Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (2)
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=zero<.>)
Общее количество найденных документов : 58
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-58 
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhang, Xingyu, Liu, Youquan, Molokeev M. S., Xu, Bohui, Jiang, Xingxing, Lin, Zheshuai
Заглавие : Realizing persistent zero area compressibility over a wide pressure range in Cu2GeO4 by microscopic orthogonal-braiding strategy
Колич.характеристики :6 с
Место публикации : Angew. Chem. Int. Ed. - 2024. - Vol. 63, Is. 7. - Ст.e202318401. - ISSN 14337851 (ISSN), DOI 10.1002/anie.202318401. - ISSN 15213773 (eISSN)
Примечания : Cited References: 24. - The authors would like to acknowledge Zhuohong Yin for useful discussions and experimental time for the 4W2 beamline in the Beijing synchrotron radiation facility (BSRF). This work was supported by the National Scientific Foundations of China (Grants T2222017, 12274425, 22133004, 11974360 and 51890864) and the CAS Project for Young Scientists in Basic Research (YSBR-024). M.S. Molokeev would like to acknowledge support fromthe Ministry of Science and High Education of the Russian Federation (Project No. FSRZ-2023-0006)
Аннотация: Zero area compressibility (ZAC) is an extremely rare mechanical response that exhibits an invariant two-dimensional size under hydrostatic pressure. All known ZAC materials are constructed from units in two dimensions as a whole. Here, we propose another strategy to obtain the ZAC by microscopically orthogonal-braiding one-dimensional zero compressibility strips. Accordingly, ZAC is identified in a copper-based compound with a planar [CuO4] unit, Cu2GeO4, that possesses an area compressibility as low as 1.58(26) TPa-1 over a wide pressure range from ~0 GPa to 21.22 GPa. Based on our structural analysis, the subtle counterbalance between the shrinkage of [CuO4] and the expansion effect from the increase in the [CuO4]-[CuO4] dihedral angle attributes to the ZAC response. High-pressure Raman spectroscopy, in combination with first-principles calculations, shows that the electron transfer from in-plane bonding dx2-y2 to out-of-plane nonbonding dz2 orbitals within copper atoms causes the counterintuitive extension of the [CuO4]-[CuO4] dihedral angle under pressure. Our study provides an understanding on the pressure-induced structural evolution of copper-based oxides at an electronic level and facilitates a new avenue for the exploration of high-dimensional anomalous mechanical materials.
Смотреть статью,
Scopus
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhang, Xingyu, Liu, Youquan, Molokeev M. S., Xu, Bohui, Jiang, Xingxing, Lin, Zheshuai
Заглавие : Realizing persistent zero area compressibility over a wide pressure range in Cu2GeO4 by microscopic orthogonal-braiding strategy
Колич.характеристики :6 с
Место публикации : Angew. Chem. - 2024. - Vol. 136, Is. 7. - Ст.e202318401. - ISSN 00448249 (ISSN), DOI 10.1002/ange.202318401. - ISSN 15213757 (eISSN)
Примечания : Cited References: 24. - The authors would like to acknowledge Zhuohong Yin for useful discussions and experimental time for the 4W2 beamline in the Beijing synchrotron radiation facility (BSRF). This work was supported by the National Scientific Foundations of China (Grants T2222017, 12274425, 22133004, 11974360 and 51890864) and the CAS Project for Young Scientists in Basic Research (YSBR-024). M.S. Molokeev would like to acknowledge support fromthe Ministry of Science and High Education of the Russian Federation (Project No. FSRZ-2023-0006)
Аннотация: Zero area compressibility (ZAC) is an extremely rare mechanical response that exhibits an invariant two-dimensional size under hydrostatic pressure. All known ZAC materials are constructed from units in two dimensions as a whole. Here, we propose another strategy to obtain the ZAC by microscopically orthogonal-braiding one-dimensional zero compressibility strips. Accordingly, ZAC is identified in a copper-based compound with a planar [CuO4] unit, Cu2GeO4, that possesses an area compressibility as low as 1.58(26) TPa-1 over a wide pressure range from ≈0 GPa to 21.22 GPa. Based on our structural analysis, the subtle counterbalance between the shrinkage of [CuO4] and the expansion effect from the increase in the [CuO4]-[CuO4] dihedral angle attributes to the ZAC response. High-pressure Raman spectroscopy, in combination with first-principles calculations, shows that the electron transfer from in-plane bonding dx2-y2 to out-of-plane nonbonding dz2 orbitals within copper atoms causes the counterintuitive extension of the [CuO4]-[CuO4] dihedral angle under pressure. Our study provides an understanding on the pressure-induced structural evolution of copper-based oxides at an electronic level and facilitates a new avenue for the exploration of high-dimensional anomalous mechanical materials.
