Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (6)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=fluid<.>)
Общее количество найденных документов : 20
Показаны документы с 1 по 10
 1-10    11-20  
1.


    Morozov, E. V.
    From components to phase-dependent dynamics of diffusivity in wax solutions subjected to fluid-solid phase transition: Insights from Pulsed Field Gradient NMR / E. V. Morozov, P. V. Nizovtseva, O. N. Martyanov // Energy Fuels. - 2022. - Vol. 36, Is. 24. - P. 14696-14709, DOI 10.1021/acs.energyfuels.2c02943. - Cited References: 76. - The present research was performed with the financial support of the Russian Science Foundation (project no. 21-13-00171, http://rscf.ru/project/21-13-00171/) . - ISSN 0887-0624. - ISSN 1520-5029
Кл.слова (ненормированные):
Concentration ranges -- Crystal networks -- Diffusion components -- Fluid-solid phase transition -- N-dodecane -- Phase dependent -- Pulsed field gradient NMR -- Supplementary information -- Wax appearance temperature -- Wax crystals
Аннотация: The evolution of solvent and solute diffusivity during fluid-solid phase transition was studied in model wax in n-dodecane solutions in a wide concentration range. Studied systems were characterized using viscosity measurements to provide supplementary information related to wax precipitation onset, while diffusion coefficients of n-dodecane and paraffin molecules were quantified using Pulsed Field Gradient (PFG) NMR. It was revealed that above the wax appearance temperature (WAT), the Hayduk-Minhas equation adequately predicts the solute and solvent diffusivity. At lower temperatures (below the WAT), three distinct diffusive components appear, which no longer originate from individual molecular components but correspond to a liquid phase differing in terms of association to the wax crystal network. These diffusion components were concluded to contain dodecane and the residual dissolved wax; the major components among them correspond to fluid, which relatively freely diffuses between the wax microcrystals and experiences the hindrance due to the wax gel network, and the minor components correspond to the fluid closely associated with the wax crystals. Unlike at high temperatures, the Hayduk-Minhas equation was found to be unable to predict adequately the diffusivity below the WAT. Using Singh's approach, the aspect ratio of wax crystals was calculated for different temperatures and concentrations and its complex nonlinear behavior was observed. It turned out that none of the models available differentiate the fluids with respect to the wax crystal network that leaves out of modeling the diffusion components with reduced mobility. The results indicate that the intuitive paradigm of component-dependent dynamics of solvent and solute diffusivity should be changed to phase-dependent dynamics once the system turns into wax gel since the diffusion of separate components becomes the diffusion of separate phases. This understanding shows a new route to improving the wax deposition modeling, which will facilitate an increase of effectiveness of the remedial strategies in the petroleum industry.

Смотреть статью,
Scopus
Держатели документа:
Institute of Chemistry and Chemical Technology, Federal Research Center, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk, 660036, Russian Federation
Kirensky Institute of Physics, Federal Research Center, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/38, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy Ave. 31, Krasnoyarsk, 660037, Russian Federation
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Ak. Lavrentieva 5, Novosibirsk, 630090, Russian Federation

Доп.точки доступа:
Nizovtseva, P. V.; Martyanov, O. N.; Морозов, Евгений Владимирович
}
Найти похожие
2.


    Mikhailov, A. G.
    Mass transfer of base metals in upward penetration of solutions in tailing dumps / A. G. Mikhailov, I. I. Vashlaev, E. V. Morozov // J. Min. Sci. - 2022. - Vol. 58, Is. 6. - P. 1033-1039, DOI 10.1134/S1062739122060187. - Cited References: 20. - This study was performed within the State Assignment of the Institute of Chemistry and Chemical Technology, SB RAS, project no. 0287-2021-0014 using the equipment provided by Krasnoyarsk Regional Center for Collective Use, FRC KSC SB RAS . - ISSN 1062-7391. - ISSN 1573-8736
Кл.слова (ненормированные):
mass transfer -- upward capillary flow -- dissolving -- leaching -- fluid -- permeation
Аннотация: The article describes the studies into the process of upward mass transfer in flotation tailings with water solutions. The swift-flowing geological process is investigated using the magnetic resonance imaging. The kinetics of water-soluble minerals as well as the structure and substance transformations in the body of tailings are studied for substantiating in-situ formation of the target concentration zones at the tailings surface.

