bi3+ to Eu3+ is realized by co-doping Bi3+ and Eu3+ ions in the A2GdBO5/Bi3+ (A = Sr, Ba; B = Ga, Al) host materials, and two single-phase white phosphors Sr2GdGaO5/0.02Bi3+, 0.05Eu3+ and Sr1.5Ba0.5GdGaO5/0.02Bi3+, 0.05Eu3+ are obtained. Finally, a WLED with high color rendering index (Ra = 93.6) is prepared by using red/green/blue (RGB) phosphors and Sr2GdGaO5/0.02Bi3+ phosphor, which is higher than that of the WLED prepared by RGB phosphors (Ra = 86.7), indicating that Sr2GdGaO5/0.02Bi3+ phosphor can close the cyan gap. These results provide multiple strategies in achieving luminescence controllable and WLED.
Смотреть статью,
Scopus,
Читать в сети ИФ
Найти похожие
17.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Cheng, Peng, L.u., Kong, Zihui, Wu, Meihan, Molokeev M. S., Zhou, Zhi, Wang, Jing, Xia, Mao
Заглавие : A high thermal stability Cr3+-doped gallate far red phosphor for plant lighting: structure, luminescence enhancement and application prospect
Место публикации : J. Mater. Chem. C. - 2022. - Vol. 10, Is. 15. - P.5829-5839. - ISSN 2050-7526, DOI 10.1039/d2tc00614f. - ISSN 2050-7534(eISSN)
Примечания : Cited References: 39. - The authors would like to gratefully acknowledge funds from the National Natural Science Foundation of China (Grant no. 51974123), the Distinguished Youth Foundation of Hunan Province (Grant no. 2020JJ2018), Key R & D projects in Hunan Province (2020WK2016 & 2020SK2032), the Hunan High Level Talent Gathering Project (2019RS1077 & 2020RC5007), the Natural Sciences Foundation of Hunan Agricultural University (19QN11), the Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Resource Utilization Science Foundation (19KFXM12), the Changsha Science and technology plan (KH2005114), the Scientific Research Fund of Hunan Provincial Education Department (19C0903) and the Innovation Training Program for College Students of Hunan Province (No. S202010537012)
Предметные рубрики: EMITTING PHOSPHOR
TUNING PHOTOLUMINESCENCE
LEDS
Аннотация: Cationic substitution is a common material modification strategy. Generally, it follows the principles of radius matching, valency equilibrium and stoichiometric substitution. However, radius-mismatched, nonstoichiometric-ratio ion substitution can achieve unexpected experimental results. Such unexpected results are very important for expanding the research of materials, but the modification mechanism is still unclear. In this work, the optical performance of ZnGa2O4:0.02Cr3+ (ZGO:0.02Cr3+) is effectively regulated by chemical unit cosubstitution (Ge4+–Li+/Na+ for Ga3+–Zn2+) and excess cation substitution synergetic strategies, and the thermal stability is retained at 97.7% at room temperature and 150 °C. Ge4+–Li+ and Ge4+–Na+ replace the lattice position of Ga3+–Zn2+ to enhance the photoluminescence (PL) intensity and quantum efficiency (QE) of ZGO:0.02Cr3+. The optimal doping contents of Ge4+–Li+ and Ge4+–Na+ are all 0.3 mol (PL intensity is 130.3% and 153.4% and QE = 77.4% and 85.1%). With further addition of Li+ ions, the emission intensity and QE continued to increase to 176.4% and 83.8%, respectively. The synergistic effect of the mechanism on optical properties is explained via Rietveld refinement, optical band gap energy and thermoluminescence. Finally, LED devices were fabricated by using the ZGO:0.02Cr3+,0.03Ge4+,0.11Li+ phosphor to investigate the effect on plant growth. The growth period was reduced and the fruit quality was improved in dwarf potted tomato, which shows the application prospect in plant growth of the ZGO:0.02Cr3+ phosphor.
Смотреть статью,
WOS
Найти похожие
18.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Su B., Jin J., Peng Y., Molokeev M. S., Yang X., Xia Z.
Заглавие : Zero-Dimensional Organic Copper(I) Iodide Hybrid with High Anti-Water Stability for Blue-Light-Excitable Solid-State Lighting
Место публикации : Adv. Opt. Mater. - 2022. - Vol. 10, Is. 12. - Ст.2102619. - ISSN 21951071 (ISSN), DOI 10.1002/adom.202102619
Примечания : Cited References: 55. - This work was supported by the National Natural Science Foundation of China (Nos.: 51961145101 and 51972118), Guangzhou Science & Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01×137). This work was also funded by RFBR according to the research Project No.19-52-80003
Аннотация: The discovery of rare-earth free luminescent materials with blue-light-excitable characteristic is of great importance for solid-sate lighting applications. Herein, a Cu(I)-based 0D luminescent hybrid (1,3-dppH2)2Cu4I8∙H2O is synthesized by a facile solution method, and it shows the orange-red emission peaking at 625 nm upon 460 nm excitation. The structure-related luminescence mechanism has been elaborated by experimental and theoretical investigations. Moreover, the emission intensity remains unchanged even after continuous water treatment for 60 days due to the improved structural stability originating from intermolecular π–π interaction between organic cations. A warm white light-emitting diode (LED) device with the color rendering index of 91.4% has been fabricated by combining the 440 nm LED chip, green-emitting Lu3Al5O12:Ce3+, and (1,3-dppH2)2Cu4I8∙H2O. This work provides a new design route towards 0D cuprous halide materials and will initiate more exploration of their intrinsic luminescence mechanism.
