Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (3)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Tin<.>)
Общее количество найденных документов : 18
Показаны документы с 1 по 10
 1-10    11-18 
1.


    Gokhfeld, D. M.
    Analog of the intertype superconductivity in nanostructured materials / D. M. Gokhfeld, S. I. Popkov, A. A. Bykov // Physica C. - 2019. - Vol. 566. - Ст. 1353526, DOI 10.1016/j.physc.2019.1353526. - Cited References: 21. - The authors are grateful to D.A. Balaev, N.E. Savitskaya, N.A. Grigorieva for fruitful discussions and to A.A. Mistonov for provided samples. The work is supported by the Russian Science Foundation (project no. 17-72-10067 ). . - ISSN 0921-4534
   Перевод заглавия: Аналог межтиповой сверхпроводимости в наноструктуированных материалах
Кл.слова (ненормированные):
Tin-based inverse opal -- Intertype superconductivity -- Nanostructures
Аннотация: Magnetization hysteresis loops of tin samples with an inverted opal structure are presented. The sample formed by tin particles with the size of 70 and 128 nm is found to be a type-I superconductor. The tin sample formed by 80 and 42 nm particles demonstrates an analog of intertype superconductivity: features of both type-I and II superconductors are observed on the magnetization isothermal curves. A behavior of the irreversible and reversible magnetizations supports coexistence of type-I and II superconducting nanoparticles in this sample.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
NRC «Kurchatov Institute» - PNPI, Gatchina, 188300, Russian Federation

Доп.точки доступа:
Popkov, S. I.; Попков, Сергей Иванович; Bykov, A. A.; Гохфельд, Денис Михайлович
}
Найти похожие
2.


   
    Broadband light emitting zero-dimensional antimony and bismuth-based hybrid halides with diverse structures / C. K. Deng, S. Q. Hao, K. J. Liu [et al.] // J. Mater. Chem. C. - 2021. - Vol. 9, Is. 44. - P. 15942-15948, DOI 10.1039/d1tc04198c. - Cited References: 52. - This work was supported by Beijing Municipal Natural Science Foundation (2182080) and the National Natural Science Foundation of China (51972021 and 51702329). The work was partly supported by the Fundamental Research Funds for the Central Universities (FRF-IDRY-19-005) and by the RFBR according to the research project No. 19-52-80003. S. H. and C. W. (DFT calculations) acknowledge support from the Department of Energy, Office of Science Basic Energy Sciences under Grant DE-SC0014520. Access to QUEST, the supercomputing resources facilities at Northwestern University, is also acknowledged . - ISSN 2050-7526. - ISSN 2050-7534
   Перевод заглавия: Широкополосное излучение от нульмерных гибридных галогенидов на основе сурьмы и висмута с разнообразной структурой
РУБ Materials Science, Multidisciplinary + Physics, Applied
Рубрики:
CRYSTAL-STRUCTURE
   LONE-PAIR

   EMISSION

   PEROVSKITES

   TIN

   LUMINESCENCE

Аннотация: Low-dimensional organic–inorganic metal halides have recently attracted extensive attention because of their various structures and distinguished photoelectric properties. Herein, we report a series of new zero-dimensional organic–inorganic hybrid metal halides: (TMEDA)3Bi2Cl12·H2O, (TMEDA)3Bi2Br12·H2O, (TMEDA)3Sb2Br12·H2O, and (TMEDA)5Sb6Cl28·2H2O [TMEDA = N,N,N′·trimethylethylenediamine]. (TMEDA)3M2X12·H2O (M = Bi or Sb, X = Cl or Br) crystallizes in the monoclinic space group P21/n, and (TMEDA)5Sb6Cl28·2H2O crystallizes in the orthorhombic space group Pnma. (TMEDA)3M2X12 possesses a zero-dimensional structure with the metal halide ions of [MBr6]3− isolated by the organic TMEDA2+ cations. Interestingly, the (TMEDA)5Sb6Cl28·2H2O structure consists of a combination of corner-connected octahedra [Sb4Cl18]6− and edge-shared [Sb2Cl10]4−, which is quite rare. The light emission of all these compounds was measured, and (TMEDA)3Sb2Br12·H2O exhibits the most intense luminescence. Upon 400 nm ultraviolet light excitation, (TMEDA)3Sb2Br12·H2O exhibited strong broadband yellow emission centered at 625 nm with a full-width at half-maximum of ∼150 nm originating from self-trapped excitons. This work suggests the possibility of new types of hybrid halides by introducing different metal centers and probing the structural evolution and photoluminescent properties, serving as a reference for the relationship between structure and luminescent performance and demonstrating their potential use as phosphors in light-emitting diodes.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing Municipal Key Lab New Energy Mat & Techno, Beijing 100083, Peoples R China.
Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RAS, SB, Lab Crystal Phys, Kirensky Inst Phys,Fed Res Ctr KSC, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
Shanxi Normal Univ, Sch Chem & Mat Sci, Key Lab Magnet Mol & Magnet Informat Mat, Minist Educ, Linfen 041004, Shanxi, Peoples R China.