Смотреть статью,
WOS

Публикация на русском языке Михайлов А. Г. Массоперенос цветных металлов при восходящей фильтрации растворов в массиве хвостохранилища [Текст] / А. Г. Михайлов, И. И. Вашлаев, Е. В. Морозов // Физ.-техн. проблемы разраб. полез. ископаемых. - 2022. - № 6. - С. 160-167

Держатели документа:
Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
Kirensky Institute of Physics, 660036, Krasnoyarsk, Russia

Доп.точки доступа:
Vashlaev, I. I.; Morozov, E. V.; Морозов, Евгений Владимирович
}
Найти похожие
3.


   
    Dynamical immiscibility of aqueous carbonate fluid in the shortite-water system at high-pressure-temperature conditions / S. V. Goryainov, S. N. Krylova, U. O. Borodina, A. S. Krylov // J. Phys. Chem. C. - 2021. - Vol. 125, Is. 33. - P. 18501-18509, DOI 10.1021/acs.jpcc.1c05077. - Cited References: 47. - The reported study was funded by the RFBR and DFG, project number 21-52-12018. Work is done on the state assignment of the Sobolev Institute of Geology and Mineralogy, Kirensky Institute of Physics SB RAS, Equipment of Federal Research Center of Krasnoyarsk Science Center SB RAS, and supported by the Ministry of Science and Higher Education. Authors thank A.N. Vtyurin, A.G. Sokol, A.Yu. Likhacheva, and A.F. Shatskiy for fruitful discussion . - ISSN 1932-7447. - ISSN 1932-7455
РУБ Chemistry, Physical + Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
SIMULTANEOUSLY HIGH-PRESSURE
   SODIUM FORMATE

   RAMAN-SPECTRA

Аннотация: Anhydrous carbonate shortite, Na2Ca2(CO3)3, compressed in water at high pressure–temperature (up to 5 GPa, 350 °C) was studied by Raman spectroscopy. At 3.2 GPa and 250 °C, shortite begins to dissolve, followed by crystallization of aragonite and aragonite’. The unusual behavior of aqueous carbonate fluid was observed at 4.8 GPa and 300–350 °C. This process is characterized by the active formation of microbubbles within 2–60 s that are inserted one into another. Microbubbles are considered to be a result of the two immiscible fluid stratification. This dynamical immiscibility of the fluid accompanies the appearance of several crystalline carbonates and organic molecular crystals. Na-formate and some polymorphs of Ca-formate were observed.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Sobolev Inst Geol & Mineral SB RAS, Novosibirsk 630090, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Goryainov, Sergey, V; Krylova, S. N.; Крылова, Светлана Николаевна; Borodina, Ulyana O.; Krylov, A. S.; Крылов, Александр Сергеевич; RFBRRussian Foundation for Basic Research (RFBR); DFGGerman Research Foundation (DFG)European Commission [21-52-12018]; Ministry of Science and Higher EducationMinistry of Science and Higher Education, PolandEuropean Commission
}
Найти похожие
4.


   
    Application of Raman spectroscopy for identification of rinneite (K3NaFeCl6) in inclusions in minerals / S. Grishina, P. Kodera, S. Goryainov [et al.] // J. Raman Spectrosc. - 2020. - Vol. 51, Is. 12. - P. 2505-2516, DOI 10.1002/jrs.6005. - Cited References: 55. - Russian Foundation for Basic Research, Grant/Award Numbers: 18-05-00682, 18-05-00682; European Regional Development Fund, Grant/Award Number: ITMS 26240220086; Vedecka Grantova Agentura MSVVaS SR a SAV, Grant/Award Number: 1/0313/20 . - ISSN 0377-0486. - ISSN 1097-4555
РУБ Spectroscopy
Рубрики:
SALT MELT
   IRON