Смотреть статью,
Scopus
Найти похожие
19.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ren Q., Zhang J., Molokeev M. S., Zhou G., Zhang X. -M.
Заглавие : Triplet-triplet energy transfer from Bi3+to Sb3+in zero-dimensional indium hybrids via a B-site co-doping strategy toward white-light emission
Место публикации : Inorg. Chem. Front. - 2022. - Vol. 9, Is. 22. - P.5960-5968. - ISSN 20521553 (ISSN), DOI 10.1039/d2qi01631a
Примечания : Cited References: 60. - This work was supported by the Natural Science Foundation of Shanxi Province (No. 20210302124054), the National Natural Science Foundation of China (No. 21871167), the Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (No. 2021L262), the 1331 Project of Shanxi Province and the Postgraduate Innovation Project of Shanxi Normal University (No. 2021XSY040), and funded by RFBR according to the research project No. 19-52-80003
Аннотация: Low-dimensional metal halides have emerged as promising platforms for the development of new-generation phosphor-converted light emitting diodes (pc-LEDs), in which zero-dimensional (0D) hybrids with lone-pair ns2 states, in particular, show unprecedented competitiveness owing to their fascinating photoluminescence (PL) properties. Herein, we designed a novel 0D indium hybrid, (C20H20P)2InCl5, and proposed a co-doping strategy to incorporate Bi3+ (6s2) and Sb3+ (5s2) ions into this indium hybrid. Widely tunable emissions from blue to red are achieved, which are assigned to the triplet self-trapped excitons (STEs) (3P1 → 1S0) of Bi3+ (476 nm) and Sb3+ (658 nm), respectively. Importantly, an uncommon triplet–triplet energy transfer from Bi3+ to Sb3+ contributes to tunable dual emissions, and enables a single-phase cool white-light emission under ultraviolet (UV) excitation. Moreover, the energy transfer mechanism is discussed clearly by fluorescence photon dynamic analysis and DFT calculations. This work provides a deeper insight into triplet–triplet energy transfer, as well as presents a new model system for tuning the PL behaviours of ns2 configuration dopants.
Смотреть статью,
Scopus
Найти похожие
20.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Guojun, Liu, Zhiyang, Molokeev M. S., Xiao, Zewen, Xia, Zhiguo, Zhang, Xian-Ming
Заглавие : Manipulation of Cl/Br transmutation in zero-dimensional Mn2+-based metal halides toward tunable photoluminescence and thermal quenching behaviors
Место публикации : J. Mater. Chem. C. - 2021. - Vol. 9, Is. 6. - P.2047-2053. - ISSN 2050-7526, DOI 10.1039/d0tc05137c. - ISSN 2050-7534(eISSN)
Примечания : Cited References: 56. - The present work was financially supported by the Natural Science Foundation of China (21871167), and 1331 Project of Shanxi Province and the Postgraduate Innovation Project of Shanxi Normal University (2019XBY018), and funded by RFBR according to the research project no. 19-52-80003
Аннотация: Low-dimensional-networked metal halides are attractive for the screening of emitters applied in solid-state lighting and displays, but the lead toxicity and poor stability are obstacles that must be overcome in industrial applications. Herein, we aim at the discovery of bright and stable photoluminescence in zero-dimensional (0D) Mn2+-based metal halides. By manipulation of Cl/Br transmutation, the nature of the halogen can be confirmed as a pivotal factor to tune the PL behaviors, and the optimum Mn2+ emission with a high PLQY of 99.8% and a short lifetime of 0.372 ms can be achieved in (C24H20P)2MnBr4. The thermal quenching behaviors have been discussed in depth, indicating that the synergistic effect of good chemical stability of organic groups, a long Mn⋯Mn distance of 10.447 Å and a relatively large activation energy (ΔE = 0.277 eV) provides a platform for achieving excellent thermal stability in (C24H20P)2MnBr4. Moreover, the as-fabricated white LED device with a high luminous efficacy of 118.9 lm W−1 and a wide color gamut of 105.3% National Television System Committee (NTSC) shows that (C24H20P)2MnBr4 can be employed as a desirable narrow-band green emitter for LED displays. This work provides a new understanding of fine tailoring halogens, and proposes a feasible approach to achieving high thermal stability emitters toward the targeted practical applications.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)