Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (8)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Resonances<.>)
Общее количество найденных документов : 87
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-60      
1.


   
    Acoustic resonances in non-Hermitian open systems / L. Huang, S. Huang, Ch. Shen [et al.] // Nat. Rev. Phys. - 2024. - Vol. 6, Is. 1. - P. 11-27, DOI 10.1038/s42254-023-00659-z. - Cited References: 288. - L.H. and A.E.M. were supported by the Australian Research Council Discovery Project (DP200101353) and the UNSW Scientia Fellowship programme. S.H. and Y.L. were supported by the Shanghai Science and Technology Committee (grant nos. 21JC1405600). C.S. was supported by the US National Science Foundation under grant no. CMMI-2137749. S.Y., X.N., S.K. and A.A. were supported by the Air Force Office of Scientific Research and Simons Foundation. A.S.P and A.F.S acknowledge the state assignment of Kirensky Institute of Physics. Y.K.C. and D.A.P. were supported by the Australian Research Council Discovery Project (grant no. DP200101708) . - ISSN 2522-5820
Аннотация: Acoustic resonances in open systems, which are usually associated with resonant modes characterized by complex eigenfrequencies, play a fundamental role in manipulating acoustic wave radiation and propagation. Notably, they are accompanied by considerable field enhancement, boosting interactions between waves and matter, and leading to various exciting applications. In the past two decades, acoustic metamaterials have enabled a high degree of control over tailoring acoustic resonances over a range of frequencies. Here, we provide an overview of recent advances in the area of acoustic resonances in non-Hermitian open systems, including Helmholtz resonators, metamaterials and metasurfaces, and discuss their applications in various acoustic devices, including sound absorbers, acoustic sources, vortex beam generation and imaging. We also discuss bound states in the continuum and their applications in boosting acoustic wave–matter interactions, active phononics and non-Hermitian acoustic resonances, including phononic topological insulators and the acoustic skin effect.

Смотреть статью,
Scopus
Держатели документа:
The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai, China
Institute of Acoustics, Tongji University, Shanghai, China
Department of Mechanical Engineering, Rowan University, Glassboro, NJ, USA
Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
L. V. Kirensky Institute of Physics, Krasnoyarsk, Russia
School of Engineering and Technology, University of New South Wales, Canberra, Australian Capital Territory, Australia
Physics Program, Graduate Center, City University of New York, New York, NY, USA

Доп.точки доступа:
Huang, Lujun; Huang, Sibo; Shen, Chen; Yves, Simon; Pilipchuk, A. S.; Пилипчук, Артем Сергеевич; Ni, Xiang; Kim, Seunghwi; Chiang, Yan Kei; Powell, David A.; Zhu, Jie; Cheng, Ya; Li, Yong; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Alu, Andrea; Miroshnichenko, Andrey E.
}
Найти похожие
2.


    Aksenov, S. V.
    Majorana modes and Fano resonances in Aharonov–Bohm ring with topologically nontrivial superconducting bridge / S. V. Aksenov, M. Yu. Kagan // J. Low Temp. Phys. - 2024, DOI 10.1007/s10909-024-03171-5. - Cited References: 46. - We were inspired by Andreev’s seminal contribution in the superconducting nanophysics—the field which started in fact from Josephson effect and Andreev reflection. M. Yu. Kagan thanks the Program for basic research of the National Research University Higher School of Economics for support. The work was partially carried out within the state assignment of Kirensky Institute of Physics. S.V.A. thanks the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" for support . - Article in press. - ISSN 0022-2291. - ISSN 1573-7357
Кл.слова (ненормированные):
Topological superconductivity -- Majorana modes -- Aharonov–Bohm ring -- Fano resonanse
Аннотация: We study different resonances (first of all of the Fano type) in the interference device formed by the Aharonov–Bohm ring with superconducting (SC) wire in the topologically nontrivial state playing a role of a bridge between top and bottom arms. We analyze Majorana modes on the ends of the SC wire and show that the collapse of the additional Fano resonance, that is initially induced by transport scheme asymmetry, is connected with the increase of the length of the bridge when the binding energy of the Majorana end modes tends to zero. In local transport regime, the Fano resonances are stable against the change of the transport symmetry. The reasons of both collapse and sustainability are analyzed using a spinless toy model including the Kitaev chain.