Смотреть статью
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Chen K., Gao P., Zhang Z., Ma Y., Luo Z., Molokeev M. S., Zhou Zh., Xia M.
Заглавие : Zero-thermal-quenching broadband yellow-emitting Bi3+-activated phosphors based on metal to metal charge transfer
Колич.характеристики :9 с
Место публикации : J. Alloys Compd. - 2024. - Vol. 986. - Ст.174112. - ISSN 09258388 (ISSN), DOI 10.1016/j.jallcom.2024.174112. - ISSN 18734669 (eISSN)
Примечания : Cited References: 52. - The authors would like to gratefully acknowledge funds from the National Natural Science Foundation of China (Grant No. 51974123), the Key R & D Projects in Hunan Province (2021SK2047 and 2022NK2044), the Wangcheng Science and Technology Plan (KJ221017) and the Science and Technology Innovation Program of Hunan Province (2022WZ1022). The work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: "Advanced Digital Technologies", contract no. 075-15-2020-935. Superior Youth Project of the Science Research Project of Hunan Provincial Department of Education (22B0211)
Аннотация: Bi3+-activated phosphors have been proven to have potential applications foreground in white light-emitting diodes (WLED), plant growth lamps and temperature sensing. Therefore, it is urgent to exploit high-efficiency Bi3+-activated phosphors. Herein, a novel broadband yellow-emitting phosphor Ba2GdGaO5:Bi3+ with high internal quantum efficiency (IQE = 77%) was obtained based on metal to metal charge transfer (MMCT) between Bi3+ ground state and Gd3+ excited states. The photoluminescence excitation (PLE) spectrum and photoluminescence (PL) spectrum range from 225 nm to 400 nm and 400 nm to 700 nm, respectively, which can avoid the reabsorption phenomenon efficiently. Besides, Ba2GdGaO5:Bi3+ has superior thermal stability and it shows zero-thermal-quenching at 150 °C. The K+ doping hardly changes the thermal stability and can improve the PL intensity to 133.1% when the K+ concentration is 2%. Finally, a phosphor-convert WLED (pc-WLED) was simply synthesized by Ba2GdGaO5:Bi3+ and BaMgAl10O17:Eu2+ (BAM:Eu2+) phosphors. The doping of Eu3+ can significantly enhance the color rendering index (CRI, from 88.1 to 91.5) and reduce the correlated color temperature (CCT, from 4911 K to 4014 K). The above experimental results demonstrated that the phosphor has great application prospect in WLED.
Смотреть статью,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Golovnev, Nicolay N., Gerasimova, Marina A., Ostapenko, Ivan A., Zolotov, Andrey O., Molokeev M. S.
Заглавие : Two organic-inorganic manganese(II) halide hybrids containing protonated N,N’-dialkylthioureas with efficient green-emission
Место публикации : J. Mol. Struct. - 2023. - Vol. 1277. - Ст.134851. - ISSN 0022-2860 (ISSN), DOI 10.1016/j.molstruc.2022.134851
Примечания : Cited References: 42. - The reported study was funded by RFBR according to the research project № 19-52-80003. X-ray data from single crystals and powders were obtained with the analytical equipment of Krasnoyarsk Center of collective use of SB RAS
Аннотация: Luminescent (C5H13N2S)2[MnBr4] (1) and (C7H17N2S)2[MnBr4] (2) (C5H12N2S = N,N′-diethylthiourea, C7H16N2S = N,N′-diisopropylthiourea) were prepared via solvothermal method, and the structures of these compounds have been resolved using X-ray single crystal diffraction. The structures consist of electrostatically bound MnBr42− anions and organic C5H13N2S+ and C7H17N2S+ cations. The intermolecular N−H···Br and N−H···S hydrogen bonds additionally stabilize crystal structures of 1-2. Upon excitation over broadband covering the range 265 to 515 nm, these compounds show green emission peaking at 526 nm for 1 and 522 nm for 2, which is assigned to the 4T1→ 6A1 electronic transition of Mn2+ from isolated within the crystal structures MnBr42− tetrahedra. The photoluminescence quantum yield (PLQY) of powder 1 is 97 ± 7% for excitation at 440 nm and that of powder 2 is 83 ± 7% for excitation at 365 nm. The high PLQY indicates the absence of noticeable concentration quenching at shortest Mn···Mn distance of 8.11 and 8.73 Å between Mn2+ ions within the structures of 1 and 2. The high-performance photoluminescence of 0D (C5H13N2S)2[MnBr4] and (C7H17N2S)2[MnBr4] compounds demonstrated promising applications in photonics.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Liu, Qin, Dang, Peipei, Zhang, Guodong, Molokeev M. S., Polyutov, Sergey, Lian, Hongzhou, Cheng, Ziyong, Li, Guogang, Lin, Jun
