Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=phosphor<.>)
Общее количество найденных документов : 93
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-60      
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Dai X., Zou X., Zhang H., Chen W., Yang C., Molokeev M. S., Xia Z., Liu Y., Zhang X., Zheng M., Lei B.
Заглавие : Novel Cr3+-doped garnet phosphor with broadband efficient far-red emission for photochrome matching plant-lighting
Колич.характеристики :9 с
Место публикации : Adv. Opt. Mater. - 2024. - Vol. 12, Is. 11. - Ст.2302380. - ISSN 21951071 (eISSN), DOI 10.1002/adom.202302380
Примечания : Cited References: 54. - The work was supported by the National Natural Science Foundations of China (No. 12274144), the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (No. 2023KJ122), the Key Realm R&D Program of Guangdong Province (No. 2021B0707010003), the Guangdong Provincial Science and Technology Project (No. 2022A1515010229), and the Project of GDUPS (2018) for Prof. Bingfu LEI
Аннотация: Cr3+-doped phosphors are highly recognized in various fields for their remarkable luminous efficiency and spectral flexibility, including modern agriculture and horticulture. However, the shortage of suitable Cr3+-doped phosphors for far-red LED devices has inhibited their popularization in plant lighting. Herein, an innovative Cr3+-doped phosphor Ca2YAl3Ge2O12:Cr3+ (CYAG:Cr3+), achieving a broad far-red emission at 770 nm upon 450 nm blue light excitation is designed. The optimal CYAG:Cr3+ phosphor exhibits a high internal quantum yield of 78.2% and low thermal-quenching behavior of 85%@373 K. Thus, the fabricated phosphor-converted LEDs (pc-LEDs) for plant far-red lighting have a high output power of 33.3 mW and photovoltaic conversion efficiency of 11.5% at 100 mA. The potential of CYAG:Cr3+ in plant lighting is assessed by supplementing the far-red lighting of Italian lettuce with fabricated pc-LEDs, and the biomass of Italian lettuce is significantly increased by 33%. The successful development of CYAG:Cr3+ phosphors provides a high-quality option for plant far-red light devices and further stimulates the development of new Cr3+-doped plant-lighting phosphors.
Смотреть статью,
Scopus
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ouyang Sh., Yin J., Su L., Yao M., Wang G., Yang J., Molokeev M. S., Zhou Zh., Zhang S., Xia M.
Заглавие : Highly efficient and thermostable far-red phosphor for promoting root growth in plants
Колич.характеристики :8 с
Место публикации : J. Mater. Chem. C. - 2024. - Vol. 12, Is. 9. - P.3272-3279. - ISSN 20507526 (ISSN), DOI 10.1039/D3TC02823B. - ISSN 20507534 (eISSN)
Примечания : Cited References: 59. - The authors would like to gratefully acknowledge funds from the National Natural Science Foundation of China (Grant No. 51974123), the Key R&D Projects in Hunan Province (2021SK2047, 2022NK2044), the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ40261), the Wangcheng Science and Technology Plan (KJ221017), the Science and Technology Innovation Program of Hunan Province (2022WZ1022) and Superior Youth Project of the Science Research Project of Hunan Provincial Department of Education, (22B0211) and the Russian Federation as part of World-class Research Center Program: "Advanced Digital Technologies", contract no. 075-15-2020-935
Аннотация: Phytochrome PFR plays a key role in plant photomorphogenesis, and its perception of far-red light is essential, but how to obtain an efficient far-red phosphor to achieve accurate light filling remains a huge challenge. In this study, Gd1−y−zAl3−x(BO3)4:xCr3+,yLu3+,zSm3+ (GAB:xCr3+,yLu3+,zSm3+) series phosphors were synthesized by a high-temperature solid-state method. By doping Lu3+, the emission intensity of Cr3+ could increase as high as 20%. With the introduction of Sm3+, the emission intensity of Cr3+ was further increased by 29%. Particularly, the emission spectra can be tuned by varying the concentration ratio of Sm3+ and Cr3+, more suitable for the absorption spectrum of PFR. Moreover, the internal quantum yield and external quantum yield of GL0.1AB:0.03Cr3+ and GL0.1AB:0.03Cr3+,0.003Sm3+ were 83.1% and 24.7% and 78.1% and 26.3%, respectively. There were high anti-thermal quenching properties in the prepared phosphors at 423 K, with 107.6% (GAB:0.03Cr3+), 103.1% (GL0.1AB:0.03Cr3+), and 102.7% (GL0.1AB:0.003Sm3+,0.03Cr3+). Finally, the phosphors were made into pc-LED devices, which can realize the adjustable orange-red and far-red luminescence and meet the needs of plant lighting applications. In the light-regulated plant growth experiment, compared with the control group, far-red light promoted root growth in plants, confirming the application potential of the prepared phosphors in indoor plant cultivation.
