Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (5)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=ferrites<.>)
Общее количество найденных документов : 13
Показаны документы с 1 по 10
 1-10    11-13 
1.


   
    Tunable magnetic properties of Ni-doped CoFe2O4 nanoparticles prepared by the sol–gel citrate self-combustion method / A. Omelyanchik [et al.] // J. Magn. Magn. Mater. - 2019. - Vol. 476. - P. 387-391, DOI 10.1016/j.jmmm.2018.12.064. - Cited References: 35. - The reported study was funded partially by RFBR according to the research project 17-32-50202\17. The discussion of results has been made possible through the mobility grant provided by the 5 top 100 Russian Academic Excellence Project at the Immanuel Kant Baltic Federal University. VR thanks the Ministry of Education and Science of the Russian Federation in the framework of Government assignment 3.9002.2017/6.7. . - ISSN 0304-8853
Кл.слова (ненормированные):
Ferrites materials -- Mixed ferrites -- Nanostructured materials -- Magnetic properties
Аннотация: The nanostructured spinel ferrites with complex stoichiometry are an important family of the materials in a number of applications, especially in electronics through their good electrical and magnetic properties. In the framework of this study, a set of mixed cobalt and nickel ferrites was prepared with the sol–gel self-combustion route. The structural and morphological features of particles were studied with X-ray diffraction (XRD), Scanning Transmission Electron Microscopy (STEM) and Energy Dispersive X-ray analysis (EDX) techniques. The prepared particles show a crystalline nature with a monotonic distribution of the elements and particles size distribution in the range of 17–29 nm. The obtained particles demonstrate good magnetic properties with tunable saturation magnetization and magnetic anisotropy, i.e., coercivity depending on chemical composition.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
Department of Materials Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
National University of Science and Technology MISiS, Moscow, Russian Federation
Istituto di Struttura della Materia – CNR, Monterotondo Scalo, RM, Italy
Department of Chemistry and Industrial Chemistry (DCIC), Universita of Genova, Genova, Italy

Доп.точки доступа:
Omelyanchik, A.; Singh, G.; Volochaev, M. N.; Волочаев, Михаил Николаевич; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Rodionova, V.; Peddis, D.
}
Найти похожие
2.


   
    Mechanochemical synthesis of hexagonal ferrites BaFe12O19 / V. Zhuravlev [et al.] // Key Eng. Mater. - 2018. - Vol. 781 KEM. - P. 119-124, DOI 10.4028/www.scientific.net/KEM.781.119. - Cited References: 15
Кл.слова (ненормированные):
Ferromagnetic resonance -- Magnetization curve -- Magnetocrystalline anisotropy -- Mechanochemical synthesis -- Nanostructure hexaferrites
Аннотация: The phase composition, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the mechanochemical synthesis with subsequent annealing at a temperature of 1000°С and 1100°С for 1 h are investigated. The influence of the annealing temperature on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that annealing temperature in the interval 1000 - 1100 °C does not significantly affect on the phase composition and the size of nanoparticles. The value of the anisotropy field increases substantially with increasing temperature.

Смотреть статью,
Scopus,
Читать в сети ИФ
Держатели документа:
Tomsk State University, 36, Lenin Ave., Tomsk, 634050, Russian Federation
Tomsk Scientific Center SB RAS, 10/4, Academicheskii Pr., Tomsk, 634021, Russian Federation
L.V. Kirensky Institute of Physics SB RAS, 50, Academgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Zhuravlev, V.; Nevmyvaka, A.; Itin, V.; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; International Conference on Radiation-Thermal Effects and Processes in Inorganic Materials(13th ; Tomsk)(9-14 October 2017)
}
Найти похожие
3.


   
    MOSSBAUER STUDY OF POTASSIUM FERRITES / O. A. BAYUKOV [и др.] // Fiz. Tverd. Tela. - 1993. - Vol. 35, Is. 6. - P. 1449-1456. - Cited References: 16 . - ISSN 0367-3294
РУБ Physics, Condensed Matter
Рубрики:
BETA-ALUMINA

WOS

Доп.точки доступа:
BAYUKOV, O. A.; PETRAKOVSKII, G. A.; SABLINA, K. A.; MATVEIKO, E. N.
}
Найти похожие
4.


