Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (148)Каталог журналов библиотеки ИФ СО РАН (35)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=chemistry<.>)
Общее количество найденных документов : 509
Показаны документы с 1 по 20
1.


   
    Synthesis, structure, and properties of EuScCuS3 and SrScCuS3 / A. V. Ruseikina, M. S. Molokeev, V. А. Chernyshev [et al.] // J. Solid State Chem. - 2021. - Vol. 296. - Ст. 121926, DOI 10.1016/j.jssc.2020.121926. - Cited References: 72. - The work was supported by the Ministry of Science and Higher Education of the Russian Federation under Project No. FEUZ-2020-0054; by RFBR Grant 18-02-00754 ; by the “UMNIK” program research project № 14977GY/2019; by the Ministry of Science and Higher Education of the Russian Federation (contract no. 05.594.21.0019 , unique identification number RFMEFI59420X0019). Maxim S. Molokeev, Anton S. Tarasov and Mikhail V. Rautskii acknowledge additional funding from Research Grant No. 075-15-2019-1886 from the Government of the Russian Federation. The subset research was performed in Research Resource Center “Natural Resource Management and Physico-Chemical Research.” The use of equipment of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center « Krasnoyarsk Science Center SB RAS» is acknowledged . - ISSN 0022-4596
   Перевод заглавия: Синтез, строение и свойства EuScCuS3 и SrScCuS3
Кл.слова (ненормированные):
Inorganic materials -- Thermochemistry -- Raman spectroscopy -- Magnetic measurements -- Optical spectroscopy -- X-ray diffraction -- Ab initio calculations
Аннотация: The crystal structures of the first-synthesized compound EuScCuS3 and previously known SrScCuS3 are refined by Rietveld analysis of X-ray powder diffraction data. The structures are found to belong to orthorhombic crystal system, space group Cmcm, structural type KZrCuS3, with a ​= ​3.83413(3) Å, b ​= ​12.8625(1) Å, c ​= ​9.72654(8) Å (SrScCuS3) and a ​= ​3.83066(8) Å, b ​= ​12.7721(3) Å, c ​= ​9.7297(2) Å (EuScCuS3). The temperatures and enthalpies of incongruent melting are the following: Тm ​= ​1524.5 К, ΔHm ​= ​21.6 ​kJ•mol−1 (SrScCuS3), and Тm ​= ​1531.6 К, ΔHm ​= ​26.1 ​kJ•mol−1 (EuScCuS3). Ab initio calculations of the crystal structure and phonon spectrum of the compounds were performed. The types and wavenumbers of fundamental modes were determined and the involvement of ions participating in the IR and Raman modes was assessed. The experimental IR and Raman spectra were interpreted. EuScCuS3 manifests a ferromagnetic transition at 6.4 ​K. The SrScCuS3 compound is diamagnetic. The optical band gaps were found to be 1.63 ​eV (EuScCuS3) and 2.24 ​eV (SrScCuS3) from the diffuse reflectance spectra. The latter value is in good agreement with that calculated by the DFT method. The narrower band gap of EuScCuS3 is explained by the presence of 4f-5d transition in Eu2+ ion that indicates a possibility to control the band gap of the chalcogenides by the inclusion of Eu. The activation energy of crystal structure defects, being the source of additional absorption in the NIR spectral range, was found to be 0.29 ​eV.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Chemistry, University of Tyumen, Tyumen, 625003, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660079, Russian Federation
Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federation
Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS, Krasnoyarsk, 660049, Russian Federation
Institute of Physics and Technology, University of Tyumen, Tyumen, 625003, Russian Federation
Engineering Centre of Composite Materials Based on Tungsten Compounds and Rare-earth Elements, University of Tyumen, Tyumen, 625003, Russian Federation
University of Tyumen, Tyumen, 625003, Russian Federation

Доп.точки доступа:
Ruseikina, A. V.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Chernyshev, V. А.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Krylov, A. S.; Крылов, Александр Сергеевич; Krylova, S. N.; Крылова, Светлана Николаевна; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Grigoriev, M. V.; Maximov, N. G.; Shestakov, N. P.; Шестаков, Николай Петрович; Garmonov, A. A.; Matigorov, A. V.; Tarasov, A. S.; Тарасов, Антон Сергеевич; Rautskii, M. V.; Рауцкий, Михаил Владимирович; Khritokhin, N. А.; Melnikova, L. V.; Tretyakov, N. Y.
}
Найти похожие
2.


   
    The FeIV-O• oxyl unit as a key intermediate in water oxidation on the FeIII-hydroxide: DFT predictions / A. A. Shubin, V. Y. Kovalskii, S. P. Ruzankin [et al.] // Int. J. Quantum Chem. - 2021. - Vol. 121, Is. 10. - Ст. e26610, DOI 10.1002/qua.26610. - Cited References: 21. - Aleksandr A. Shubin, Igor L. Zilberberg, and Valentin N. Parmon acknowledge the support of Russian Foundation for Basic Research under grant No. 15-29-01275. Viktor Yu. Kovalskii acknowledges the support of Russian Foundation for Basic Research under grant No. 18-33-00932. Calculations have been performed at the Siberian Supercomputer Centre SB RAS . - ISSN 0020-7608
Кл.слова (ненормированные):
negative spin density -- oxyl oxygen -- the FeOOH hydroxide -- the O-O coupling -- water oxidation
Аннотация: The O-O coupling process in water oxidation on the gamma FeOOH hydroxide catalyst is simulated by means of density functional theory using model iron cubane cluster Fe4O4(OH)4. A key reactive intermediate is proposed to be the HO-FeIV-O• oxyl unit with terminal oxo radical. The “initial” vertex FeIII(OH) moiety forms this intermediate at the calculated overpotential of 0.93 V by adding one water molecule and withdrawing two proton–electron pairs. The O-O coupling goes via water nucleophilic attack on the oxyl oxygen to form the O-O bond with a remarkably low barrier of 11 kcal/mol. This process is far more effective than alternative scenario based on direct interaction of two ferryl FeIV-O sites (with estimated barrier of 36 kcal/mol) and is comparable with the coupling between terminal oxo center and three-coordinated lattice oxo center (12 kcal/mol barrier). The process of hydroxylation of terminal oxygen inhibits the O-O coupling. Nevertheless, being more effective for ferryl oxygen, the hydroxylation in fact enhances selectivity of the O-O coupling initiated by the oxyl oxygen.