Смотреть статью,
Scopus
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Yang Ch., Zheng D., Zou X., Dai X., Tang B., Molokeev M. S., Zhang X., Zhang H., Liu Y., Lei B.
Заглавие : Highly-efficiency far-red emission in Cr3+ activated Ca1.8Mg1.2Al2Ge3O12 toward plant precise lighting
Колич.характеристики :9 с
Место публикации : Adv. Opt. Mater. - 2024. - Ст.2303235. - Article in press. - ISSN 21951071 (eISSN), DOI 10.1002/adom.202303235
Примечания : Cited References: 48. - The work was supported by the National Natural Science Foundations of China (No. 12274144), the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (No. 2023KJ122), the Key Realm R&D Program of Guangdong Province (No. 2021B0707010003), the Guangdong Provincial Science and Technology Project (No. 2022A1515010229), and the Project of GDUPS (2018) for Prof. Bingfu LEI
Аннотация: Far-red (FR) region (beyond 700 nm) lighting sources possess special potential for plant lighting. However, it remains a challenge to obtain high-performance Cr3+-doped FR phosphors. This study developed a FR phosphor, Ca1.8Mg1.2Al2Ge3O12:Cr3+ (CMAGG: Cr3+), using the cation substitution strategy. Under 438 nm blue light excitation, the phosphors display FR emission centered at 720 nm with a full width at half maximum (FWHM) of 91 nm. Benefit from the favorable match with the FR phytochrome (Pfr), the phosphor is combined with InGaN blue light chips to create a FR phosphor-converted light-emitting diode (pc-LED), which is used in Italian lettuce growth experiments and it results shown in a 15% increase in fresh weight and a 6.5% increase in dry weight. Notably, supplemental FR light modulated its growth morphology. The results of this study will be useful for further research on novel Cr3+-doped FR phosphors to meet the precise spectral requirements for plant growth.
Смотреть статью,
Scopus,
WOS
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Yang, Zhiyu, Zhao, Yifei, Ueda, Jumpei, Molokeev M. S., Shang, Mengmeng, Xia, Zhiguo
Заглавие : Engineering charge-transfer interactions for red-emitting SrLa(Sc,Ga)O4:Ce3+ phosphor with improved thermal stability
Место публикации : Sci. China Mater. - 2023. - Vol. 66, Is. 5. - P.1989-1996. - ISSN 20958226 (ISSN), DOI 10.1007/s40843-022-2315-9. - ISSN 21994501 (eISSN)
Примечания : Cited References: 32. - This work was supported by the National Key Research and Development Program of China (2021YFE0105700), the National Natural Science Foundations of China (51972118), the Natural Science Foundation of Shandong Province (ZR2021ZD10 and ZR2018JL016), Guangzhou Science & Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work was also funded by Russian Foundation for Basic Research (19-52-80003)
Аннотация: Blue-light-excitable red-emitting phosphors with high thermal stability are essential for fabricating white light-emitting diodes (WLEDs). Herein, Ce3+-doped SrLaScO4 (SLO:Ce3+) phosphor is discovered to have an abnormal red emission band centered at 640 nm when excited at 440 nm. Spectroscopy and structural analyses confirm that Ce3+ ions occupy the [LaO8] polyhedrons competitively, generating a strong crystal field splitting and a large Stokes shift to produce a red emission. To further restrict the thermal quenching of SLO:Ce3+, charge-transfer engineering is implemented by incorporating a large electronegative Ga3+ in the Sc3+ site, which can attract more charges from nearby coordinating groups to decrease the electronic occupation at the bottom of the conduction band and thereby enlarge the band gap. Sc/Ga substitution in SrLa(Sc,Ga)O4:Ce3+ enhances the thermal stability by increasing the intensity ratio from 15% to 31% at 150°C compared with 20°C. This is attributed to the efficient suppression of the thermally stimulated ionization process. This study presents a general design principle for discovering novel Ce3+-doped red phosphors with good thermal stability for WLED applications.