Заглавие : Achieving excellent thermostable red emission in singly Mn2+-doped near zero thermal expansion (NZTE) material Li2Zn3(P2O7)2
Колич.характеристики :10 с
Место публикации : J. Mater. Chem. C. - 2023. - Vol. 11, Is. 31. - P.10684-10693. - ISSN 20507526 (ISSN), DOI 10.1039/D3TC01683H. - ISSN 20507534 (eISSN)
Примечания : Cited References: 62. - This work wasfinancially supported by the National Science and Technology Major Project (2022YFB3503800), the Projects for Science and Technology Development Plan of Jilin Province (20210402046GH), the National Natural Science Foundation of China (NSFC No. 51932009, 51929201, 52072349, 52172166), the Natural Science Foundation of Zhejiang Province (LR22E020004), the Project funded by China Postdoctoral Science Foundation (2022TQ0365), and the Ministry of Science and High Education of Russian Federation (Project No. FSRZ2023-0006), M.S. Molokeev and S.P. Polyutov acknowledge the support by the Ministry of Science and High Education of Russian Federation (Project No. FSRZ-2023-0006)
Аннотация: The design of thermostable phosphor is still a pivotal challenge in pc-WLED applications. Herein, an efficient strategy is proposed to design excellent thermostable red emission in singly Mn2+-doped near zero thermal expansion (NZTE) material Li2Zn3(P2O7)2. Under the excitation of 412 nm wavelength, the emission could be tuned from 636 to 672 nm by increasing the Mn2+ doping level via synthetic effect among crystal field, the exchange coupling interaction in Mn-Mn dimers and energy transfer in different luminescence centers. The PL intensity of LZPO:Mn2+ maintains 97% at 150 °C and 94% at 200 °C of initial intensity at the room temperature. During the heat process, the LZPO presents near zero thermal expansion, which contributes to the nearly unaffected PL intensity. The traps assist energy transfer to luminescent center is also compensated for the emission loss. This work not only offers a perspective idea for elucidating the correlation between crystal structure and optical properties, but also opens a new way in line with that of designing excellent thermostable luminescent materials based on NZTE materials in self-reduction system.
Смотреть статью
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Jiang X., Wang N., Dong L., Molokeev M. S., Wang S., Liu Y., Guo S., Li W., Huang R., Wu S., Li L., Lin Z.
Заглавие : Integration of negative, zero and positive linear thermal expansion makes borate optical crystals light transmission temperature-independent
Место публикации : Mater. Horizons. - 2022. - Vol. 9, Is. 8. - P.2207-2214. - ISSN 20516347 (ISSN), DOI 10.1039/d2mh00273f
Примечания : Cited References: 50. - The authors acknowledge Zhuohong Yin for useful discussions and Anqi Dai from Guangzhou Design Institute for image processing. This work was supported by the National Scientific Foundations of China (Grants 11974360 and 51872297), the Young Elite Scientist Sponsorship Program by CAST (YESS), Key deployment projects of Rare Earth Research Institute (Grant ZDRW-CN-2021-3), and the CAS Project for Young Scientists in Basic Research (Grants YSBR-024)
Аннотация: Negative and zero thermal expansion (NTE and ZTE) materials are widely adopted to eliminate the harmful effect from the “heat expansion and cool contraction” effect and frequently embrace novel fundamental physicochemical mechanisms. To date, the manipulation of NTE and ZTE materials has mainly been realized by chemical component regulation. Here, we propose another method by making use of the anisotropy of thermal expansion in noncubic single crystals, with maximal tunability from the integration of linear NTE, ZTE and positive thermal expansion (PTE). We demonstrate this concept in borate optical crystals of AEB2O4 (AE = Ca or Sr) to make the light transmission temperature-independent by counterbalancing the thermal expansion and thermo-optics coefficient. We further reveal that such a unique thermal expansion behavior in AEB2O4 arises from the synergetic thermal excitation of bond stretching in ionic [AEO8] and rotation between covalent [BO3] groups. This work has significant implications for understanding the thermal excitation of lattice vibrations in crystals and promoting the functionalization of anomalous thermal expansion materials.