Смотреть статью
Держатели документа:
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/38, Krasnoyarsk, Russia, 660036
National Research University Higher School of Economics, Myasnitskaya Street 20, Moscow, Russia, 101000
P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences, Kosygin Street 2, Moscow, Russia, 119334

Доп.точки доступа:
Kagan, M. Yu.; Аксенов, Сергей Владимирович
}
Найти похожие
3.


    Pichugin, K. N.
    A series of avoided crossings of resonances in the system of several different dielectric resonators results in giant Q-factors / K. Pichugin, A. Sadreev, E. Bulgakov // Photonics. - 2023. - Vol. 10, Is. 9. - Ст. 973, DOI 10.3390/photonics10090973. - Cited References: 64. - This work is supported by the Russian Science Foundation under grant 22-12-00070 . - ISSN 2304-6732
Кл.слова (ненормированные):
resonant modes -- avoided crossing -- high Q-factor
Аннотация: On an example of a system of three/four/five/six different coupled coaxial silicon disks, we realize a series of avoided crossings of resonances (ACRs) with respect to the different morphologies for the different scales of each disk. Each next step of ACR accompanied by the optimization processes of all previous ACRs contributes almost one order of magnitude to the Q-factor. As a result, we achieve unprecedented values for the Q-factors: 6.6·104 for three, 4.8·106 for four, 8.5·107 for five and several billions for six free standing silicon disks. Comparisons to such prominent methods as whispering gallery modes or quasi bound states in the continuum to boost the Q-factor demonstrate the tremendous advantage of the present approach not only in terms of Q-factor values but also in terms of mode volumes. Multipole analysis of the final hybridized resonant mode explains such extremely large Q-factor values. The analysis shows a strong redistribution of radiation owing to the almost-exact destructive interference of the dominating complex multipole radiation amplitudes.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович; Bulgakov, E. N.; Булгаков, Евгений Николаевич; Пичугин, Константин Николаевич
}
Найти похожие
4.


   
    Ring of bound states in the continuum in the reciprocal space of a monolayer of high-contrast dielectric spheres / A. S. Kostyukov, V. S. Gerasimov, A. E. Ershov, E. N. Bulgakov // Phys. Rev. B. - 2022. - Vol. 105, Is. 7. - Ст. 075404, DOI 10.1103/PhysRevB.105.075404. - Cited References: 43. - This research was supported by RFBR, Krasnoyarsk Territory, and Krasnoyarsk Regional Fund of Science, Project No. 20-42-240003, by the Ministry of Science and Higher Education of the Russian Federation, Project No. FSRZ-20200008 . - ISSN 2469-9950. - ISSN 2469-9969
РУБ Materials Science, Multidisciplinary + Physics, Applied + Physics, Condensed Matter
Рубрики:
PHOTONIC BAND-STRUCTURE
   FANO RESONANCES

   SCATTERING

Аннотация: We consider light scattering by two-dimensional arrays of high-index dielectric spheres arranged into a triangular and square lattices. We demonstrate the appearance of the double degenerate accidental super-BIC modes with extremely suppressed radiative losses in the vicinity of the Γ point of the leaky band of the triangular lattice. Two rings of BICs (circular lines of BICs in reciprocal space) with different polarization appear at the point of the super-BIC destruction. The radius of the ring BIC (RBIC) changes as a function of the sphere's radius. We propose a generic analytical expression to describe the behavior of the guided mode decay rate as a function of the sphere radii and the wave vector in the vicinity of the RBIC. The results are explained using a multipolar approach.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Fed Univ, Int Res Ctr Spect & Quantum Chem, Krasnoyarsk 660041, Russia.
Inst Computat Modelling SB RAS, Krasnoyarsk 660036, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kostyukov, A. S.; Gerasimov, V. S.; Ershov, A. E.; Bulgakov, E. N.; Булгаков, Евгений Николаевич; RFBR Russian Foundation for Basic Research (RFBR); Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [20-42-240003]; Ministry of Science and Higher Education of the Russian Federation [FSRZ-20200008]
}
Найти похожие
5.