Доп.точки доступа:
Deng, Chenkai; Hao, Shiqiang; Liu, Kunjie; Molokeev, M. S.; Молокеев, Максим Сергеевич; Wolverton, Christopher; Fan, Liubing; Zhou, Guojun; Chen, D.a.; Zhao, Jing; Liu, Quanlin; Beijing Municipal Natural Science FoundationBeijing Natural Science Foundation [2182080]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [51972021, 51702329]; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [FRF-IDRY-19-005]; RFBRRussian Foundation for Basic Research (RFBR) [19-52-80003]; Department of Energy, Office of Science Basic Energy SciencesUnited States Department of Energy (DOE) [DE-SC0014520]
}
Найти похожие
3.


   
    Effect of exposure to optical radiation and temperature on the electrical and optical properties of In2O3 films produced by autowave oxidation / I. A. Tambasov [et al.] // Semiconductors. - 2014. - Vol. 48, Is. 2. - P. 207-211, DOI 10.1134/S1063782614020286. - Cited References: 42. - This study was supported by the Ministry of Education and Science of the Russian Federation, Federal Targeted Program "Research and Development in Priority Fields of Development of the Science and Technology Complex of Russia for 2007-2013", state contract no. 14.513.11.0023. . - ISSN 1063-7826. - ISSN 1090-6479
РУБ Physics, Condensed Matter
Рубрики:
GAS SENSOR RESPONSE
   INDIUM OXIDE-FILMS

   THIN-FILMS

   HIGH-PERFORMANCE

   TIN OXIDE

   TRANSPARENT CONDUCTORS

   SUBSTRATE-TEMPERATURE

   ROOM-TEMPERATURE

   TRANSISTORS

   PHOTOREDUCTION

Аннотация: Indium-oxide films are synthesized by the autowave-oxidation reaction. It is shown that, upon exposure to optical radiation, the resistance of the films sharply decreases and the maximal relative change in the resistance is 52% at room temperature. Two resistance relaxation rates after termination of the irradiation, 15 Omega s(-1) during the first 30 s and 7 Omega s(-1) over the remaining time, are determined. The data of infrared spectroscopy of the films show that exposure to optical radiation induces a 2.4% decrease in the transmittance at a wavelength of 6.3 mu m. It is found that, after termination of the irradiation, the transmittance gradually increases with a rate of 0.006% s(-1). It is suggested that photoreduction is the dominant mechanism responsible for changes in the electrical and optical properties of the In2O3 films.

Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ

Публикация на русском языке Влияние фотооблучения и температуры на электрические и оптические свойства пленок In2O3, полученных автоволновым окислением [Текст] / И. А. Тамбасов [и др.] // Физ. и техника полупроводников : Санкт-Петербургская издательская фирма "Наука" РАН, 2014. - Т. 48 Вып. 2. - С. 220-224

Держатели документа:
Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Siberian State Aerosp Univ, Krasnoyarsk 660037, Russia
Joint Stock Co Academician MF Reshetnev Informat, Zheleznogorsk 662972, Russia

Доп.точки доступа:
Tambasov, I. A.; Тамбасов, Игорь Анатольевич; Myagkov, V. G.; Мягков, Виктор Григорьевич; Ivanenko, A. A.; Иваненко, Александр Анатольевич; Bykova, L. E.; Быкова, Людмила Евгеньевна; Yozhikova, E. V.; Maksimov, I. A.; Ivanov, V. V.; Ministry of Education and Science of the Russian Federation [14.513.11.0023]
}
Найти похожие
4.