Смотреть статью,
Scopus
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ren Q., Zhang J., Mao Y., Molokeev M. S., Zhou G., Zhang X. -M.
Заглавие : Ligand engineering triggered efficiency tunable emission in zero-dimensional manganese hybrids for white light-emitting diodes
Место публикации : Nanomaterials. - 2022. - Vol. 12, Is. 18. - Ст.3142. - ISSN 20794991 (ISSN), DOI 10.3390/nano12183142
Примечания : Cited References: 38. - This work was supported by the Natural Science Foundation of Shanxi Province (No. 20210302124054), National Natural Science Foundation of China (No. 21871167), Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (No. 2021L262), 1331 Project of Shanxi Province and the Postgraduate Innovation Project of Shanxi Normal University (No.2021XSY040), and funded by RFBR according to the research project No. 19−52−80003
Аннотация: Zero-dimensional (0D) hybrid manganese halides have emerged as promising platforms for the white light-emitting diodes (w-LEDs) owing to their excellent optical properties. Necessary for researching on the structure-activity relationship of photoluminescence (PL), the novel manganese bromides (C13H14N)2MnBr4 and (C13H26N)2MnBr4 are reported by screening two ligands with similar atomic arrangements but various steric configurations. It is found that (C13H14N)2MnBr4 with planar configuration tends to promote a stronger electron-phonon coupling, crystal filed effect and concentration-quenching effect than (C13H26N)2MnBr4 with chair configuration, resulting in the broadband emission (FWHM = 63 nm) to peak at 539 nm with a large Stokes shift (70 nm) and a relatively low photoluminescence quantum yield (PLQY) (46.23%), which makes for the potential application (LED-1, Ra = 82.1) in solid-state lighting. In contrast, (C13H26N)2MnBr4 exhibits a narrowband emission (FWHM = 44 nm) which peaked at 515 nm with a small Stokes shift (47 nm) and a high PLQY of 64.60%, and the as-fabricated white LED-2 reaches a wide colour gamut of 107.8% National Television Standards Committee (NTSC), thus highlighting the immeasurable application prospects in solid-state display. This work clarifies the significance of the spatial configuration of organic cations in hybrids perovskites and enriches the design ideas for function-oriented low-dimensional emitters.
Смотреть статью,
Scopus
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Su B., Jin J., Peng Y., Molokeev M. S., Yang X., Xia Z.
Заглавие : Zero-Dimensional Organic Copper(I) Iodide Hybrid with High Anti-Water Stability for Blue-Light-Excitable Solid-State Lighting
Место публикации : Adv. Opt. Mater. - 2022. - Vol. 10, Is. 12. - Ст.2102619. - ISSN 21951071 (ISSN), DOI 10.1002/adom.202102619
Примечания : Cited References: 55. - This work was supported by the National Natural Science Foundation of China (Nos.: 51961145101 and 51972118), Guangzhou Science & Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01×137). This work was also funded by RFBR according to the research Project No.19-52-80003
Аннотация: The discovery of rare-earth free luminescent materials with blue-light-excitable characteristic is of great importance for solid-sate lighting applications. Herein, a Cu(I)-based 0D luminescent hybrid (1,3-dppH2)2Cu4I8∙H2O is synthesized by a facile solution method, and it shows the orange-red emission peaking at 625 nm upon 460 nm excitation. The structure-related luminescence mechanism has been elaborated by experimental and theoretical investigations. Moreover, the emission intensity remains unchanged even after continuous water treatment for 60 days due to the improved structural stability originating from intermolecular π–π interaction between organic cations. A warm white light-emitting diode (LED) device with the color rendering index of 91.4% has been fabricated by combining the 440 nm LED chip, green-emitting Lu3Al5O12:Ce3+, and (1,3-dppH2)2Cu4I8∙H2O. This work provides a new design route towards 0D cuprous halide materials and will initiate more exploration of their intrinsic luminescence mechanism.