Смотреть статью,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Wu, Yanzheng, Li, Weiqiang, Zheng, Yifan, Xu, Yiqin, Wen, Dawei, Molokeev M. S., Pan, Zaifa
Заглавие : Apatite oxynitride phosphor (Mg,Y)5Si3(O,N)13:Ce3+,Mn2+: A single-phased host with solar-like and efficient emission
Место публикации : J. Am. Ceram. Soc. - 2023. - Vol. 106, Is. 5. - P.2985-2996. - ISSN 00027820 (ISSN), DOI 10.1111/jace.18981. - ISSN 15512916 (eISSN)
Примечания : Cited References: 35. - This work was supported by the National Natural Science Foundation of China (Project No. 10804099, 21804119), Key projects of Zhejiang Natural Science Foundation (Project No. LZ18B050002), GDAS’ Project of Science and Technology Development (Nos. 2021GDASYL-20210103069, 2021GDASYL-20210103071)
Аннотация: During pursuing high color rendering index for full-color-emitting phosphor, low quantum efficiency (QE) is usually accompanying. We intend to elevate the luminescence efficiency when realizing a solar-like spectra distribution, by constructing apatite structure oxynitride, inheriting high covalence and rigidity from oxynitride, and suitable multiple cation sites from oxyapatite compounds. Full-color-emitting apatite structure oxynitride phosphor (Mg,Y)5Si3(O,N)13:Ce3+,Mn2+ has been prepared, and the crystal sites’ occupancies of activators in this host were favorable for white emission. (Mg,Y)5Si3(O,N)13:Ce3+,Mn2+ phosphor shows whole visible light with emission wavelength ranging from 370 to 750 nm, matching the spectra of sunlight quite well. The fabricated white light-emitting diode lamp demonstrated the distinctive overall performance of QE and chromaticity properties (Ra and R9). Furthermore, correlated color temperature is tunable from cool nature to warm white. The obtained lamp possesses the feature of less blue light hazard and high saturation of red degree, compared with the commercial YAG-based lamp.
Смотреть статью
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lyu, Kuangnan, Liu, Gaochao, Molokeev M. S., Xia, Zhiguo
Заглавие : Double-site occupation triggered broadband and tunable NIR-I and NIR-II luminescence in AlNbO4:Cr3+ phosphors
Место публикации : Adv. Phys. Res. - 2023. - Vol. 2, Is. 4. - Ст.2200056. - ISSN 27511200 (eISSN), DOI 10.1002/apxr.202200056
Примечания : Cited References: 38. - This research was supported by the International Cooperation Project of the National Key Research and Development Program of China (2021YFB3500400 and 2021YFE0105700), National Natural Science Foundations of China (Grant No. 51972118), Guangzhou Science & Technology Project (202007020005), the State Key Laboratory of Luminescent Materials and Devices (Skllmd-2022-02), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01×137). This work was also funded by RFBR according to the research project No. 19-52-80003
Аннотация: Near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) are desired for optoelectronic and biomedical applications, while the development of target broadband NIR phosphors still remains a significant challenge. Herein, a kind of Cr3+-doped AlNbO4 phosphors with a broad NIR emission ranging from 650 to 1400 nm under 450 nm excitation are reported. A giant red-shift emission peak from 866 to 1020 nm together with broadened full width at half-maximum of 320 nm is achieved simply by varying the doped Cr3+ concentrations. Structural and spectroscopy analysis demonstrate that a concentration-dependent site-occupation of Cr3+ emitters in different Al3+ sites is responsible for the tunable NIR luminescence. The as-fabricated NIR pc-LED based on optimized AlNbO4:Cr3+ phosphor exhibits great potential in night-vision applications. This work provides a novel design principle on the Cr3+-doped AlNbO4 phosphor with tunable broadband luminescence from NIR-I to NIR-II, and these materials can be employed in NIR spectroscopy applications.