   
    Effect of the forming gas ALD chamber preconditioning on the physical properties of TiN1-xOx films / F.A. Baron [и др.] // 1st FunMAX Workshop 2020 : Book of Abstracts. - 2020. - P. 15. - Cited References: 1

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics

Доп.точки доступа:
Baron, F. A.; Барон, Филипп Алексеевич; Volochaev, M. N.; Волочаев, Михаил Николаевич; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Mikhlin, Yu. L.; Михлин, Юрий Леонидович; Molokeev, M. S.; Молокеев, Максим Сергеевич; Rautskii, M. V.; Рауцкий, Михаил Владимирович; Smolyarova, T. E.; Смолярова, Татьяна Евгеньевна; Shanidze, L. V.; Шанидзе, Лев Викторович; Tarasov, A. S.; Тарасов, Антон Сергеевич; International Online Workshop on the properties of Functional MAX-materials(1 ; 2020 ; Aug ; 10-12 ; Krasnoyarsk); Институт физики им. Л.В. Киренского Сибирского отделения РАН
}
Найти похожие
5.


   
    Effect of the forming gas ALD chamber preconditioning on the physical properties of TiN1-xOx films / F. A. Baron, M. N. Volochaev, A. V. Lukyanenko [et al.] ; чл. орг. ком.: M. Farle [et al.] ; секр. орг. ком. T. E. Smolyarova // International workshop on functional MAX-materials (1st FunMax). - 2020. - P. 15. - Cited references: 1

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Baron, F. A.; Барон, Филипп Алексеевич; Volochaev, M. N.; Волочаев, Михаил Николаевич; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Mikhlin, Yu. L.; Михлин, Юрий Леонидович; Molokeev, M. S.; Молокеев, Максим Сергеевич; Rautskii, M. V.; Рауцкий, Михаил Владимирович; Smolyarova, T. E.; Смолярова, Татьяна Евгеньевна; Shanidze, L. V.; Шанидзе, Лев Викторович; Tarasov, A. S.; Тарасов, Антон Сергеевич; Farle, M. \чл. орг. ком.\; Tarasov, A. S. \чл. орг. ком.\; Ovchinnikov, S. G. \чл. орг. ком.\; Овчинников, Сергей Геннадьевич; Smolyarova, T. E. \секр. орг. ком.\; International workshop on functional MAX-materials(1 ; 2020 ; Aug. 10-12 ; Krasnoyarsk (on-line)); Kirensky Institute of Physics
}
Найти похожие
6.


   
    Flux pinning mechanisms and a vortex phase diagram of tin-based inverse opals / A. A. Bykov [et al.] // Supercond. Sci. Technol. - 2019. - Vol. 32, Is. 11. - Ст. 115004, DOI 10.1088/1361-6668/ab3db7. - Cited References: 31. - The work was supported by the Russian Foundation for Basic Research, project no. 17-72-10067. . - ISSN 0953-2048. - ISSN 1361-6668
   Перевод заглавия: Механизмы пиннинга магнитного потока и вихревая фазовая диаграмма оловянных инвертированных опалов
РУБ Physics, Applied + Physics, Condensed Matter
Рубрики:
SUPERCONDUCTIVITY
Кл.слова (ненормированные):
tin-based inverse opal -- superconductivity -- magnetic flux pinning -- three-dimensional inverse nanostructures
Аннотация: Three-dimensional periodic tin structures were synthesized by filling pores in silicon opals with a sphere diameter of 194 nm (Sn190) and 310 nm (Sn300). The samples were examined by the ultra-small-angle x-ray diffraction method, energy dispersive x-ray microanalysis and scanning electron microscopy. It was found that the inverse opal structure consists of tin nanoparticles inscribed in octahedral and tetrahedral pores with diameters of 128 nm and 70 nm for the sample Sn300, and 80 nm and 42 nm for the sample Sn190. The study of the magnetic properties of the samples by SQUID magnetometry showed that magnetization reversal curves exhibit hysteretic behavior. The mechanisms of magnetic flux pinning in the samples depend on the size of the tin nanoparticles. Tin nanoparticles in Sn300 behave like a classical type-I superconductor. The hysteretic behavior of the magnetization reversal curves at low magnetic fields is due to the formation of a network of superconducting contours in Sn300. These superconducting contours effectively trap the magnetic flux. The octahedral tin nanoparticles in Sn190 remain type-I superconductors, but smaller tetrahedral particles behave like type-II superconductors. Type-I and II superconducting particles in Sn190 lead to the coexistence of different mechanisms of flux pinning These are flux trapping by superconducting contours at low magnetic fields and flux pinning by tetrahedral particles due to the surface barrier at high magnetic fields.

Смотреть статью,
Scopus,
WOS,
Читать в клокальной сети ИФ
Держатели документа:
NRC KI, Petersburg Nucl Phys Inst, Gatchina, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk, Russia.
St Petersburg State Univ, St Petersburg, Russia.
Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Dallas, TX USA.