   DEPOSIT

   FLUIDS

   TRANSFORMATIONS

   FERRIHYDRITE

Кл.слова (ненормированные):
daughter mineral -- Fe-oxyhydroxides -- fluid inclusion -- rinneite -- weathering
Аннотация: Solid daughter phases in fluid and salt melt inclusions in minerals provide important clues to characterization of mineral‐forming processes. The analysis of the fluid inclusions often requires the exposure of the daughter minerals. Rinneite (K3NaFeCl6), which is a hygroscopic mineral, decomposes in air and cannot thus be identified by conventional methods. A combined approach has been applied for investigation of synthetic and natural rinneite to acquire its diagnostic Raman spectrum for a nondestructive identification. We used natural rinneite inclusions in halite, suitable for applying a complex of methods, to clear up the reference spectrum. Improved high‐resolution X‐ray diffraction (XRD) data obtained from natural rinneite inclusion are comparable with that of previously published, with similar unit cell dimensions. Polarized Raman spectra of natural inclusions were obtained using different geometries and polarization of the incident and scattered light. Interpretation of experimental Raman spectra was performed within the framework of lattice dynamics simulations and group analysis. Individual spectral bands are interpreted in terms of Raman‐active vibrational modes of K3NaFeCl6 structural units. Raman spectrum of synthetic rinneite with main peaks at 75, 91, 103, 143, 167, 171, 187, and 239 cm−1 agrees well with the spectra of rinneite inclusions in halite from the Nepa potash deposit and rinneite daughter minerals in salt melt inclusions hosted by quartz veinlets from the porphyry gold systems in the Central Slovakia Volcanic Field. This provides a firm basis for any future identification of this mineral worldwide, using nondestructive Raman spectroscopy.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Sobolev Inst Geol & Mineral, Dept Mineral, Siberian Branch, Novosibirsk, Russia.
Comenius Univ, Dept Econ Geol, Fac Nat Sci, Bratislava, Slovakia.
Kirensky Inst Phys, Mol Spect Lab, Krasnoyarsk, Russia.
Siberian Fed Univ, Inst Engn Phys & Radio Elect, Krasnoyarsk, Russia.
Novosibirsk State Univ, Dept Geol, Novosibirsk, Russia.
Slovak Acad Sci, Inst Inorgan Chem, Bratislava, Slovakia.
Russian Acad Sci, Inst Geol Ore Deposits Petrog Mineral & Geochem, Moscow, Russia.

Доп.точки доступа:
Grishina, Svetlana; Kodera, Peter; Goryainov, Sergey; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Seryotkin, Yurii; Simko, Frantisek; Polozov, Alexander G.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-05-00682]; European Regional Development FundEuropean Union (EU) [ITMS 26240220086]; Vedecka Grantova Agentura MSVVaS SR a SAV [1/0313/20]
}
Найти похожие
5.