Смотреть статью,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Gao, Huabo, Molokeev M. S., Chen, Qi, Min, Xin, Ma, Bin
Заглавие : Novel AMoO4:Eu3+ (A = Ca and Ba) optical thermometer: Investigation of effect of local ionic coordination environment on optical performance and temperature measurement sensitivity
Место публикации : Ceram. Int. - 2023. - Vol. 49, Is. 16. - P.26803-26810. - ISSN 02728842 (ISSN), DOI 10.1016/j.ceramint.2023.05.217. - ISSN 18733956 (eISSN)
Примечания : Cited References: 52. - The work was supported by the program of Science and Technology International Cooperation Project of Qinghai province (No. 2022-HZ-807) and the National Natural Science Foundation of China (Grant No. 51802172), and was carried out within the framework of the Strategic Academic Leadership Program “Priority-2030′′ for the Siberian Federal University
Аннотация: A range of Eu3+-doped AMoO4 (A = Ca and Ba) phosphors were successfully synthetized, and their crystal structures, optical performance, and temperature measurement sensitivities were investigated in detail. Peak doping concentration of CaMoO4:Eu3+ phosphor was 0.18, while peak doping concentration of BaMoO4:Eu3+ phosphor may be greater than 0.18. Then, temperature-dependent photoluminescence emission spectra of representative CaMoO4:0.09Eu3+ and BaMoO4:0.03Eu3+ phosphors were recorded. CaMoO4:0.09Eu3+ phosphor exhibited abnormal thermal quenching, which was attributed to defects caused by heterovalent substitution of ions and increase in the temperature, and good thermal stability. Finally, the possibility of using both phosphors as optical thermometers was discussed, which exhibited good temperature sensitivity. However, CaMoO4:0.09Eu3+ phosphor exhibited two peak absolute (Sa, 1.28 %K−1 and 1.39 %K−1) and relative sensitivities (Sr, 1.21 %K−1 and 1.20 %K−1). In addition, variation trend of Sr value with temperature was considerably peculiar. Two optimum Sa and Sr values were attributed to abnormal thermal quenching of CaMoO4:0.09Eu3+ phosphor. Peak Sa and Sr values of BaMoO4:0.03Eu3+ phosphor was 12.39 %K−1 and 0.89 %K−1, respectively. In addition, Sa of AMoO4:Eu3+ phosphor was negatively related to Eu3+ central asymmetry, while peak Sr value was more inclined to appropriate ionic central asymmetry.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ma, Yibiao, Li, Siying, Wei, Jiaqi, Quan, Beibei, Liao, Weifang, Molokeev M. S., Cheng, Ming, Chen, Xiaoyan, Zhou, Zhi, Xia, Mao
Заглавие : Spectroscopically enhanced far-red phosphor Li2Mg3TiO6: Cr3+ and its application prospects to cold resistance of rice
Колич.характеристики :9 с
Место публикации : Mater. Adv. - 2023. - Vol. 4, Is. 22. - P.5808-5816. - ISSN 26335409 (eISSN), DOI 10.1039/D3MA00654A
Примечания : Cited References: 41. - This work was supported by the National Natural Science Foundation of China (Grant No. 51974123), the Key R & D Projects in Hunan Province (2021SK2047, 2022NK2044), the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ40261), Wangcheng Science and Technology Plan (KJ221017), the science and technology innovation Program of Hunan Province (2022WZ1022). The work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: “Advanced Digital Technologies”, contract no. 075-15-2020-935
Аннотация: Chemical unit co-substitution is a very effective strategy to improve the properties of phosphors. Due to the mismatch of the radii between substituted ions, unexpected properties are usually produced. Such properties are of profound significance to expand the research field. In this study, Mg2+-Ti4+ in Li2Mg3TiO6: Cr3+ was replaced by Al3+-Al3+ and Ga3+-Ga3+, while charge balance was maintained. Ion substitution changed the crystal field environment of activator ion, which increased the luminescence intensity by 180% and 184% respectively, accompanied by a slight decrease in thermal stability. In addition, the quantum efficiency was increased from 35.1% to 73.1%. The electroluminescence spectrum of the encapsulated pc-LED was examined, and the overlap with the absorption profile of the phytochrome Pfr was 61%. In order to verify the application prospect of far-red phosphor. A 15-day rice growth experiment was set up to detect surface traits, soluble sugars, soluble proteins, and the expression of OsphyA and OsCBF3 genes. It was demonstrated that rice under far-red light irradiation had significant resistance enhancement.