   
    Thermal degradation of optical resonances in plasmonic nanoparticles / L. K. Sorensen, D. E. Khrennikov, V. S. Gerasimov [et al.] // Nanoscale. - 2022. - Vol. 14, Is. 2. - P. 433-447, DOI 10.1039/d1nr06444d. - Cited References: 85. - The work is supported by the Russian Science Foundation (project No. 18-13-00363). L. K. S. acknowledges the support of Carl Tryggers Stifetelse, project CTS 18-441. The authors thank the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS" for the use of Hitachi S-5500 high-resolution scanning electron microscope for the analysis of nanomaterials. Some of the computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) partially funded by the Swedish Research Council through grant agree-ment no. SNIC 2020/3-29. Authors thank Anton Utyushev for technical assistance in preparation of Fig. 3 . - ISSN 2040-3364. - ISSN 2040-3372
   Перевод заглавия: Тепловая деградация оптических резонансов в плазмонных наночастицах
РУБ Chemistry, Multidisciplinary + Nanoscience & Nanotechnology + Materials Science, Multidisciplinary + Physics, Applied
Рубрики:
STABILIZED GOLD NANOPARTICLES
   DIPOLE INTERACTION-MODEL

Аннотация: The dependence of plasmon resonance excitations in ultrafine (3-7 nm) gold nanoparticles on heating and melting is investigated. An integrated approach is adopted, where molecular dynamics simulations of the spatial and temporal development of the atoms constituting the nanoparticles generate trajectories out of which system conformations are sampled and extracted for calculations of plasmonic excitation cross sections which then are averaged over the sample configurations for the final result. The calculations of the plasmonic excitations, which take into account the temperature- and size-dependent relaxation of the plasmons, are carried out with a newly developed Extended Discrete Interaction Model (Ex-DIM) and complemented by multilayered Mie theory. The integrated approach clearly demonstrates the conditions for suppression of the plasmons starting at temperatures well below the melting point. We have found a strong inhomogeneous dependence of the atom mobility in the particle crystal lattice increasing from the center to its surface upon the temperature growth. The plasmon resonance suppression is associated with an increase of the mobility and in the amplitude of phonon vibrations of the lattice atoms accompanied by electron-phonon scattering. This leads to an increase in the relaxation constant impeding the plasmon excitation as the major source of the suppression, while the direct contribution from the increase in the lattice constant and its chaotization at melting is found to be minor. Experimental verification of the suppression of surface plasmon resonance is demonstrated for gold nanoparticles on a quartz substrate heated up to the melting temperature and above.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Siberian Fed Univ, Int Res Ctr Spect & Quantum Chem IRC SQC, Krasnoyarsk 660041, Russia.
Royal Inst Technol, Dept Theoret Chem & Biol, SE-10691 Stockholm, Sweden.
Fed Res Ctr KSC SB RAS, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
Fed Res Ctr KSC SB RAS, LV Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Inst Chem Organometall Cpds, CNR ICCOM, Via G Moruzzi 1, I-56124 Pisa, Italy.
Fed Siberian Res Clin Ctr FMBA Russia, Kolomenskaya 26, Krasnoyarsk 660037, Russia.
Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden.

Доп.точки доступа:
Sorensen, Lasse K.; Khrennikov, Daniil E.; Gerasimov, Valeriy S.; Ershov, Alexander E.; Vysotin, M. A.; Высотин, Максим Александрович; Monti, Susanna; Zakomirnyi, Vadim, I; Polyutov, Sergey P.; Agren, Hans; Karpov, S. V.; Карпов, Сергей Васильевич; Russian Science FoundationRussian Science Foundation (RSF) [18-13-00363]; Carl Tryggers Stifetelse [CTS 18-441]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [SNIC 2020/3-29]
}
Найти похожие
6.