Доп.точки доступа:
Bykov, A. A.; Gokhfeld, D. M.; Гохфельд, Денис Михайлович; Savitskaya, N. E.; Terentjev, K. Yu.; Терентьев, Константин Юрьевич; Popkov, S. I.; Попков, Сергей Иванович; Mistonov, A. A.; Grigoryeva, N. A.; Zakhidov, A.; Grigoriev, S., V; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [17-72-10067]
}
Найти похожие
7.


   
    Machine learning analysis and discovery of zero-dimensional ns2 metal halides toward enhanced photoluminescence quantum yield / M. S. Molokeev, B. B. Su, A. S. Aleksandrovsky [et al.] // Chem. Mat. - 2022. - Vol. 34, Is. 2. - P. 537-546, DOI 10.1021/acs.chemmater.1c02725. - Cited References: 66. - This work is supported by the National Natural Science Foundation of China (51961145101 and 51972118), International Cooperation Project of National Key Research and Development Program of China (2021YFE0105700), Guangzhou Science and Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project no. 19-52-80003 . - ISSN 0897-4756. - ISSN 1520-5002
   Перевод заглавия: Машинное обучение и открытие нульмерных ns2 металлогалогенидов для увеличения квантового выхода фотолюминесценции
РУБ Chemistry, Physical + Materials Science, Multidisciplinary
Рубрики:
RANDOM FOREST
   CRYSTAL-STRUCTURE

   TIN BROMIDE

   CLASSIFICATION

Аннотация: The dependence of photoluminescence quantum yield (PLQY) on the crystal structure of existing zero-dimensional ns2 metal halides is analyzed with the help of principal component analysis and random forest methods. The primary role of the distance between metal ions in different compounds is revealed, and the influence of other structural features such as metal-halogen distance and the distortion of metal-halogen polyhedrons are quantified. Accordingly, the two previously unknown Sb3+-based zero-dimensional metal halides were synthesized to verify the obtained model. Experimental studies of the two compounds demonstrated good agreement with the predictions, and the PLQY of (C10H16N)2SbCl5 is found to be 96.5%. Via machine learning analysis, we demonstrate that concentration quenching is the main factor that determines PLQY for all s2 ion metal halides, which will accelerate the discovery of new luminescence metal halides.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Fiber Laser Mat & Appl Tec, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China.
RAS, KSC, SB, Lab Coherent Opt,Kirensky Inst Phys,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Kemerovo State Univ, Dept Res & Dev, Kemerovo 650000, Russia.

Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Su, Binbin; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Golovnev, Nicolay N.; Plyaskin, M. E.; Пляскин, Михаил Е.; Xia, Zhiguo
}
Найти похожие
8.


   
    Phase transitions in bismuth pyrostannate upon substitution of tin by iron ions / L. V. Udod [et al.] // J. Alloys Compd. - 2019. - Vol. 804. - P. 281-287, DOI 10.1016/j.jallcom.2019.07.020. - Cited References: 44. - The reported study was funded by RFBR according to the research project № 18-52-00009 Bel_a; The reported study was funded by Russian Foundation for Basic Research , Government of Krasnoyarsk Territory , Krasnoyarsk Regional Fund of Science № 18-42-240001 r_a, to the research project: «Inversion of the sign of the components of the magnetoelectric tensor on the temperature in films of bismuth garnet ferrite replaced by neodymium». This work is part of the research program the state order № 3.5743.2017/6.7. . - ISSN 0925-8388
Кл.слова (ненормированные):
Crystal structure -- Domain structure -- Optical properties -- Phase transitions -- Thermal expansion -- Ultrasonics
Аннотация: The Bi2(Sn1-хFeх)2O7 (х = 0, 0.1, 0.2) compounds have been synthesized by the solid-state reaction technique. The structure of the synthesized compounds has been investigated in the temperature range of 80–500 K using the thermal expansion and ultrasound damping coefficients and IR spectroscopy. The shift -type structural transitions for the composition with х = 0.2 in the low-temperature region has been established. The effect of iron ions on the phase boundaries of the polymorphic transitions in the Bi2Sn2O7 compound has been observed. Softening of the phonon modes near the phase transitions at different iron concentrations has been found.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok, 50, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 660037, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Udod, L. V.; Удод, Любовь Викторовна; Aplesnin, S. S.; Аплеснин, Сергей Степанович; Sitnikov, M. N.; Romanova, O. B.; Романова, Оксана Борисовна; Molokeev, M. S.; Молокеев, Максим Сергеевич
}
Найти похожие
9.