Смотреть статью,
Scopus,
WOS
Держатели документа:
Boreskov Institute of Catalysis, Novosibirsk, Russian Federation
Novosibirsk State University, Novosibirsk, Russian Federation
Kirensky Institute of Physics SB RAS, FRC “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
National Research Tomsk State University, Tomsk, Russian Federation
Department of Chemistry, Kyungpook National University, Daegu, South Korea

Доп.точки доступа:
Shubin, A. A.; Kovalskii, V. Y.; Ruzankin, S. P.; Zilberberg, I. L.; Parmon, V. N.; Tomilin, F. N.; Томилин, Феликс Николаевич; Avramov, P. V.
}
Найти похожие
3.


   
    Phase transition in RbCdZrF7: Structure and thermal properties / E. V. Bogdanov, M. S. Molokeev, M. V. Gorev [et al.] // J. Fluor. Chem. - 2021. - Vol. 245. - Ст. 109748, DOI 10.1016/j.jfluchem.2021.109748. - Cited References: 30. - The reported study was funded by RFBR according to the research project No. 18-02-00269 a. X-ray and dilatometric data were obtained using the equipment of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS" . - ISSN 0022-1139
   Перевод заглавия: Фазовый переход в RbCdZrF7: структура и термические свойства
Кл.слова (ненормированные):
Phase transition -- Fluorides -- Structure -- Heat capacity -- Entropy -- Thermal expansion
Аннотация: X-ray, calorimetric and dilatometric studies of RbCdZrF7 revealed the existence of the second order phase transition Cmcm - P21/m at T0 = 200 K. The structure of the initial and distorted phases is ordered. The phase transition is associated with displacements of fluorine atoms, which leads to minor rotations of the CdF7 and ZrF7 pentagonal bipyramids. A small change in entropy, 0.1R, is characteristic of displacive-type transformations. An anomalously high susceptibility of the transition temperature to hydrostatic pressure was found.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Engineering Systems and Energy, Krasnoyarsk State Agrarian University, Krasnoyarsk, 660049, Russian Federation
Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk, 660074, Russian Federation
Institute of Chemistry, Far Eastern Branch of RAS, Vladivostok, 690022, Russian Federation

Доп.точки доступа:
Bogdanov, E. V.; Богданов, Евгений Витальевич; Molokeev, M. S.; Молокеев, Максим Сергеевич; Gorev, M. V.; Горев, Михаил Васильевич; Kartashev, A. V.; Карташев, Андрей Васильевич; Laptash, N. M.; Flerov, I. N.; Флёров, Игорь Николаевич
}
Найти похожие
4.


   
    Effective easy-axis anisotropy of the two-sublattice single-chain magnet with twisted easy planes / M. S. Shustin, M. N. Potkina // Nanosyst. - Phys. Chem. Math. - 2020. - Vol. 11, Is. 6. - P. 659-665 ; Наносистемы: физ., хим., матем., DOI 10.17586/2220-8054-2020-11-6-659-665. - Cited References: 15. - S. M. S. expresses deep gratitude to V. V. Val'kov. The main results of this work were with substantial use of the theory developed by him (see for example articles [10], [12] and references given in them), as well as on his previous advice. S. M. S. and M. N. P. acknowledges the support from the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" (Grants No. 20-1-4-25-1 and 19-1-1-12-2, respectively) . - ISSN 2220-8054. - ISSN 2305-7971
РУБ Nanoscience & Nanotechnology

Кл.слова (ненормированные):
single-chain magnets -- magnonic spectrum -- strong single-ion anisotropy
Аннотация: An analytical solution for the spin-wave spectrum of the two-sublattice 1D magnet with SA = SB = 1 and twisting easy planes has been obtained. Such planes are mutually twisted by an angle φ relative to each other. For the case of mutually orthogonal easy planes φ = π/2, the spectrum vs. quasi-momentum dependence has been compared with that of an easy-axis magnet with the easy axis aligned along the line of intersection of the planes. An analogy of the spectra of the models has been shown, indicating the possibility of the effective easy axis anisotropy in easy-plane two-sublattice single-chain magnets.

Смотреть статью,
РИНЦ,
Scopus,
WOS
Держатели документа:
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia.
ITMO Univ, Kronverkskiy 49, St Petersburg 197101, Russia.
St Petersburg State Univ, St Petersburg 198504, Russia.
Univ Iceland, Sci Inst, IS-107 Reykjavik, Iceland.
Univ Iceland, Fac Phys Sci, IS-107 Reykjavik, Iceland.

Доп.точки доступа:
Shustin, M. S.; Шустин, Максим Сергеевич; Potkina, M. N.; Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" [20-1-4-25-1, 19-1-1-12-2]

}
Найти похожие
5.


   
    Single crystal growth and the electronic structure of Rb2Na(NO3)3: Experiment and theory / K. E. Korzhneva, V. L. Bekenev, O. Y. Khyzhun [et al.] // J. Solid State Chem. - 2021. - Vol. 294. - Ст. 121910, DOI 10.1016/j.jssc.2020.121910. - Cited References: 54. - This work was done on state assignment of IGM SB RAS, Ministry of Science and Higher Education of the Russian Federation; NSU BCH-2020-0036-4 (10988) (XRD analysis), and was supported by Russian Foundation for Basic Research (grants Nos. 18-32-00359 , 19-42-540012) . - ISSN 0022-4596
   Перевод заглавия: Рост монокристалла и электронная структура Rb2Na(NO3)3: эксперимент и теория
Кл.слова (ненормированные):
Double nitrates -- Crystal growth -- Electronic structure -- Nonlinear optical materials -- X-ray photoelectron spectroscopy
Аннотация: Rb2Na(NO3)3 crystals demonstrate nonlinear optical properties and can be used as a converter of laser radiation in the shortwave region. The crystals were grown in the present work by the Bridgman–Stockbarger method in a ratio of 75 ​wt%(RbNO3) and 25 ​wt%(NaNO3). After the growth, a transparent centimeter size single crystal (6 ​cm long) was obtained for the first time that is very important for its practical application. The unit cell volume of double Rb2Na(NO3)3 nitrate is intermediate between the cell volumes of simple rubidium and sodium nitrates, RbNO3 and NaNO3. Electronic structure of Rb2Na(NO3)3 was studied in the present work from both experimental and theoretical viewpoints. In particular, employing X-ray photoelectron spectroscopy, we have measured binding energies of core electrons and energy distribution of the electronic states within the valence band region of the Rb2Na(NO3)3 crystal and established rather big binding energies for N 1s and O 1s core-level electrons. The bombardment of middle-energy Ar+ ions induces transformation of some nitrogen atoms of the analyzing topmost layers of the Rb2Na(NO3)3 crystal surface from the NO3– group to the NO2– group. To explore in detail the filling of the valence band of Rb2Na(NO3)3 by electronic states associated with constituting atoms, we use first-principles calculations within a density functional theory (DFT) framework. The DFT calculations reveal that O 2p states are the principal contributors to the valence band bringing the main input in its upper portion. The theoretical finding is supported experimentally by fitting the X-ray photoelectron valence band spectrum and the X-ray emission O Kα band on the total energy scale. The conduction band bottom of Rb2Na(NO3)3 is composed by unoccupied O 2p and N 2p states in almost equal proportion.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Novosibirsk State University, Novosibirsk, 630090, Russian Federation
V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, 630090, Russian Federation
Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky StreetKyiv UA-03142, Ukraine
Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation

Доп.точки доступа:
Korzhneva, K. E.; Bekenev, V. L.; Khyzhun, O. Y.; Goloshumova, A. A.; Tarasova, A. Y.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Isaenko, L. I.; Kurus, A. F.
}
Найти похожие
6.


   
    Crystal and electronic structure, thermochemical and photophysical properties of europium-silver sulfate monohydrate AgEu(SO4)2·H2O / Y. G. Denisenko, A. E. Sedykh, M. S. Molokeev [et al.] // J. Solid State Chem. - 2021. - Vol. 294. - Ст. 121898, DOI 10.1016/j.jssc.2020.121898. - Cited References: 54. - This work was partially supported by the Russian Foundation for Basic Research (Grant 19-33-90258∖19 ). Use of equipment of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center « Krasnoyarsk Science Center SB RAS» is acknowledged . - ISSN 0022-4596
   Перевод заглавия: Кристаллическая и электронная структура, термохимические и фотофизические свойства моногидрата сульфата европия-серебра AgEu(SO4)2·H2O
Кл.слова (ненормированные):
Structure -- Thermochemistry -- Luminescence -- Sulfates -- Europium
Аннотация: In order to synthesize single crystals of europium-silver double sulfate monohydrate, a hydrothermal reaction route was used. It was found that the crystallization cannot be performed under standard conditions. The compound AgEu(SO4)2·H2O crystallizes in the trigonal crystal system, space group P3221 (a ​= ​6.917(1), c ​= ​12.996(2) Å, V ​= ​538.53(17) Å3). The structure consists of triple-capped trigonal prisms [EuO9], in which one oxygen atom belongs to crystalline water, silver octahedra [AgO6], and sulfate tetrahedra [SO4]. The hydrogen bonds in the system additionally stabilize the structure. The electronic band structure wasstudied by density functional theory calculations which show that AgEu(SO4)2·H2O is an indirect band gap dielectric. Temperature dependent photoluminescence spectroscopy shows emission bands of transitions from the 5D0 state to the spin-orbit components of the 7FJmultiplet (J ​= ​0–6).The ultranarrow transition 5D0 - 7F0 shows a red shift with respect to other europium-containing water-free sulfates that is ascribed to the presence of OH group in the crystal structure in the close vicinity of the Eu3+ ion. An effect of abnormal sensitivity of the Ω4 intensity factor to minor distortions of the local environment is detected for the observed low local symmetry of C2.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Chemistry, Tyumen State University, Tyumen, 625003, Russian Federation
Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University of Giessen, Giessen35392, Germany
Department of General and Special Chemistry, Industrial University of Tyumen, Tyumen, 625000, Russian Federation
Center for Materials Research (LaMa), Justus-Liebig-University of Giessen, Giessen35392, Germany
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Komissarov Department of General Chemistry, Northen Trans-Ural Agricultural University, Tyumen, 625003, Russian Federation
Laboratory of the Chemistry of Rare Earth Compounds, Institute of Solid State Chemistry, UB RAS, Ekaterinburg, 620137, Russian Federation

Доп.точки доступа:
Denisenko, Y. G.; Sedykh, A. E.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Krylov, A. S.; Крылов, Александр Сергеевич; Khritokhin, N. A.; Sal'nikova, E. I.; Andreev, O. V.; Muller-Buschbaum, K.
}
Найти похожие
7.


   
    Структура и свойства 2-тиобарбитурато-2,2’- дипиридильного комплекса железа(II) / Н. Н. Головнев, М. С. Молокеев, И. В. Стерхова, Т. Ю. Иваненко // Журн. СФУ. Химия. - 2020. - Т. 13. № 4. - С. 479-488 ; J. Sib. Fed. Univ. Chem., DOI 10.17516/1998-2836-0198. - Библиогр.: 24. - Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта№ 19-52-80003 . - ISSN 1998-2836. - ISSN 2313-5530
   Перевод заглавия: The Structure and Properties of Fe(II) 1,10-Phenanthroline-Thiobarbiturate
Кл.слова (ненормированные):
железо(II) -- 2-тиобарбитуровая кислота -- 2,2’-дипиридил -- комплекс -- структура -- свойства -- iron(II) -- 2-thiobarbituric acid -- 2,2’-dipyridine -- complex -- structure -- properties
Аннотация: Методом РСА определена структура (cif-file CCDC № 1831367) моноядерного комплекса [Fe(Bipy)(H2O)2(Htba)2]∙6H2O (I), где Bipy = 2,2’-дипиридил и Н2tba = 2-тиобарбитуровая кислота. Кристаллы I ромбические: a = 17.4697(7), b = 11.7738(4), c = 13.4314(5) Å, V = 2762.6(2), пр. гр. Pnma, Z = 4. В экваториальной плоскости октаэдрического комплекса расположены два атома азота молекулы Bipy и две молекулы воды, а два S-координированных иона Htba− занимают аксиальные позиции. Структура стабилизирована многочисленными водородными связями N−H∙∙∙O, O−H∙∙∙O, С−H∙∙∙O, C−H∙∙∙S и π–π-взаимодействием между молекулами Bipy и ионами Нtba−. Соединение охарактеризовано методами порошковой рентгенографии, термического анализа и ИК-спектроскопии.
The structure of the mononuclear complex [Fe(Bipy)(H2O)2(Htba)2]∙6H2O (I), where Bipy – 2,2’-dipyridine, H2tba – 2-thiobarbituric acid (C4H4N2O2S), was determined by single crystal X-ray diffraction technique (cif-file CCDC No. 1831367). Crystals I are rhombic: a = 17.4697 (7), b = 11.7738 (4), c = 13.4314 (5) Å, V = 2762.6(2) Å3, space group Pnma, Z = 4. Two nitrogen atoms of the Bipy molecule and two water molecules are located in the equatorial plane of the octahedral complex, and two S-coordinated Htba− ions the axial positions are occupied. The structure is stabilized by N−H∙∙∙O, O−H∙∙∙O, С−H∙∙∙O, C−H∙∙∙S intermolecular hydrogen bonds and π–π interaction between Bipy and Htba−. The compound is characterized by the methods of powder X-ray diffraction, thermal analysis, and IR spectroscopy.