Смотреть статью,
Читать в сети ИФ
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Li Y., Gai S., Zhu H., Yin J., Guo W., Molokeev M. S., Lu X., Xia M., Zhou Z.
Заглавие : Abnormal Bi3+ activated NIR phosphor toward multifunctional LED applications
Колич.характеристики :10 с
Место публикации : Ceram. Int. - 2023. - Vol. 49, Is. 23, Pt. B. - P.39671-39680. - ISSN 02728842 (ISSN), DOI 10.1016/j.ceramint.2023.09.322. - ISSN 18733956 (eISSN)
Примечания : Cited References: 45. - This research was jointly supported by the National Natural Science Foundation of China (Grant No. 51974123 ), the Key R & D Projects in Hunan Province ( 2021SK2047 , 2022NK2044 ), the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ40261 ), Wangcheng Science and Technology Plan ( KJ221017 ), the Science and Technology Innovation Program of Hunan Province ( 2022WZ1022 ) and the Strategic Academic Leadership Program “Priority-2030” for the Siberian Federal University
Аннотация: Herein, the strategy of replacing Ge4+ with smaller Si4+ was adopted to realize the site-selective occupation of Bi3+ activator in the small ring and obtain a near-infrared light-emitting in Zn2(Ge,Si)O4. The designed phosphor exhibits a broad NIR emission with FWHM ≈104 nm in the 650−860 nm region, with a center emission wavelength of about 750 nm. Interestingly, the more sensitive four-member ring sites gradually replaced the six-member ring sites and realized a large-scope photoluminescence regulation from blue to NIR by just after the crystal field engineering. The possible reasons for this phenomenon can be interpreted by centroid shift (εc) and crystal field splitting (εcfs). This work not only provides new insights for the development of Bi3+-activated NIR-emitting phosphors, but also provides thoughts for revealing the potential NIR luminous mechanism of Bi3+.
Смотреть статью,
Scopus,
WOS
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Gerasimova Yu. V., Aleksandrovsky A. S., Laptash N. M., Krylov A. S., Gerasimov M. A., Dubrovskiy A. A.
Заглавие : Raman scattering, absorption and luminescence spectroscopy of CoSiF6·6H2O crystal and CoSiF6·6H2O:Mn4+ red-emitting phosphor
Колич.характеристики :6 с
Место публикации : Opt. Mater. - 2023. - Vol. 144. - Ст.114343. - ISSN 09253467 (ISSN), DOI 10.1016/j.optmat.2023.114343. - ISSN 18731252 (eISSN)
Примечания : Cited References: 30. - The reported study was funded by Russian Science Foundation , Government of Krasnoyarsk Territory and Krasnoyarsk Regional Foundation of Science according to the research project ‘‘Synthesis, spectral and magnetic properties of ABF6·6H2O systems, new materials for photonics.” No. 23-22-10037 . https://rscf.ru/en/project/23-22-10037/ . Usage of equipment of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS is acknowledged. We thank A. Yu. Mamaev for recording the luminesce spectra of CoSiF6·6H2O:Mn 4+
Аннотация: CoSiF6·6H2O and CoSiF6·6H2O:Mn4+ crystals were investigated by means of Raman, optical absorption, and luminescence spectroscopy. Absorption spectra of CoSiF6·6H2O are analyzed by Tanabe-Sugano technique and are proved to be well-describable at crystal field strength Dq = 1000 cm−1, and Racah parameters B = 896 cm−1, C = 4408 cm−1, Dq/B = 1.116. Raman spectroscopy reveals a phase transition associated with the ordering of both the CoO6 and SiF6 octahedra, which occurs through the ordering of the H2O subsystem. Luminescence spectrum of Mn4+ ions in CoSiF6·6H2O lattice consists of six components corresponding to Stokes and anti-Stokes emission from 2E state of Mn4+ ion at vibrational frequencies of MnF6 octahedron ν6 = 230 cm−1, ν4 = 335 cm−1, and ν3 = 645 cm−1. Quantum efficiency of red emission maximizes at excitation wavelength 357 nm and equals to 5%. Decrease of quantum efficiency in comparison to other related materials is explained by absorption of Co2+ ions and non-radiative relaxation in the Co2+ subsystem.
Смотреть статью,
Scopus,
WOS
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-60      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)