    DROKIN, N. A.
    PHOTOCONDUCTIVITY IN TIN-DOPED MAGNETITE / N. A. DROKIN, E. Y. AKSENOVA, Y. A. MAMALUI // Fiz. Tverd. Tela. - 1984. - Vol. 26, Is. 6. - P. 1837-1838. - Cited References: 5 . - ISSN 0367-3294
РУБ Physics, Condensed Matter


WOS
Доп.точки доступа:
AKSENOVA, E. Y.; MAMALUI, Y. A.
}
Найти похожие
10.


   
    Structural, optical, and electronic properties of Cu-doped TiNxOy grown by ammonothermal atomic layer deposition / F. A. Baron, Y. L. Mikhlin, M. S. Molokeev [et al.] // ACS Appl. Mater. Interfaces. - 2021. - Vol. 13, Is. 27. - P. 32531-32541, DOI 10.1021/acsami.1c08036. - Cited References: 69. - This research was funded by the RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (project code 20-42-240013) and by the grant of the Government of the Russian Federation for Creation of World Tier Laboratories (contract no. 075-15-2019-1886) . - ISSN 1944-8244. - ISSN 1944-8252
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
OXYNITRIDE THIN-FILMS
   TITANIUM-NITRIDE

   CONFORMAL TIN

Кл.слова (ненормированные):
atomic layer deposition -- titanium oxynitride -- copper doping -- surface segregation -- thin film
Аннотация: Copper-doped titanium oxynitride (TiNxOy) thin films were grown by atomic layer deposition (ALD) using the TiCl4 precursor, NH3, and O2 at 420 °C. Forming gas was used to reduce the background oxygen concentration and to transfer the copper atoms in an ALD chamber prior to the growth initiation of Cu-doped TiNxOy. Such forming gas-mediated Cu-doping of TiNxOy films had a pronounced effect on their resistivity, which dropped from 484 ± 8 to 202 ± 4 μΩ cm, and also on the resistance temperature coefficient (TCR), which decreased from 1000 to 150 ppm °C–1. We explored physical mechanisms causing this reduction by performing comparative analysis of atomic force microscopy, X-ray photoemission spectroscopy, X-ray diffraction, optical spectra, low-temperature transport, and Hall measurement data for the samples grown with and without forming gas doping. The difference in the oxygen concentration between the films did not exceed 6%. Copper segregated to the TiNxOy surface where its concentration reached 0.72%, but its penetration depth was less than 10 nm. Pronounced effects of the copper doping by forming gas included the TiNxOy film crystallite average size decrease from 57–59 to 32–34 nm, considerably finer surface granularity, electron concentration increase from 2.2(3) × 1022 to 3.5(1) × 1022 cm–3, and the electron mobility improvement from 0.56(4) to 0.92(2) cm2 V–1 s–1. The DC resistivity versus temperature R(T) measurements from 4.2 to 300 K showed a Cu-induced phase transition from a disordered to semimetallic state. The resistivity of Cu-doped TiNxOy films decreased with the temperature increase at low temperatures and reached the minimum near T = 50 K revealing signatures of the quantum interference effects similar to 2D Cu thin films, and then, semimetallic behavior was observed at higher temperatures. In TiNxOy films grown without forming gas, the resistivity decreased with the temperature increase as R(T) = – 1.88T0.6 + 604 μΩ cm with no semimetallic behavior observed. The medium range resistivity and low TCR of Cu-doped TiNxOy make this material an attractive choice for improved matching resistors in RF analog circuits and Si complementary metal–oxide–semiconductor integrated circuits.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
KSC SB RAS, Inst Chem & Chem Technol, Fed Res Ctr, Krasnoyarsk 660036, Russia.
KSC SB RAS, Kirensky Inst Phys, Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia.

Доп.точки доступа:
Baron, F. A.; Барон, Филипп Алексеевич; Mikhlin, Yurii L.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Rautskiy, M. V.; Рауцкий, Михаил Владимирович; Tarasov, I. A.; Тарасов, Иван Анатольевич; Volochaev, M. N.; Волочаев, Михаил Николаевич; Shanidze, L. V.; Шанидзе, Лев Викторович; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Smolyarova, T. E.; Смолярова, Татьяна Евгеньевна; Konovalov, Stepan O.; Zelenov, Fyodor, V; Tarasov, A. S.; Тарасов, Антон Сергеевич; Volkov, N. V.; Волков, Никита Валентинович; RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science [20-42-240013]; Government of the Russian Federation for Creation of World Tier Laboratories [075-15-2019-1886]
}
Найти похожие
 1-10    11-18 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)