Смотреть статью,
РИНЦ,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Сибирский федеральный университет, Российская Федерация, Красноярск
Институт физики им. Л.В. Киренского ФИЦ «Красноярский научный центр СО РАН», Российская Федерация, Красноярск
Дальневосточный государственный университет путей сообщения, Российская Федерация, Хабаровск
Институт химии им. А.Е. Фаворского СО РАН, Российская Федерация, Иркутск

Доп.точки доступа:
Головнев, Н. Н.; Молокеев, Максим Сергеевич; Molokeev, M. S.; Стерхова, И. В.; Иваненко, Т. Ю.

}
Найти похожие
8.


   
    Manipulation of Cl/Br transmutation in zero-dimensional Mn2+-based metal halides toward tunable photoluminescence and thermal quenching behaviors / G. J. Zhou, Z. Y. Liu, M. S. Molokeev [et al.] // J. Mater. Chem. C. - 2021. - Vol. 9, Is. 6. - P. 2047-2053, DOI 10.1039/d0tc05137c. - Cited References: 56. - The present work was financially supported by the Natural Science Foundation of China (21871167), and 1331 Project of Shanxi Province and the Postgraduate Innovation Project of Shanxi Normal University (2019XBY018), and funded by RFBR according to the research project no. 19-52-80003 . - ISSN 2050-7526. - ISSN 2050-7534
   Перевод заглавия: Манипуляции перестановок Cl/Br в нульмерных галогенидах металлов на основе Mn2+ для настраиваемой фотолюминесценции и ослабления термического тушения
РУБ Materials Science, Multidisciplinary + Physics, Applied

Аннотация: Low-dimensional-networked metal halides are attractive for the screening of emitters applied in solid-state lighting and displays, but the lead toxicity and poor stability are obstacles that must be overcome in industrial applications. Herein, we aim at the discovery of bright and stable photoluminescence in zero-dimensional (0D) Mn2+-based metal halides. By manipulation of Cl/Br transmutation, the nature of the halogen can be confirmed as a pivotal factor to tune the PL behaviors, and the optimum Mn2+ emission with a high PLQY of 99.8% and a short lifetime of 0.372 ms can be achieved in (C24H20P)2MnBr4. The thermal quenching behaviors have been discussed in depth, indicating that the synergistic effect of good chemical stability of organic groups, a long Mn⋯Mn distance of 10.447 Å and a relatively large activation energy (ΔE = 0.277 eV) provides a platform for achieving excellent thermal stability in (C24H20P)2MnBr4. Moreover, the as-fabricated white LED device with a high luminous efficacy of 118.9 lm W−1 and a wide color gamut of 105.3% National Television System Committee (NTSC) shows that (C24H20P)2MnBr4 can be employed as a desirable narrow-band green emitter for LED displays. This work provides a new understanding of fine tailoring halogens, and proposes a feasible approach to achieving high thermal stability emitters toward the targeted practical applications.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Shanxi Normal Univ, Sch Chemist & Mat Sci, Key Lab Magnet Mol & Magnet Informat Mat, Minist Educ, Linfen 041004, Shanxi, Peoples R China.
Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510641, Peoples R China.
South China Univ Technol, Inst Opt Commun Mat, Guangzhou 510641, Peoples R China.

Доп.точки доступа:
Zhou, Guojun; Liu, Zhiyang; Molokeev, M. S.; Молокеев, Максим Сергеевич; Xiao, Zewen; Xia, Zhiguo; Zhang, Xian-Ming
}
Найти похожие
9.


   
    State-of-art plasmonic photonic crystals based on self-assembled nanostructures / A. Yadav, N. Yadav, V. Agrawal [et al.] // J. Mater. Chem. C. - 2021. - Vol. 9, Is. 10. - P. 3368-3383, DOI 10.1039/d0tc05254j. - Cited References: 127. - All the authors acknowledge the respective department for providing facilities and resources. We acknowledge funding support from Taishan Scholar scheme of Shandong Province, China (ts 20190401). SPP and SVK acknowledge support of the Ministry of Science and Higher Education of Russian Federation, project no. FSRZ-2020-0008 . - ISSN 2050-7526. - ISSN 2050-7534
   Перевод заглавия: Плазмонные фотонные кристаллы на основе самоорганизующихся наноструктур: современное состояние проблемы
РУБ Materials Science, Multidisciplinary + Physics, Applied

Аннотация: Controlled self-assembly of plasmonic photonic nanostructures provides a cost-effective and efficient methodology to expand plasmonic photonic nano-platforms with unique, tunable, and coupled optical characteristics. Keeping advantages and challenges in view, this review highlights contemporary advancements towards the development of self-assembly of a plasmonic photonic nanostructure using a colloidal solution and a self-assembly modeling technique along with exploring novel optical properties and associated prospects. The potential applications of self-assembled plasmonic photonic nano-systems to investigate next-generation optoelectronic devices, the need to reduce and increase scaling up aspects, and improve the performance, are also covered briefly in the review. The need of considerable efforts for the design and development towards establishing novel cost-effective methods to fabricate controlled self-assembled smart nano-plasmonic platforms is also highlighted in this mini-review. Key confronting issues that precisely limit the self-assemblies of photonic nanostructures and desired integration with other device components, mainly including uniformity within miniaturized devices are also discussed. This review will serve as a guideline and platform to plan advanced research in developing self-assembled plasmonic photonic nano-systems to investigate smart functional optical devices.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Shandong Univ Technol, Ctr Adv Laser Mfg CALM, Zibo 255000, Peoples R China.
Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Bundelkhand Inst Engn & Technol, Dept Appl Sci, Jhansi, Uttar Pradesh, India.
Natl Univ Singapore, Nanosci & Nanotechnol Initiat, 10 Kent Ridge, Singapore 119260, Singapore.