   
    An effect of reduced S-rich fluids on diamond formation under mantle-slab interaction / Y. V. Bataleva [et al.] // Lithos. - 2019. - Vol. 336-337. - P. 27-39, DOI 10.1016/j.lithos.2019.03.027. - Cited References: 73. - This work was supported by the Russian Science Foundation under Grant No. 14-27-00054 and a state assignment of IGM SB RAS. The authors thank S. Ovchinnikov for his assistance in implementation of the Mossbauer spectroscopy measurements. . - ISSN 0024-4937
   Перевод заглавия: Влияние восстановленных S-обогащенных флюидов на образование алмаза при взаимодействии мантиевых плит
Кл.слова (ненормированные):
Sulfur-rich fluid -- Iron carbide -- Diamond -- Mantle sulfides -- High-pressure experiment
Аннотация: Experimental study, dedicated to understanding the effect of S-rich reduced fluids on the diamond-forming processes under subduction settings, was performed using a multi-anvil high-pressure split-sphere apparatus in Fe3C-(Mg,Ca)CO3-S and Fe0-(Mg,Ca)CO3-S systems at the pressure of 6.3 GPa, temperatures in the range of 900–1600 °C and run time of 18–60 h. At the temperatures of 900 and 1000 °C in the carbide-carbonate-sulfur system, extraction of carbon from cohenite through the interaction with S-rich reduced fluid, as well as C0-producing redox reactions of carbonate with carbide were realized. As a result, graphite formation in assemblage with magnesiowüstite, cohenite and pyrrhotite (±aragonite) was established. At higher temperatures (≥1100 °C) formation of assemblage of Fe3+-magnesiowüstite and graphite was accompanied by generation of fO2-contrasting melts - metal-sulfide with dissolved carbon (Fe-S-C) and sulfide-oxide (Fe-S-O). In the temperature range of 1400–1600 °C spontaneous diamond nucleation was found to occur via redox interactions of carbide or iron with carbonate. It was established, that interactions of Fe-S-C and Fe-S-O melts as well as of Fe-S-C melt and magnesiowüstite, were С0-forming processes, accompanied by disproportionation of Fe. These resulted in the crystallization of Fe3+-magnesiowüstite+graphite assemblage and growth of diamond. We show that a participation of sulfur in subduction-related elemental carbon-forming processes results in sharp decrease of partial melting temperatures (~300 °C), reducting the reactivity of the Fe-S-C melt relatively to FeC melt with respect to graphite and diamond crystallization and decrease of diamond growth rate.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Sobolev Institute of Geology and Mineralogy, Mineralogy Siberian Branch of the Russian Academy of Sciences, Academican Koptyug Ave., 3, Novosibirsk, 630090, Russian Federation
Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russian Federation
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Bataleva, Y. V.; Palyanov, Y. N.; Borzdov, Y. M.; Novoselov, I. D.; Bayukov, O. A.; Баюков, Олег Артемьевич
}
Найти похожие
6.


   
    Systematic experimental investigation of filtration losses of drilling fluids containing silicon oxide nanoparticles / A. V. Minakov [et al.] // J. Nat. Gas Sci. Eng. - 2019. - Vol. 71. - Ст. 102984, DOI 10.1016/j.jngse.2019.102984. - Cited References: 28. - The research was performed with the financial support of the Russian Science Foundation under project No. 17-79-20218. . - ISSN 1875-5100
   Перевод заглавия: Систематическое экспериментальное исследование фильтрационных потерь буровых растворов, содержащих наночастицы оксида кремния
Кл.слова (ненормированные):
Drilling fluid -- Nanoparticles -- Microsuspension -- Filtration loss -- Permeability -- Porous medium -- Ceramic filter
Аннотация: This paper presents the results of silicon oxide nanoparticles-incorporated drilling fluid filtration through a porous medium with different permeability. A water-based clay suspension was used as a basic model for creating investigated fluid samples. AlN (aluminium nitride) particles were used as a dispersed phase. The concentration of microparticles varied from 0.5 to 4.00 wt%, while the microparticles size varied from 1 to 10 ?m. The concentration of SiO2 nanoparticles was changed within the range of 0.25 and 4.00 wt%, while the nanoparticles size varied from 5 to 100 nm. It was shown that filtration of drilling fluids with nanoparticles inclusions depends on their concentration, size and material, the concentration and size of microparticles and the pore sizes of ceramic filters. The addition of the nanoparticles leads to a significant reduction in filtration of a microsuspension and affects the structure and thickness of a cake formed on the surface of a filter. The main novelty of this work lies in the fact that the effect of the addition of nanoparticles on filtration losses depends on the ratio between nano and microparticles. It was shown that the positive effect of nanoparticle additives on filtration losses is determined not only by the properties of nanoparticles (size and concentration), but also by the properties of microparticles contained in the drilling fluid, as well as the characteristics of the rock (pore size). © 2019 Elsevier B.V.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation
Kutateladze Institute of Thermophysics, SB RAS, 1 Academica Lavrentyeva Prospect, Novosibirsk, 630090, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch Russian Academy of Sciences, 50/38 Academgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Minakov, A. V.; Mikhienkova, E. I.; Voronenkova, Y. O.; Neverov, A. L.; Zeer, G. M.; Zharkov, S. M.; Жарков, Сергей Михайлович
}
Найти похожие
7.