   
    Investigation of structural, elastic and magnetic properties of Cu2+ ions substituted cobalt nano ferrites / A. Thakur, R. Verma, F. Wan [et al.] // J. Magn. Magn. Mater. - 2023. - Vol. 581. - Ст. 170980, DOI 10.1016/j.jmmm.2023.170980. - Cited References: 47. - This research work was supported by the National Key Research and Development Program of China (2022YFE010707). The author(s) would like to acknowledge the support provided under the DST-FIST Grant No. SR/FST/PS-I/2018/48 of Govt. of India. PT is thankful to DST-SERB TARE fellowship vide Sanction Order No TAR/2022/000414 . - ISSN 0304-8853. - ISSN 1873-4766
Кл.слова (ненормированные):
Nanoferrites -- Structure -- Rietveld Refinement -- Elastic Properties -- Magnetic Porperties
Аннотация: In the present work, we synthesized the Cu-doped CoFe2O4 (Co1-xCuxFe2O4) nanoparticles with x = 0.0, 0.2, 0.4 and 0.6, by employing the citrate precursor method. The X-ray Diffraction (XRD) pattern confirmed the pure cubic structure formation with the Fd-3m space group. To know the structural purity of each sample as well as the distribution of cations, Rietveld refinement was carried out. The crystallite size increases from 39.55 nm to 41.80 nm upto x = 0.2 and with further doping of Cu2+ ions it decreases to 36.27 nm. Similar variation is observed in the lattice parameter where the value of ‘a’ first increases from 8.378 Å to 8.381 Å and then decreases to 8.377 Å. The development of a non-uniform grain is seen using scanning electron microscope (SEM), which reveals the reduction in grain size. Fourier Transform Infrared Spectroscopy (FTIR) showed the two peaks ν1 and ν2 for all the samples around 541 cm−1 and 408 cm−1, respectively, which further decreases to 532.5 cm−1 and 402.5 cm−1 as the dopant ion concentration increases. The Stiffness constant, and Elastic modulus decrease with doping whereas, the Poisson’s ratio and Pugh’s ratio show a constant value of around 0.249 and 1.660, respectively. Vibrating Sample Magnetometer (VSM) analysis shows a decrease in saturation magnetization (σs) value from 76.85 emu/g to 43.62 emu/g. The net magnetic moment (nB) decreases from 3.29 μB to 1.85 μB and the effective anisotropy constant value decreases from 10.672erg/g to 4.461erg/g. Thus, the prepared nanoparticles provide a way forward for their industrial applications.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
School of Electronics and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
NanoLatticeX, Amity University Haryana, Gurugram, Haryana 122413, India
Nanotechnology Wing, Innovative Science Research Society, Shimla 177002, India
Centre for Nanotechnology, Amity University Haryana, Gurugram 122413, India
Department of Physics, Amity University Haryana, Gurugram 122413, India
Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of Sciences, 50 Akademgorodok, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Thakur, Atul; Verma, Ritesh; Wan, Fayu; Ravelo, Fayu; Edelman, I. S.; Эдельман, Ирина Самсоновна; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Thakur, Preeti
}
Найти похожие
5.


   
    Doping independent work function and stable band gap of spinel ferrites with tunable plasmonic and magnetic properties / N. Bhalla, S. Taneja, P. Thakur [et al.] // Nano Lett. - 2021. - Vol. 21, Is. 22. - P. 9780-9788, DOI 10.1021/acs.nanolett.1c03767. - Cited References: 41. - All authors would like to acknowledge support from EPSRC fund, award no. EP/R008841/1. Nikhil Bhalla wishes to thank Department of Economy, Northern Ireland, for supporting part of this work under GCRF Pump Priming Fund. Additionally, Atul Thakur and Preeti Thakur would like to acknowledge Gurujal, an initiative with district administration Gurugram for financial assistance from project no.176, Amity Incubation grant from the Ministry of Electronics and Information Technology (MeitY) under Technology Incubation and Development of Entrepreneurs (TIDE 2.0) program and the startup nanoLatticeX . - ISSN 1530-6984
Кл.слова (ненормированные):
plasmonics -- magnetic -- spinel -- ferrites -- atomic-doping -- MCD
Аннотация: Tuning optical or magnetic properties of nanoparticles, by addition of impurities, for specific applications is usually achieved at the cost of band gap and work function reduction. Additionally, conventional strategies to develop nanoparticles with a large band gap also encounter problems of phase separation and poor crystallinity at high alloying degree. Addressing the aforementioned trade-offs, here we report Ni–Zn nanoferrites with energy band gap (Eg) of ≈3.20 eV and a work function of ≈5.88 eV. While changes in the magnetoplasmonic properties of the Ni–Zn ferrite were successfully achieved with the incorporation of bismuth ions at different concentrations, there was no alteration of the band gap and work function in the developed Ni–Zn ferrite. This suggests that with the addition of minute impurities to ferrites, independent of their changes in the band gap and work function, one can tune their magnetic and optical properties, which is desired in a wide range of applications such as nanobiosensing, nanoparticle based catalysis, and renewable energy generation using nanotechnology.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ,
Читать в сети ИФ
Держатели документа:
Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, Jordanstown, BT37 0QB, United Kingdom
Healthcare Technology Hub, Ulster University, Shore Road, Jordanstown, BT37 0QB, United Kingdom
Department of Physics, Amity University Haryana, Haryana, Gurugram, 122413, India
Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
L.V. Kirensky Institute of Physics, Siberian Branch of RAS, Krasnoyarsk, 660036, Russian Federation
Amity Institute of Nanotechnology, Amity University Haryana, Haryana, Gurugram, 122413, India