Доп.точки доступа:
Yadav, A.; Yadav, N.; Agrawal, V.; Polyutov, S. P.; Tsipotan, A. S.; Karpov, S. V.; Карпов, Сергей Васильевич; Slabko, V. V.; Yadav, V. S.; Wu, Y. L.; Zheng, H. Y.; RamaKrishna, S.; Taishan Scholar scheme of Shandong Province, China [20190401]; Ministry of Science and Higher Education of Russian Federation [FSRZ-2020-0008]
}
Найти похожие
10.


   
    Role of the Eu3+ Distribution on the Properties of β-Ca3(PO4)2 Phosphors: Structural, Luminescent, and 151Eu Mössbauer Spectroscopy Study of Ca9.5-1.5xMgEux(PO4)7 / D. V. Deyneko, D. A. Spassky, V. A. Morozov [et al.] // Inorg. Chem. - 2021. - Vol. 60, Is. 6. - P. 3961-3971, DOI 10.1021/acs.inorgchem.0c03813. - Cited References: 49. - This research was supported by the Russian Science Foundation (Grant 19-77-10013). The authors are grateful to A. V. Morozov (Skolkovo Institute of Science and Technology) for EDX measurements and F. D. Fedyunin for his help with luminescence measurements . - ISSN 1520-510X
   Перевод заглавия: Роль распределения Eu3+ в свойствах бета-Ca3(PO4)2 люминофоров: структурное, люминесцентное и мессбауэровское исследование 151EuCa9,5–1,5xMgEux(PO4)7
Аннотация: The series of β-Ca3(PO4)2-type phosphors Ca9.5–1.5xMgEux(PO4)7 were synthesized by a solid-state route. Observation of the proper Eu3+ ion distribution in the Ca9.5Mg(PO4)7 host matrix was made by a direct method using 151Eu Mössbauer spectroscopy in combination with X-ray analysis and dielectric and luminescent spectroscopy. The photoluminescence properties were studied in detail. The samples exhibit an exceptionally narrow-band red emission according to the dominant 5D0 → 7F2 transition and fulfill the industrial requirements for high-energy-efficiency red phosphors. The contribution of Eu3+ ions in different crystal sites to the luminescent properties is discussed in detail. The difference of the excitation of Eu3+ in the M1 and M2 sites was revealed by photoluminescence excitation spectra in accordance with structure refinement. The temperature dependence of the luminescence intensity was studied. Different tendencies in the thermal behavior of emission lines allow one to consider the studied compounds as phosphors suitable for luminescence thermometry. The measured quantum yield for Ca9.5–1.5xMgEux(PO4)7 shows excellent results and reaches 63%.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Department of Chemistry, Lomonosov Moscow State UniversityMoscow 119991, Russian Federation
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State UniversityMoscow 119991, Russian Federation
Institute of Physics, University of Tartu, West Ostwald str. 1Tartu 50411, Estonia
Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Kola Science Centre, Russian Academy of Sciences, Apatity, 184200, Russian Federation
Research Institute of Physics, Southern Federal University, 194 Stachki av., Russian Federation
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center, Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
School of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Deyneko, D. V.; Spassky, D. A.; Morozov, V. A.; Aksenov, S. M.; Kubrin, S. P.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Lazoryak, B. I.
}
Найти похожие
11.


   
    Crystal structure and thermodynamic properties of titanate ErGaTi2O7 / L. T. Denisova, M. S. Molokeev, V. V. Ryabov [et al.] // Russ. J. Inorg. Chem. - 2021. - Vol. 66, Is. 4. - P. 532-537, DOI 10.1134/S0036023621040082. - Cited References: 29 . - ISSN 0036-0236
Кл.слова (ненормированные):
erbium gallium titanate -- solid-state synthesis -- crystal structure -- high-temperature heat capacity -- thermodynamic functions
Аннотация: Erbium gallium titanate was prepared by solid-phase synthesis via the sequential calcination of precursor oxides in an air atmosphere at 1273 and 1573 K. The crystal structure of ErGaTi2O7 was characterized by full-profile analysis for the X-ray diffraction pattern of the synthesized powder sample as follows: space group Pcnb, a = 9.77326(15) Å, b = 13.5170(2) Å, c = 7.33189(11) Å, V = 918.58(3) Å3, ρ = 6.10 g/cm3. The high-temperature heat capacity of erbium gallium titanate was measured by differential scanning calorimetry within a temperature range of 320–1000 K. Based on these data, the basic thermodynamic functions of ErGaTi2O7 were calculated.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Кристаллическая структура и термодинамические свойства титаната ErGaTi2O7 [Текст] / Л. Т. Денисова, М. С. Молокеев, В. В. Рябов [и др.] // Журн. неорг. химии. - 2021. - Т. 66 № 4. - С. 492-497

Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Kirenskii Institute of Physics, Federal Research Center “Krasnoyarsk Scientific Center”, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016, Russian Federation
Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow, 119991, Russian Federation

Доп.точки доступа:
Denisova, L. T.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Ryabov, V. V.; Kargin, Y. F.; Chumilina, L. G.; Denisov, V. M.
}
Найти похожие
12.