    Bulgakov, E. N.
    Self-trapping of nanoparticles by bound states in the continuum / E. N. Bulgakov, A. F. Sadreev // Phys. Rev. B. - 2022. - Vol. 106, Is. 16. - Ст. 165430, DOI 10.1103/PhysRevB.106.165430. - Cited References: 46. - The work was supported by Russian Science Foundation Grant No. 22-12-00070 . - ISSN 2469-9950
Кл.слова (ненормированные):
Basic principles -- Bound-states -- Dielectric cylinder -- Dielectric particles -- Equilibrium positions -- Fabry-Perot resonators -- High-Q resonances -- Quasibound state -- Self-trapping -- Submicron -- Nanoparticles
Аннотация: In the first tutorial part of the paper, we show that equilibrium positions of small dielectric particles inside the Fabry-Perot resonator (FPR) are sensitive to a frequency of incident electromagnetic wave and size of particle. That elucidates basic principles of resonant trapping of nanoparticles by excitation of high-Q resonances of FPR. In the second part, we consider a long dielectric cylinder with submicron radius (primary cylinder) integrated into a metallic waveguide which supports symmetry-protected bound states in the continuum (BICs). We consider the case of a slightly shifted cylinder relative to the axis of symmetry of a waveguide that controls the Q factor of quasi-BIC. Then, the extra nanoparticle perturbs quasi-BIC as dependent on the size of the nanoparticle and position relative to the primary cylinder. An interplay between the resonant width of quasi-BIC and a degree of frequency perturbation defines whether a dragging nanoparticle is terminated at a surface of the primary cylinder for an ultrasmall size of nanoparticles or at the definite distances from the cylinder for the larger size of nanoparticles. Thereby, we demonstrate a paradigm of resonant self-trapping and sorting of nanoparticles by use of quasi-BICs. We also show extremal sensitivity of self-trapping to the frequency of an electromagnetic (EM) wave propagating over waveguide.

Смотреть статью,
Scopus
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович; Булгаков, Евгений Николаевич
}
Найти похожие
7.


   
    General framework of bound states in the continuum in an open acoustic resonator / L. Huang, B. Jia, A. S. Pilipchuk [et al.] // Phys. Rev. Appl. - 2022. - Vol. 18, Is. 5. - Ст. 054021, DOI 10.1103/PhysRevApplied.18.054021. - Cited References: 47. - L.H. and A.E.M. are supported by the Australian Research Council Discovery Project (Grant No. DP200101353) and the UNSW Scientia Fellowship program. Y.K.C. and D.A.P. are supported by the Australian Research Council Discovery Project (Grant No. DP200101708). B.J., S.H., and Y.L. are supported by the National Natural Science Foundation of China (Grant No. 12074286) and the Shanghai Science and Technology Committee (Grant No. 21JC1405600). A.P., E.B., and A.S. are supported by the Russian Science Foundation (Grant No. 22-12-00070) . - ISSN 2331-7019
Кл.слова (ненормированные):
Acoustic resonators -- Acoustic waveguides -- Bound-states -- Coupled waveguide resonators -- Degenerate modes -- Eigen modes -- General method -- High-Q resonances -- Momentum spaces -- Non-Hermitian Hamiltonians -- Waveguide-resonators -- Waveguide filters
Аннотация: Bound states in the continuum (BICs) provide a viable way of achieving high-Q resonances in both photonics and acoustics. In this work, we propose a general method of constructing Friedrich-Wintgen (FW) BICs and accidental BICs in a coupled acoustic waveguide-resonator system. We demonstrate that FW BICs can be achieved with arbitrary two degenerate resonances in a closed resonator, regardless of whether they have the same or opposite parity. Moreover, their eigenmode profiles can be arbitrarily engineered by adjusting the position of the attached waveguide. This suggests an effective way of continuously switching the nature of the BICs from FW BICs to symmetry-protected BICs or accidental BICs. Also, such BICs are sustained in the coupled waveguide-resonator system with shapes such as rectangles, ellipses, and rhomboids. These interesting phenomena are well explained by the two-level effective non-Hermitian Hamiltonian, where two strongly coupled degenerate modes play a major role in forming such FW BICs. Additionally, we find that such an open system also supports accidental BICs in geometry space instead of momentum space via tuning the position of the attached waveguide, which is attributed to the quenched coupling between the waveguide and eigenmodes of the closed cavity. Finally, we fabricate a series of three-dimensional coupled resonator waveguides and experimentally verify the existence of FW BICs and accidental BICs by measuring the transmission spectra. Our results complement the current BIC library in acoustics and provide nice routes for designing acoustic devices, such as acoustic absorbers, filters, and sensors.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
School of Engineering and Information Technology, University of New South Wales, Northcott Drive, Canberra, ACT 2600, Australia
Institute of Acoustics, Tongji University, Shanghai, 200092, China
L. V. Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, RAN, Krasnoyarsk, 660036, Russian Federation
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States
Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, United States

Доп.точки доступа:
Huang, L.; Jia, B.; Pilipchuk, A. S.; Пилипчук, Артем Сергеевич; Chiang, Y.; Huang, S.; Li, J.; Shen, C.; Bulgakov, E. N.; Булгаков, Евгений Николаевич; Deng, F.; Powell, D. A.; Cummer, S. A.; Li, Y.; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Miroshnichenko, A. E.
}
Найти похожие
8.