Смотреть статью,
Scopus
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Molokeev M. S., Su, Binbin, Aleksandrovsky A. S., Golovnev, Nicolay N., Plyaskin M. E., Xia, Zhiguo
Заглавие : Machine learning analysis and discovery of zero-dimensional ns2 metal halides toward enhanced photoluminescence quantum yield
Место публикации : Chem. Mat. - 2022. - Vol. 34, Is. 2. - P.537-546. - ISSN 0897-4756, DOI 10.1021/acs.chemmater.1c02725. - ISSN 1520-5002(eISSN)
Примечания : Cited References: 66. - This work is supported by the National Natural Science Foundation of China (51961145101 and 51972118), International Cooperation Project of National Key Research and Development Program of China (2021YFE0105700), Guangzhou Science and Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project no. 19-52-80003
Предметные рубрики: RANDOM FOREST
CRYSTAL-STRUCTURE
TIN BROMIDE
CLASSIFICATION
Аннотация: The dependence of photoluminescence quantum yield (PLQY) on the crystal structure of existing zero-dimensional ns2 metal halides is analyzed with the help of principal component analysis and random forest methods. The primary role of the distance between metal ions in different compounds is revealed, and the influence of other structural features such as metal-halogen distance and the distortion of metal-halogen polyhedrons are quantified. Accordingly, the two previously unknown Sb3+-based zero-dimensional metal halides were synthesized to verify the obtained model. Experimental studies of the two compounds demonstrated good agreement with the predictions, and the PLQY of (C10H16N)2SbCl5 is found to be 96.5%. Via machine learning analysis, we demonstrate that concentration quenching is the main factor that determines PLQY for all s2 ion metal halides, which will accelerate the discovery of new luminescence metal halides.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhou, Guojun, Ding, Jialiang, Jiang, Xingxing, Zhang, Jian, Molokeev M. S., Ren, Qiqiong, Zhou, Jun, Li, Shili, Zhang, Xian-Ming
Заглавие : Coordination units of Mn2+ modulation toward tunable emission in zero-dimensional bromides for white light-emitting diodes
Место публикации : J. Mater. Chem. C. - 2022. - Vol. 10, Is. 6. - P.2095-2102. - ISSN 2050-7526, DOI 10.1039/d1tc05680h. - ISSN 2050-7534(eISSN)
Примечания : Cited References: 57. - The present work was supported by the Natural Science Foundation of China (21871167), the 1331 Project of Shanxi Province and the Postgraduate Innovation Project of Shanxi Normal University (2019XBY018), the Beijing Natural Science Foundation (No. 2214068) and funded by RFBR according to the research project no. 19-52-80003
Предметные рубрики: HALIDE PEROVSKITE NANOCRYSTALS
RECENT PROGRESS
DOPING MN2+
Аннотация: Organic–inorganic metal halides have become a multifunctional platform for manipulating photoluminescence due to highly efficient and tunable emissions, especially for lead-free Mn2+-based halides. Herein, the zero-dimensional (0D) bromides of (C5H14N3)2MnBr4 and (CH6N3)2MnBr4 with different coordination environments were designed and synthesized by a solvent evaporation method. They exhibit green and red broadband emission peaks at 528 nm and 627 nm with high photoluminescence quantum yields of 86.83% and 61.91%, respectively, which are attributed to the d–d transition (4T1(G) → 6A1(S)) of [MnBr4]2− tetrahedral and [Mn3Br12]6− octahedral units. The cases emphasize the effect of organic ligands on the intrinsic emissions of Mn2+ ions, thereby revealing the luminescence mechanism of Mn2+ ions in 0D isolated structures through the Tanabe–Sugano (TS) energy diagram. Thanks to their bright and stable emissions, the fabricated white light-emitting diode (LED) based on (C5H14N3)2MnBr4 and (CH6N3)2MnBr4 provides an outstanding color rendering index (Ra) of 90.8 at a correlated color temperature (CCT) of 3709 K, along with the CIE chromaticity coordinates of (0.3985, 0.3979) and a luminous efficacy of 51.2 lm W−1. This work aims at clarifying the relationship between the coordination units of Mn2+ and tunable emissions, and in particular, proposes a new strategy to explore phosphors excited by blue light for white LEDs.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-58 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)