   
    Li/Na substitution and Yb3+ co-doping enabling tunable near-infrared emission in LiIn2SbO6:Cr3+ phosphors for light-emitting diodes / G. Liu, T. Hu, M. S. Molokeev, Z. Xia // iScience. - 2021. - Vol. 24, Is. 4. - Ст. 102250, DOI 10.1016/j.isci.2021.102250. - Cited References: 45. - The present work was supported by the National Natural Science Foundation of China of China (Grant Nos. 51972118 and 51961145101), the Fundamental Research Funds for the Central Universities (D2190980), the Guangzhou Science & Technology Project (202007020005), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Pro-gram (2017BT01X137), and RFBR according to the research project No. 19-52-80003 . - ISSN 2589-0042
   Перевод заглавия: Замещение Li/Na и содопирование Yb3+, позволяющее настраивать излучение в ближней инфракрасной области в люминофорах LiIn2SbO6: Cr3+ для светоизлучающих диодов
Кл.слова (ненормированные):
Inorganic Chemistry -- Optical Materials -- Photonics
Аннотация: Near-infrared (NIR) phosphor-converted light-emitting diode (pc-LED) has great potential in non-invasive detection, while the discovery of tunable broadband NIR phosphor still remains a challenge. Here, we report that Cr3+-activated LiIn2SbO6 exhibits a broad emission band ranging from 780 to 1400 nm with a full width at half maximum (FWHM) of 225 nm upon 492 nm excitation. The emission peaks are tuned from 970 to 1020 nm together with considerable broadening of FWHM (∼285 nm) via Li/Na substitution. Depending on Yb3+ co-doping, a stronger NIR fluorescence peak of Yb3+ appears with improved thermal resistance, which is ascribed to efficient energy transfer from Cr3+ to Yb3+. An NIR pc-LED package has been finally designed and demonstrated a remarkable ability to penetrate pork tissues (∼2 cm) so that the insertion depth of a needle can be observed, indicating that the phosphor can be applied in non-destructive monitoring.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation

Доп.точки доступа:
Liu, G.; Hu, T.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Xia, Z.
}
Найти похожие
13.


   
    Role of metal-chloride anions in photoluminescence regulations for hybrid metal halides / B. Su, G. Song, M. S. Molokeev [et al.] // J. Phys. Chem. Lett. - 2021. - Vol. 12, Is. 7. - P. 1918-1925, DOI 10.1021/acs.jpclett.1c00182. - Cited References: 40. - This work is supported by the National Natural Science Foundation of China (51961145101 and 51972118), the Fundamental Research Funds for the Central Universities (D2190980), the Guangzhou Science & Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project No. 19-52-80003 . - ISSN 1948-7185
   Перевод заглавия: Роль металл-хлорид-анионов в регуляции фотолюминесценции гибридных галогенидов металлов
Кл.слова (ненормированные):
Intra-molecular hydrogen bonds -- Intramolecular interactions -- Luminescence mechanisms -- Organic-inorganic hybrid -- Photoluminescence properties -- Photoluminescence quantum yields -- Photophysical properties -- Structural diversity -- Metal halides
Аннотация: Organic–inorganic hybrid metal halides with emissive organic cations are of great interest due to their structural diversity and interesting photophysical properties. Here, we assemble emissive organic cations (EnrofloH22+) with different metal–chloride anions (Pb2Cl62– to Bi2Cl104– to SnCl62–) to form the new single crystal phases, and thus the photoluminescence properties of the metal halides, including Stokes shift, full width at half-maximum (FWHM), and photoluminescence quantum yield (PLQY) have been studied accordingly. (EnrofloH2)SnCl6·H2O, as an example, possesses narrow FWHM and high PLQY, which are caused by the strong π–π stacking and inter- and intramolecular hydrogen bonds interactions. Compared with EnrofloH22+ cation in solution, the interactions generate a restraining effect and increase the rigid degree of EnrofloH22+ cation in the bulk single crystals. Our work clarifies the photophysical properties of the EnrofloH22+ organic cations by constructing the inter- and intramolecular interactions and boosts the further study of organic–inorganic hybrid metal halides materials with different luminescence mechanisms.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou, 510640, China
Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, 100190, China
Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing, 100049, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation

Доп.точки доступа:
Su, B.; Song, G.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Golovnev, N. N.; Lesnikov, M. K.; Lin, Z.; Xia, Z.
}
Найти похожие
14.


   
    Pseudo-anomalous size-dependent electron-phonon interaction in graded energy band: Solving the Fano paradox / M. Tanwar, D. K. Pathak, A. Chaudhary [et al.] // J. Phys. Chem. Lett. - 2021. - Vol. 12, Is. 8. - P. 2044-2051, DOI 10.1021/acs.jpclett.1c00217. - Cited References: 77 . - ISSN 1948-7185
Кл.слова (ненормированные):
Fano parameters -- Local variations -- Longitudinal variations -- Nanocrystallite size -- Quantum confinement effects -- Quantum size effects -- Raman line shapes -- Raman spectromicroscopy -- Electron-phonon interactions
Аннотация: Quantum size effects on interferons (electron-phonon bound states), confined in fractal silicon (Si) nanostructures (NSs), have been studied by using Raman spectromicroscopy. A paradoxical size dependence of Fano parameters, estimated from Raman spectra, has been observed as a consequence of longitudinal variation of nanocrystallite size along the Si wires leading to local variations in the dopants' density which actually starts governing the Fano coupling, thus liberating the interferons to exhibit the typical quantum size effect. These interferons are more dominated by the effective reduction in dopants' density rather than the quantum confinement effect. Detailed experimental and theoretical Raman line shape analyses have been performed to solve the paradox by establishing that the increasing size effect actually is accompanied by receding Fano coupling due to the weakened electronic continuum. The latter has been validated by observing a consequent variation in the Raman signal from dopants which was found to be consistent with the above conclusion.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Materials and Device Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Simrol, 453552, India
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institut fur Festkorperphysik, Leibniz Universitat Hannover, Appelstr. 2, Hannover, D-30167, Germany
Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, South Korea
Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol, 453552, India

Доп.точки доступа:
Tanwar, M.; Pathak, D. K.; Chaudhary, A.; Krylov, A. S.; Крылов, Александр Сергеевич; Pfnur, H.; Sharma, A.; Ahn, B.; Lee, S.; Kumar, R.
}
Найти похожие
15.