   
    Graphite and diamond formation in the carbide–oxide–carbonate interactions (Experimental modeling under mantle P,T-conditions) / Y. Bataleva [et al.] // Minerals. - 2018. - Vol. 8, Is. 11. - Ст. 522, DOI 10.3390/min8110522. - Cited References: 67. - The authors express their sincere thanks to the in-house Editor, the guest Academic Editor, and three anonymous Reviewers for helpful and constructive reviews. The authors thank S. Ovchinnikov for his assistance in implementation of Mössbauer spectroscopy measurements and A. Moskalev for his assistance in the work preparation. . - ISSN 2075-163X
   Перевод заглавия: Образование графита и алмаза при взаимодействиях карбид-оксид-карбонат (экспериментальное моделирование в Р,Т-условиях мантии)
Кл.слова (ненормированные):
Cohenite -- Graphite -- Diamond -- CO2 fluid -- Carbonate -- Garnet -- Experiment -- High pressure -- Lithospheric mantle -- Metasomatism
Аннотация: Experimental modeling of the formation of graphite and diamond as a result of carbide–fluid interactions was performed in the Fe3C–SiO2–Al2O3–(Mg,Ca)CO3 systems at 6.3 and 7.5 GPa and 1100–1650 °C. In the experiments with ƒO2-gradient (7.5 GPa, 1250–1350 °C), graphite + magnesiowüstite + garnet ± cohenite assemblage was formed. Graphite was produced through the redox interactions of carbide with carbonate or CO2 (reducing conditions), and redox reactions of magnesiowüstite and CO2 (oxidizing conditions). At 1450–1650 °C, crystallization of graphite, garnet, magnesiowüstite and ferrospinel, as well as generation of Fe2+,3+-rich carbonate–silicate melt occurred. This melt, saturated with carbon, acted as a medium of graphite crystallization and diamond growth on seeds. In the experiments without ƒO2-gradient (6.3 GPa), decarbonation reactions with the formation of CO2-fluid and Fe,Mg,Ca-silicates, as well as C0-producing redox reactions of CO2-fluid with cohenite were simultaneously realized. As a result, graphite (± diamond growth) was formed in assemblage with Fe2+,Fe3+,Mg-silicates and magnetite (1100–1200 °C), or with Fe3+-rich garnet and orthopyroxene (1300–1500 °C). It has been established that a potential mechanism for the crystallization of graphite or diamond growth is the oxidation of cohenite by CO2-fluid to FeO and Fe3O4, accompanied by the extraction of carbon from Fe3C and the corresponding reduction of CO2 to C0.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug ave 3, Novosibirsk, 630090, Russian Federation
Department of Geology and Geophysics, Novosibirsk State University, Pirogova str 2, Novosibirsk, 630090, Russian Federation
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Bataleva, Y.; Palyanov, Y.; Borzdov, Y.; Novoselov, I.; Bayukov, O. A.; Баюков, Олег Артемьевич
}
Найти похожие
8.