Доп.точки доступа:
Bhalla, N.; Taneja, S.; Thakur, P.; Sharma, P. K.; Mariotti, D.; Maddi, C.; Ivanova, O. S.; Иванова, Оксана Станиславовна; Petrov, D. A.; Петров, Дмитрий Анатольевич; Sukhachev, A. L.; Сухачев, Александр Леонидович; Edelman, I. S.; Эдельман, Ирина Самсоновна; Thakur, A.
}
Найти похожие
6.


   
    Second harmonic generation in thin permalloy film / P. N. Solovev, A. O. Afonin, B. A. Belyaev [et al.] // J. Phys. D. - 2021. - Vol. 54, Is. 42. - Ст. 425002, DOI 10.1088/1361-6463/ac1762. - Cited References: 43. - This work was supported by the Russian Science Foundation under Grant No. 19-72-10047. The equipment of the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center 'Krasnoyarsk Science Center SB RAS' was used during the measurement . - ISSN 0022-3727. - ISSN 1361-6463
РУБ Physics, Applied
Рубрики:
FERROMAGNETIC-RESONANCE
   MAGNETIZATION DYNAMICS

   HARMONIC-GENERATION

   FERRITES

Кл.слова (ненормированные):
ferromagnetic resonance -- frequency doubling -- nonlinear dynamics -- thin magnetic film -- second harmonic
Аннотация: Second harmonic generation versus strength and direction of the applied static magnetic field was measured for a thin permalloy (Ni80Fe20) film in a microstrip line at a driving frequency of 1 GHz and maximum input power of ~110 mW. The measurements revealed two peaks in the double frequency signal—in the low static field (~10 Oe) and the high one (~45 Oe). To explain these findings, a macrospin model of a thin magnetic film with in-plane uniaxial magnetic anisotropy was considered. A perturbation expansion of the Landau–Lifshitz–Gilbert equation provided an explanation of the experimental data. The analysis of the model revealed that the low-field peak was caused by the longitudinal second-order magnetization component and the high-field peak by the transversal one. It was also shown that the uniaxial magnetic anisotropy of the film and the dependence of the magnetic damping parameter on the applied field play an important role in the process of the second harmonic generation. The results obtained give insights into some peculiarities of the nonlinear magnetization dynamics that are important in the development of magnetic film-based devices in the field of microwave signal processing and manipulation.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, 50-38 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Solovev, P. N.; Соловьев, Платон Николаевич; Afonin, A. O.; Афонин, Алексей Олегович; Belyaev, B. A.; Беляев, Борис Афанасьевич; Boev, N. M.; Боев, Никита Михайлович; Govorun, I. V.; Говорун, Илья Валерьевич; Izotov, A. V.; Изотов, Андрей Викторович; Ugryumov, A. V.; Угрюмов, Андрей Витальевич; Leksikov, An. A.; Лексиков, Андрей Александрович; Russian Science FoundationRussian Science Foundation (RSF) [19-72-10047]
}
Найти похожие
7.


    Bayukov, O. A.
    Magnetic and mossbauer studies of anion-substituted nickel ferrites / O. A. Bayukov, V. P. IKONNIKOV, A. F. SAVITSKII // Phys. Status Solidi B. - 1989. - Vol. 151, Is. 1. - P. 269-274, DOI 10.1002/pssb.2221510131. - Cited References: 14 . - ISSN 0370-1972
РУБ Physics, Condensed Matter


WOS
Доп.точки доступа:
IKONNIKOV, V. P.; SAVITSKII, A. F.; Баюков, Олег Артемьевич
}
Найти похожие
8.