    Golovnev, N. N.
    Structure of two novel fluoroquinolone salts / N. N. Golovnev, A. D. Vasiliev, A. V. Demina // J. Struct. Chem. - 2021. - Vol. 62, Is. 2. - P. 236-243, DOI 10.1134/S0022476621020074. - Cited References: 23. - The reported study was funded by RFBR, project number 19-52-80003 . - ISSN 0022-4766
Кл.слова (ненормированные):
ciprofloxacinium dichloride -- tetrakis(levofloxacin) tris{hexachlorostannate(IV)} dichloride -- synthesis -- structure -- properties
Аннотация: Fluoroquinolone compounds with the composition CfH2+2, 2Cl–, H2O (CfH2Cl2·H2O (I)) and 4LevoH2+2, 3[SnCl6]2–, 2Cl–, 2H2O ((LevoH2)4[SnCl6]3Cl2·2H2O (II)) (Cf is ciprofloxacin, Levo is levofloxacin) are prepared. Their structures are determined by XRSCD. Crystals I are monoclinic: a = 8.6389(11) Å, b = 14.5486(19) Å, c = 14.8605(19) Å, β = 91.914(3)°, V = 1866.7(4) Å3, space group P21/c, Z = 4. Crystals II are triclinic: a = 12.4821(8) Å, b = 13.8144(8) Å, c = 15.2342(9) Å, α = 84.360(1)°, β = 79.265(1)°, γ = 74.038(1)°, V = 2478.3(3) Å3, space group P1, Z = 1. The structures are stabilized by multiple hydrogen bonds. The photoluminescent properties and thermal stability of compound I are considered.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Головнев Н. Н. Структура двух новых солей фторхинолонов [Текст] / Н. Н. Головнев, А. Д. Васильев, А. В. Демина // Журн. структ. химии. - 2021. - Т. 62 № 2. - С. 250-257

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Vasiliev, A. D.; Васильев, Александр Дмитриевич; Demina, A. V.
}
Найти похожие
16.


   
    Crystal Structure of Norfloxacinium and 2,2 '-Bipyridyl-1 '-Ium 2-Thiobarbiturates / N. N. Golovnev, M. S. Molokeev, I. V. Sterkhova, M. K. Lesnikov // J. Struct. Chem. - 2020. - Vol. 61, Is. 10. - P. 1639-1647, DOI 10.1134/S0022476620100170. - Cited References: 33. - The reported study was funded by RFBR, project number 19-52-80003 . - ISSN 0022-4766. - ISSN 1573-8779
РУБ Chemistry, Inorganic & Nuclear + Chemistry, Physical
Рубрики:
THERMAL-STABILITY
   ACID

   FORMS

Кл.слова (ненормированные):
2,2 '-dipyridynium and norfloxacinium 2-thiobarbiturates -- synthesis -- structure -- thermal stability
Аннотация: Organic salts with the composition NfH2(Htba)·6H2O (I) and BipyH(Htba)·2H2O (II) (Н2tba is 2-thiobarbituric acid, NfH is norfloxacin and Bipy is 2,2′-dipyridyl) are prepared. Their structures are determined by XRD (CCDC cif-file No. 1967494-1967495). Crystals I are triclinic: a = 11.8821(4) Å, b = 11.9959(5) Å, c = 12.0038(4) Å, α = 119.835(1)°, β = 107.691(1)°, γ = 95.237(1)°, V = 1351.80(9) Å3, space group P-1, Z = 2. Crystals II are monoclinic: a = 7.9587(2) Å, b = 19.6272(4) Å, c = 10.1118(2) Å, β = 98.118(1)°, V = 1563.71(6) Å3, space group P21/n, Z = 4. The structures are stabilized by numerous hydrogen bonds and π–π interactions involving Нtba−, NfH+2, and BipyH+ ions. Thermal decomposition of these compounds in air includes dehydration and oxidative degradation stages.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Кристаллическая структура 2-тиобарбитуратов норфлоксациниума и 2,2'-дипиридил-1'-иума [Текст] / Н. Н. Головнев, М. С. Молокеев, И. В. Стерхова, М. К. Лесников // Журн. структ. химии. - 2020. - Т. 61 № 10. - С. 1724-1733

Держатели документа:
Siberian Fed Univ, Krasnoyarsk, Russia.
Russian Acad Sci, Fed Res Ctr KSC, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk, Russia.
Far Eastern State Transport Univ, Khabarovsk, Russia.
Russian Acad Sci, Favorsky Inst Chem, Siberian Branch, Irkutsk, Russia.

Доп.точки доступа:
Golovnev, N. N.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Sterkhova, I., V; Lesnikov, M. K.; RFBRRussian Foundation for Basic Research (RFBR) [19-52-80003]
}
Найти похожие
17.


   
    Soft magnetic FeCo films produced by green chemistry technique / E. A. Denisova, L. A. Chekanova, I. V. Nemtsev [et al.] // J. Phys.: Conf. Ser. - 2020. - Vol. 1582, Is. 1. - Ст. 012077DOI 10.1088/1742-6596/1582/1/012077. - Cited References: 10. - This work was funded by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, the Krasnoyarsk Regional Fund for the Support of Scientific and Technical Activities (project no. 18-42-240006 Nanomaterials with magnetic properties determined by the topological features of the nanostructure). The authors thank the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center «Krasnoyarsk Science Center SB RAS for the provided equipment
Кл.слова (ненормированные):
Binary alloys -- Cobalt alloys -- Coercive force -- Deposition -- Industrial research -- Magnetic anisotropy -- Morphology -- Reducing agents -- Surface morphology
Аннотация: The saturation magnetizations, local magnetic anisotropy field and coercivity values of FeCo film plated under various processing conditions have been investigated to optimize soft magnetic properties. Herein, we introduce a very promising processing technique based on the electrodeless deposition of FeCo film with carbohydrates as reducing agents. The produced FeCo film demonstrated significantly better saturation magnetization values and less contaminations, compared to those for the sample preparing with conventional reducing agent (sodium hypophosphite). The surface morphology and coercivities of FeCo films are dependent on the iron content and type of reducing agent. The coercive force values range from 12 up to 30 Oe and the saturation magnetization from 150 to 240 emu/g depending on the bath composition and deposition parameters. Maximum of saturation magnetization magnitude is reached for FeCo film with 30% cobalt. The local anisotropy field value of FeCo alloys increases with a decrease in Fe content for all reducing agent types.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Sb Russian Academy of Sciences, 50/38, Akademgorodok str., Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny ave., Krasnoyarsk, 660041, Russian Federation
Scientific Center, Federal Research Center Ksc Sb Ras, 50 Akademgorodok str., Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy ave., Krasnoyarsk, 660037, Russian Federation

Доп.точки доступа:
Denisova, E. A.; Денисова, Елена Александровна; Chekanova, L. A.; Чеканова, Лидия Александровна; Nemtsev, I. V.; Komogortsev, S. V.; Комогорцев, Сергей Викторович; Shepeta, N. A.; International Conference on High-Tech and Innovations in Research and Manufacturing(28 February 2020 ; Krasnoyarsk, Russian Federation)
}
Найти похожие
18.