   
    Experimental modeling of C0-forming processes involving cohenite and CO2-fluid in a silicate mantle / Yu. V. Bataleva [et al.] // Dokl. Earth Sci. - 2018. - Vol. 483, Is. 1. - P. 1427–1430, DOI 10.1134/S1028334X18110016. - Cited References: 15. - This work was supported by the Russian Foundation for Basic Research (project no. 16–35–60024) and was performed as part of a State Assignment (project no. 0330–2016–0007). . - ISSN 1028-334X. - ISSN 1531-8354
Аннотация: Experimental studies were performed in the Fe3C–SiO2–(Mg,Ca)CO3 system (6.3 GPа, 1100–1500°C, 20–40 h). It is established that the carbide–oxide–carbonate interaction leads to the formation of ferrosilite, fayalite, graphite, and cohenite (1100 and 1200°С), as well as a Fe–C melt (1300°С). It is determined that the main processes in the system are decarbonation, redox-reactions of cohenite and a CO2-fluid, extraction of carbon from carbide, and crystallization of metastable graphite (± diamond growth), as well as the formation of ferriferous silicates. The interaction studied can be considered as a simplified model of the processes that occur during the subduction of oxidized crustal material to reduced mantle rocks.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Экспериментальное моделирование углеродпродуцирующих процессов с участием когенита и СО-флюида в условиях силикатной мантии / Ю. В. Баталева [и др.] // Докл. Акад. наук. - 2018. - Т. 483 № 1. - С. 84-88

Держатели документа:
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia

Доп.точки доступа:
Bataleva, Yu. V.; Palyanov, Yu. N.; Borzdov, Yu. M.; Bayukov, O. A.; Баюков, Олег Артемьевич; Sobolev, N. V.
}
Найти похожие
9.


   
    Conditions of formation of iron-carbon melt inclusions in garnet and orthopyroxene under P-T conditions of lithospheric mantle / Y. V. Bataleva [et al.] // Petrology. - 2018. - Vol. 26, Is. 6. - P. 565-574, DOI 10.1134/S0869591118060024. - Cited References: 45. - This work was supported by the Russian Foundation for Basic Research (project no. 16-35-60024) and a State Assignment (project no. 0330-2016-0007). . - ISSN 0869-5911. - ISSN 1556-2085
РУБ Geosciences, Multidisciplinary + Mineralogy
Рубрики:
EARTHS LOWER MANTLE
   DIAMOND FORMATION

   DEEP MANTLE

   PHYSICOCHEMICAL PARAMETERS

Кл.слова (ненормированные):
high-pressure experiment -- metal-carbon melt -- graphite -- diamond -- CO2-fluid -- mantle silicates -- mantle metasomatism
Аннотация: Of great importance in the problem of redox evolution of mantle rocks is the reconstruction of scenarios of alteration of Fe0- or Fe3C-bearing rocks by oxidizing mantle metasomatic agents and the evaluation of stability of these phases under the influence of fluids and melts of different compositions. Original results of high-temperature high-pressure experiments (P = 6.3 GPa, T = 1300–1500°С) in the carbide–oxide–carbonate systems (Fe3C–SiO2–(Mg,Ca)CO3 and Fe3C–SiO2–Al2O3–(Mg,Ca)CO3) are reported. Conditions of formation of mantle silicates with metallic or metal–carbon melt inclusions are determined and their stability in the presence of CO2-fluid representing the potential mantle oxidizing metasomatic agent are estimated. It is established that garnet or orthopyroxene and CO2-fluid are formed in the carbide–oxide–carbonate system through decarbonation, with subsequent redox interaction between CO2 and iron carbide. This results in the formation of assemblage of Fe-rich silicates and graphite. Garnet and orthopyroxene contain inclusions of a Fe–C melt, as well as graphite, fayalite, and ferrosilite. It is experimentally demonstrated that the presence of CO2-fluid in interstices does not affect on the preservation of metallic inclusions, as well as graphite inclusions in silicates. Selective capture of Fe–C melt inclusions by mantle silicates is one of the potential scenarios for the conservation of metallic iron in mantle domains altered by mantle oxidizing metasomatic agents.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация на русском языке Условия образования включений железо-углеродного расплава в гранатах и ортопироксенах при P-T параметрах литосферной мантии [Текст] / Ю. В. Баталева [и др.] // Петрология. - 2018. - Т. 26 № 6. - С. 571-582

Держатели документа:
Russian Acad Sci, Sobolev Inst Geol & Mineral, Siberian Branch, Novosibirsk, Russia.
Novosibirsk State Univ, Novosibirsk, Russia.
Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk, Russia.