   
    Особенности доменной структуры ферритов и ее динамики в меняющихся по величине и вращающихся магнитных полях [Текст] / Л. В. Киренский [и др.] // Изв. АН СССР, Сер. физич. - 1964. - Т. 28, № 3. - С. 545-552. - Библиогр.: 24 назв. - Phys. Abstr. - 1965. - Vol. 68, 27268
   Перевод заглавия: Domain structure of ferrites and its dynamics in varying and rotating magnetic fields

Смотреть статью
Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Киренский, Леонид Васильевич; Kirenskii, L. V.; Дрокин, Александр Иванович; Drokin, A. I.; Дылгеров, Владимир Дагбаевич; Dylgerov, V. D.; Судаков, Н. И.; Sudakov, N. I.; Синегубов, В. И.; Симпозиум по ферромагнетизму и сегнетоэлектричеству(1963; 30 мая - 5 июня ; Ленинград)
}
Найти похожие
9.


   
    Температурная зависимость первой константы анизотропии и магнитная структура железо-марганцевых ферритов [Текст] / Л. В. Киренский [и др.] // Изв. АН СССР, Сер. физ. - 1961. - Т. 25, № 12. - С. 1472-1476. - Библиогр.: 11 назв.
   Перевод заглавия: Temperature dependence of the first anisotropy constant and the magnetic structure of Fe-Mn ferrites

Смотреть статью

Тезисы

Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Киренский, Леонид Васильевич; Kirensky, L. V.; Дрокин, Александр Иванович; Drokin, A. I.; Дылгеров, Владимир Дагбаевич; Dylgerov, V. D.; Судаков, Н. И.; Sudakov, N. I.; Загирова, Е. К.; Zagirova, E. K.; Совещание по ферромагнетизму и антиферромагнетизму(1961 ; 5-11 мая ; Ленинград)
}
Найти похожие
10.


   
    Magnetic properties and morphology of manganese ferrite nanoparticles in glasses / I. Edelman [et al.] // IOP Conf. Ser.: Mater. Sci. Eng. - 2011. - Vol. 25, Is. 1. - Ст. 012017, DOI 10.1088/1757-899X/25/1/012017
Кл.слова (ненормированные):
Average diameter -- Borate glass -- Co-doped -- Electron magnetic resonance -- Magnetic and magneto-optical properties -- Magnetic behaviour -- Magnetic circular dichroisms -- Magnetic nanoparticles -- Magnetically ordered material -- Manganese ferrite nanoparticles -- Manganese ferrites -- Morphological characteristic -- Paramagnetic ions -- Resonance field -- Size and shape -- Static magnetization -- Temperature dependence -- Temperature dependent -- Variable temperature -- Visible and near infrared -- Alumina -- Dichroism -- Ferrite -- Glass -- Iron oxides -- Magnetic properties -- Magnetic resonance -- Magnetocrystalline anisotropy -- Manganese -- Manganese oxide -- Nanoparticles -- Paramagnetism -- Silicates -- Spectroscopy -- Nanomagnetics
Аннотация: Static magnetization (SM), magnetic circular dichroism (MCD) and electron magnetic resonance (EMR) studies are reported of borate glasses 22.5 K 2O-22.5 Al 2O 3-55 B 2O 3 co-doped with iron and manganese oxides. In as-prepared glasses the paramagnetic ions usually are in diluted state; however, if the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles are found already in as-prepared glass. After additional thermal treatment all glasses show magnetic behaviour, MCD and EMR due to the presence of magnetic nanoparticles with characteristics close to those of manganese ferrite. By computer simulating the EMR spectra at variable temperatures, their morphological characteristics are deduced: relatively broad size and shape distribution with average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetocrystalline anisotropy in the nanoparticles. The potassium-alumina-borate glasses containing magnetic nanoparticles represent a novel class of materials: "transparent magnets". Indeed, they remain transparent in a part of visible and near infrared spectral range while showing magnetic and magneto-optical properties characteristic of magnetically ordered materials.

Scopus,
Читать в сети ИФ

Доп.точки доступа:
Edelman, I. S.; Эдельман, Ирина Самсоновна; Ivanova, O. S.; Иванова, Оксана Станиславовна; Ivantsov, R. D.; Иванцов, Руслан Дмитриевич; Velikanov, D. A.; Великанов, Дмитрий Анатольевич; Petrakovskaja, E. A.; Петраковская, Элеонора Анатольевна; Artemenko, A.; Curely, J.; Kliava, J.; Zaikovskiy, V. I.; Stepanov, S.; Baltic Conference on Silicate Materials(5 ; 2011 ; May ; 23-25 ; Riga, Latvia)
}
Найти похожие
 1-10    11-13 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)