   
    Exploration of the structural and vibrational properties of the ternary molybdate Tl5BiHf(MoO4)6with isolated MoO4 units and Tl+ conductivity / V. Grossman, S. V. Adichtchev, V. V. Atuchin [et al.] // Inorg. Chem. - 2020. - Vol. 59, Is. 17. - P. 12681-12689, DOI 10.1021/acs.inorgchem.0c01762. - Cited References: 69. - This study was supported by the Russian Science Foundation (19-42-02003, in the part of conceptualization). The study was also funded by the RFBR according to research projects 18-08-00985, 18-08-00799, and 18-03-00557. This study was carried out within the state assignment of the FASO of Russia (Theme No. 0339-2016-0007) . - ISSN 0020-1669
Аннотация: The phase relations in the subsolidus region of the Tl2MoO4–Bi2(MoO4)3–Hf(MoO4)2 system were studied with the “intersecting cuts” method. The formation of the novel ternary molybdate Tl5BiHf(MoO4)6 is found in this ternary system. The compound has a phase transition at Tpt = 731 K (ΔH = −3.15 J/g) and melts at Tm = 871 K (ΔH = −41.71 J/g), as determined by a thermal analysis. Tl5BiHf(MoO4)6 single crystals were obtained by the spontaneous nucleation method. The crystal structure of Tl5BiHf(MoO4)6 was revealed by structure analysis methods. This molybdate crystallizes in the trigonal space group R3̅c with the unit cell parameters a = 10.6801(4) Å, c = 38.5518(14) Å, V = 3808.3(2) Å3, and Z = 6. The vibrational characteristics of Tl5BiHf(MoO4)6 were determined by Raman spectroscopy. The Tl5BiHf(MoO4)6 conductivity was measured at frequencies of 0.1, 1.0, and 10 kHz in the temperature range of 293–773 K; in this temperature range, the conductivity level was 10–12–10–7 S/cm.

Scopus,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude, 670047, Russian Federation
Laboratory of Condensed Matter Spectroscopy, Institute of Automation and Electrometry, SB RAS, Novosibirsk, 630090, Russian Federation
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, 630090, Russian Federation
Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russian Federation
Buryat State University, Ulan-Ude, 670000, Russian Federation
Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk, 630090, Russian Federation
Laboratory for Research Methods in Composition and Structure of Functional Materials, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660079, Russian Federation

Доп.точки доступа:
Grossman, V.; Adichtchev, S. V.; Atuchin, V. V.; Bazarov, B. G.; Bazarova, J. G.; Kuratieva, N.; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Pervukhina, N. V.; Surovtsev, N. V.
}
Найти похожие
19.


   
    Transition of metastable pyrrhotites to a stable phase state / V. V. Onufrienok, A. V. Chzhan, G. V. Bondarenko, G. Y. Yurkin // Inorg. Mater. - 2020. - Vol. 56, Is. 9. - P. 898-902, DOI 10.1134/S0020168520090137. - Cited References: 23 . - ISSN 0020-1685. - ISSN 1608-3172
РУБ Materials Science, Multidisciplinary
Рубрики:
MAGNETIC-PROPERTIES
   TEMPERATURE

   CHEMISTRY

Кл.слова (ненормированные):
mineral -- pyrite -- troilite -- impurity centers -- magnetization
Аннотация: Equilibrium phase relations of synthetic minerals prepared by annealing metastable iron sulfides, followed by prolonged isothermal storage in the Earth atmosphere, have been studied by X-ray diffraction. The results demonstrate that prolonged storage of synthetic pyrrhotites annealed at different temperatures makes it possible to identify metastable and stable phases of Fe and S compounds.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Переход метастабильных пирротинов в стабильное фазовое состояние [Текст] / В. В. Онуфриенок, А. В. Чжан, Г. В. Бондаренко, Г. Ю. Юркин // Неорган. матер. - 2020. - Т. 56 № 9. - С. 948-952

Держатели документа:
Krasnoyarsk State Agr Univ, Krasnoyarsk 660049, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Inst Chem & Chem Technol, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Onufrienok, V. V.; Chzhan, A. V.; Bondarenko, G. V.; Yurkin, G. Yu.; Юркин, Глеб Юрьевич
}
Найти похожие
20.


   
    Magnetic properties of ludwigite Mn2.25Co0.75BO5 / D. V. Popov, T. P. Gavrilova, I. F. Gilmutdinov [et al.] // J. Phys. Chem. Solids. - 2021. - Vol. 148. - Ст. 109695, DOI 10.1016/j.jpcs.2020.109695. - Cited References: 36. - This research was supported by the RFBR (project no. 17-02-00953 ). T. P. G., R. M. E., V. A. Sh. acknowledge the financial support from the government assignment for FRC Kazan Scientific Center of RAS . The magnetic measurements were carried out at the Federal Center of Shared Facilities of Kazan Federal University . - ISSN 0022-3697
   Перевод заглавия: Магнитные свойства людвигита Mn2.25Co0.75BO5
Кл.слова (ненормированные):
Ludwigite -- Phase transition -- Magnetization -- Specific heat
Аннотация: Needle-shape single crystals of Mn2.25Co0.75BO5 ludwigite were synthesized by the flux technique and investigated by means of X-ray diffraction, static magnetic susceptibility and specific heat measurements. Magnetization and specific heat experiments showed the presence of ferrimagnetic ordering near TN≃61K. Below this temperature the magnetic properties demonstrated the angular dependence and the high magnetic hardness in a magnetic field applied perpendicular to the crystallographic c axis, which is similar to other cobalt-containing ludwigites. The effective magnetic moment per magnetic ion 4.8μB was calculated from the paramagnetic data. Analysis of the phonon contribution to the specific heat allowed to distinguish the magnetic contribution CM, which has two features. One of which was observed at TN and can be attributed to strong exchange interactions between spins of magnetic ions. The second one at T = 11.6 K is due to the effect of the ligands crystal field on a magnetic ion with S›1/2.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kazan (Volga Region) Federal University, Kremlevskaya st., 18, Kazan, 420008, Russian Federation
Zavoisky Physical-Technical Institute, Federal Research Center “Kazan Scientific Center of RAS”, Sibirsky tract, 10/7, Kazan, 420029, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Popov, D. V.; Gavrilova, T. P.; Gilmutdinov, I. F.; Cherosov, M. A.; Shustov, V. A.; Moshkina, E. M.; Мошкина, Евгения Михайловна; Bezmaternykh, L. N.; Безматерных, Леонард Николаевич; Eremina, R. M.
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)