Доп.точки доступа:
Bataleva, Yu. V.; Palyanov, Yu. N.; Borzdov, Yu. M.; Novoselov, I. D.; Bayukov, O. A.; Баюков, Олег Артемьевич; Sobolev, N. V.; Russian Foundation for Basic Research [16-35-60024]; [0330-2016-0007]
}
Найти похожие
10.


   
    Iron carbide as a source of carbon for graphite and diamond formation under lithospheric mantle P-T parameters / Y. V. Bataleva [et al.] // Lithos. - 2017. - Vol. 286-287. - P. 151-161, DOI 10.1016/j.lithos.2017.06.010. - Cited References: 57. - This work was supported by the Russian Foundation for Basic Research (project No. 16-35-60024) and by a State Assignment (project no. 0330-2016-0007). The authors thank the editor Marco Scambelluri, the reviewer Fabrizio Nestola and an anonymous reviewer for their helpful and constructive reviews. The authors thank A. Moskalev and M. Jolivet for their assistance in the work preparation, A. Sokol and A. Khokhryakov for useful suggestions throughout the study, S. Ovchinnikov for his assistance in implementation of the Mössbauer spectroscopy measurements. . - ISSN 0024-4937
   Перевод заглавия: Карбид железа как источник углерода для образования графита и алмаза при Р-Т параметрах литосферной мантии
Кл.слова (ненормированные):
Iron carbide -- Graphite -- Diamond -- Sulfur-rich fluid -- Mantle sulfides -- High-pressure experiment
Аннотация: Experimental modeling of natural carbide-involving reactions, implicated in the graphite and diamond formation and estimation of the iron carbide stability in the presence of S-bearing fluids, sulfide melts as well as mantle silicates and oxides, was performed using a multi-anvil high-pressure split-sphere apparatus. Experiments were carried out in the carbide-sulfur (Fe3C-S), carbide-sulfur-oxide (Fe3C-S-SiO2-MgO) and carbide-sulfide (Fe3C-FeS2) systems, at pressure of 6.3 GPa, temperatures in the range of 900–1600 °C and run time of 18–40 h. During the interaction of cohenite with S-rich reduced fluid or pyrite at 900–1100 °C, extraction of carbon from carbide was realized, resulting in the formation of graphite in assemblage with pyrrhotite and cohenite. At higher temperatures complete reaction of cohenite with newly-formed sulfide melt was found to produce metal-sulfide melt with dissolved carbon (Fe64S27C9 (1200 °C)–Fe54S40C6 (1500 °C), at.%), which acted as a crystallization medium for graphite (1200–1600 °C) and diamond growth on seeds (1300–1600 °C). Reactions of cohenite and oxides with S-rich reduced fluid resulted in the formation of graphite in assemblage with highly ferrous orthopyroxene and pyrrhotite (900–1100 °C) or in hypersthene formation, as well as graphite crystallization and diamond growth on seeds in the Fe-S-C melt (1200–1600 °C). We show that the main processes of carbide interaction with S-rich fluid or sulfide melt are recrystallization of cohenite (900–1100 °C), extraction of carbon and iron in the sulfide melt, and graphite formation and diamond growth in the metal-sulfide melt with dissolved carbon. Our results evidence that iron carbide can act as carbon source in the processes of natural graphite and diamond formation under reduced mantle conditions. We experimentally demonstrate that cohenite in natural environments can be partially consumed in the reactions with mantle silicates and oxides, and is absolutely unstable in the presence of S-bearing reduced fluid or sulfide melt at temperatures higher than 1100 °C, under lithospheric mantle pressures.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug ave 3, Novosibirsk, Russian Federation
Novosibirsk State University, Pirogova str 2, Novosibirsk, Russian Federation
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Bataleva, Yu. V.; Palyanov, Y. N.; Borzdov, Y. M.; Bayukov, O. A.; Баюков, Олег Артемьевич; Zdrokov, E. V.
}
Найти похожие
 1-10    11-20  
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)