   
    Multipolar lattice resonances in plasmonic finite-size metasurfaces / A. S. Kostyukov, I. L. Rasskazov, V. S. Gerasimov [et al.] // Photonics. - 2021. - Vol. 8, Is. 4. - Ст. 109, DOI 10.3390/photonics8040109. - Cited References: 66. - The reported study was funded by the Russian Science Foundation project number 19-72-00066 . - ISSN 2304-6732
   Перевод заглавия: Мультипольные решеточные резонансы в плазмонных метаповерхностях конечных размеров
РУБ Optics

Кл.слова (ненормированные):
lattice resonance -- plasmonics -- multipoles -- nanoparticle
Аннотация: Collective lattice resonances in regular arrays of plasmonic nanoparticles have attracted much attention due to a large number of applications in optics and photonics. Most of the research in this field is concentrated on the electric dipolar lattice resonances, leaving higher-order multipolar lattice resonances in plasmonic nanostructures relatively unexplored. Just a few works report exceptionally high-Q multipolar lattice resonances in plasmonic arrays, but only with infinite extent (i.e., perfectly periodic). In this work, we comprehensively study multipolar collective lattice resonances both in finite and in infinite arrays of Au and Al plasmonic nanoparticles using a rigorous theoretical treatment. It is shown that multipolar lattice resonances in the relatively large (up to 6400 nanoparticles) finite arrays exhibit broader full width at half maximum (FWHM) compared to similar resonances in the infinite arrays. We argue that our results are of particular importance for the practical implementation of multipolar lattice resonances in different photonics applications.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Fed Univ, Int Res Ctr Spect & Quantum Chem IRC SQC, Krasnoyarsk 660041, Russia.
Univ Rochester, Inst Opt, Rochester, NY 14627 USA.
Russian Acad Sci, Siberian Branch, Inst Computat Modelling, Krasnoyarsk 660036, Russia.
Fed Res Ctr KSC SB RAS, LV Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kostyukov, Artem S.; Rasskazov, Ilia L.; Gerasimov, Valeriy S.; Polyutov, Sergey P.; Karpov, S. V.; Карпов, Сергей Васильевич; Ershov, Alexander E.; Russian Science FoundationRussian Science Foundation (RSF) [19-72-00066]
}
Найти похожие
9.


    Sadreev, A. F.
    Interference traps waves in an open system: bound states in the continuum / A. F. Sadreev // Rep. Prog. Phys. - 2021. - Vol. 84, Is. 5. - Ст. 055901, DOI 10.1088/1361-6633/abefb9. - Cited References: 154. - The work was partially supported by Russian Foundation for Basic Research Projects No. 19-02-00055 . - ISSN 0034-4885. - ISSN 1361-6633
РУБ Physics, Multidisciplinary
Рубрики:
FANO RESONANCES
   2ND-HARMONIC GENERATION

   QUANTUM-SYSTEMS

   UNIFIED THEORY

Кл.слова (ненормированные):
bound states in the continuum -- wave localization in one-dimensional wires -- open microwave and acoustic resonators -- effective non Hermitian Hamiltonian
Аннотация: I review the four mechanisms of bound states in the continuum (BICs) in the application of microwave and acoustic cavities open to directional waveguides. The most simple are symmetry-protected BICs, which are localized inside the cavity because of the orthogonality of the eigenmodes to the propagating modes of waveguides. However, the most general and interesting is the Friedrich-Wintgen mechanism, when the BICs are the result of the fully destructive interference of outgoing resonant modes. The third type of BICs, Fabry-Perot BICs, occurs in a double resonator system when each resonator can serve as an ideal mirror. Finally, the accidental BICs can be realized in the open cavities with no symmetry like the open Sinai billiard in which the eigenmode of the resonator can become orthogonal to the continuum of the waveguide accidentally due to a smooth deformation of the eigenmode. We also review the one-dimensional systems in which the BICs occur owing to the fully destructive interference of two waves separated by spin or polarization or by paths in the Aharonov-Bohm rings. We make broad use of the method of effective non-Hermitian Hamiltonian equivalent to the coupled mode theory, which detects BICs by finding zero-width resonances.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Садреев, Алмаз Фаттахович; Russian Foundation for Basic Research Projects [19-02-00055]
}
Найти похожие
10.


   
    Low-threshold bound state in the continuum lasers in hybrid lattice resonance metasurfaces / J.-H. Yang, Z.-T. Huang, D. N. Maksimov [et al.] // Laser Photon. Rev. - 2021. - Vol. 15. Is. 10. - Ст. 2100118, DOI 10.1002/lpor.202100118. - Cited References: 66. - This study was supported by the Higher Education Sprout Project of the National Chiao Tung University and Ministry of Education, also supported by the Higher Education Sprout Project of the National Yang Ming Chiao Tung University and Ministry of Education (MOE) as well as the Ministry of Science and Technology of Taiwan (MOST‐107‐2221‐E‐009‐046‐MY3, 107‐2218‐E‐009‐056, 108‐2221‐E‐019‐055‐MY3, 108‐2221‐E‐019‐057‐MY3, 108‐2923‐E‐009‐003‐MY3, 109‐2124‐M‐009‐005, 109‐2221‐E‐009‐150, and 110‐2218‐E‐A49‐012‐MBK). This research was also funded by the Russian Foundation for Basic Research (project no. 19‐52‐52006). The authors also thank Taiwan Semiconductor Research Institute (TSRI) and the Center for Micro/Nano Science and Technology (CMNST) for the supporting of sample fabrication . - ISSN 1863-8880
Кл.слова (ненормированные):
bound state in the continuum -- BIC lasers -- lattice resonances -- metasurfaces -- Mie resonance
Аннотация: Bound states in the continuum (BICs) have attracted considerable research attention due to their infinite quality factor (Q-factor) and extremely localized fields, which drastically enhances light–matter interactions and yields high potential in topological photonics and quantum optics. In this study, the room temperature directional lasing normal to a BIC metasurface is demonstrated with hybrid surface lattice resonances. Compared to the plasmonic nanolasers, the BIC metasurface lasers possess directional radiation and a larger emission volume. The high Q-factor resonance of BIC metasurface overcomes the limitation of a large mode volume in achieving low-threshold lasing. In addition, a design rule is proposed to prevent the occurrence of wavelength shift when the Q-factor changes; thus, the lasing thresholds for different BIC metasurfaces can be compared. In this work, the high localization ability of BICs is used to achieve the low lasing threshold (1.25 nJ) at the room temperature. The “light in–light out” diagram of the aforementioned laser based on simulations and experiments exhibits a large spontaneous emission coupling factor (β = 0.9) and the S-curve. The device developed in this study can be used in various applications, such as quantum emitters, optical sensing, nonlinear optics, and topological states engineering.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Institute of Photonic System, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, No. 301, Gaofa 3rd Rd., Guiren Dist., Tainan, 71150, Taiwan
Department of Photonics, College of Electrical and Computer Engineering, National Chiao Tung University and National Yang Ming Chiao Tung University, No. 1001 University Road, East Dist., Hsinchu, 30010, Taiwan
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, No. 50 Akademgorodok st., Krasnoyarsk, 660036, Russian Federation
Institute of Engineering Physics and Radio Electronics, Siberian Federal University, No. 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation
Institute of Lighting and Energy Photonics, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, No. 301, Gaofa 3rd Rd., Guiren Dist., Tainan, 71150, Taiwan
Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung, 202301, Taiwan
Institute and Undergraduate Program of Electro-Optical Engineering, National Taiwan Normal University, No. 88, Section 4, Tingchou Rd., Taipei, 11677, Taiwan
Micro/Nano Device Inspection and Research Center, National Taiwan Normal University, No. 162, Section 1, Heping E. Rd., Taipei, 106, Taiwan
Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, No. 301, Gaofa 3rd Rd., Guiren Dist., Tainan, 71150, Taiwan

Доп.точки доступа:
Yang, J. -H.; Huang, Z. -T.; Maksimov, D. N.; Максимов, Дмитрий Николаевич; Pankin, P. S.; Панкин, Павел Сергеевич; Timofeev, I. V.; Тимофеев, Иван Владимирович; Hong, K. -B.; Li, H.; Chen, J. -W.; Hsu, C. -Y.; Liu, Y. -Y.; Lu, T. -C.; Lin, T. -R.; Yang, C. -S.; Chen, K. -P.
}
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-60      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)