Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Chernozem<.>)
Общее количество найденных документов : 3
Показаны документы с 1 по 3
1.


    Каравайский, Андрей Юрьевич.
    Диэлектрическая модель мерзлого среднеглинистого чернозема в режиме нагревания от -30°С до -1°С на частотах 1,4 ГГц и 6,9 ГГц / А. Ю. Каравайский, В. Л. Миронов // Изв. вузов. Физика. - 2015. - Т. 58, № 8/3. - С. 31-34. - Библиогр.: 7 . - ISSN 0021-3411
   Перевод заглавия: Dielectric model of the clay-chernozem soil frozen at the temperatures from -30°C to -1°C at frequencies of 1.4 GHz and 6.9 GHz
Кл.слова (ненормированные):
Комплексная диэлектрическая проницаемость -- типы почвенной влаги -- диэлектрическая модель -- dielectric permittivity -- types of soil moisture -- dielectric model
Аннотация: Проведены измерения КДП мерзлого среднесуглинистого чернозема в диапазоне температур от -30 °С до -1 °С, при вариациях плотности сухого сложения от 1.12 до 1.64 г/см3, весовой влажности от 0,021 до 0,429 г/г. Были использованы частоты 1,4 ГГц и 6,9 ГГц, которые применяются на космических аппаратах SMOS и GCOMW соответственно. Разработана температурно зависимая диэлектрическая модель смеси на данных частотах. Приведена оценка погрешности температурно зависимой рефракционной диэлектрической модели и модели Добсона доработанной Жангом для отрицательных температур. Показано, что предложенная модель дает существенно меньшую погрешность чем предложенные в литературе.
The measured complex permittivity of the clay-chernozem soil frozen at temperatures from -30 °C to -1 °C, dry soil density was varied from 1.12 to 1.64 g/cm3, gravimetric moisture from 0,021 to 0,429 g/g. It was used of the fre-quency 1.4 GHz and 6.9 GHz, which are used in the SMOS and GCOM-W mission, respectively. The refractive dielec-tric mixture model for an agricultural soil frozen for these frequencies is developed The comparison of refractive dielec-tric model and model of Dobson modified Zhang carried out for freezing temperatures. It is shown that the model of Zhang gives significant errors in freezing temperatures.

Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Миронов, Валерий Леонидович; Mironov, V. L.; Karavaisky, A. Yu.
}
Найти похожие
2.


    Muzalevskiy, K. V.
    Application of Sentinel-1B polarimetric observations to soil moisture retrieval using neural networks: Case study for bare Siberian chernozem soil / K. Muzalevskiy, A. Zeyliger // Remote Sens. - 2021. - Vol. 13, Is. 17. - Ст. 3480, DOI 10.3390/rs13173480. - Cited References: 21. - This work was supported by the Russian Foundation for Basic Research (grant No. 19-29-05261 mk). The field experiment and EC-5 Decagon sensor calibration in laboratory conditions were carried out with the support of Ministry of Science and Higher Education of the Russian Federation, project No. 0287-2021-0034 (basic state assignment) . - ISSN 2072-4292
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Remote Sensing + Imaging Science & Photographic Technology
Рубрики:
SURFACE
   MODEL

   PARAMETERS

   ROUGHNESS

   INVERSION

   DUBOIS

   IEM

   OH

Кл.слова (ненормированные):
microwave remote sensing -- Sentinel-1 -- bare soil -- soil moisture -- soil permittivity
Аннотация: Sentinel-1 is currently the only synthetic-aperture radar, which radar measurements of the earth’s surface to be carried out, regardless of weather conditions, with high resolution up to 5–40 m and high periodicity from several to 12 days. Sentinel-1 creates a technological platform for the development of new globally remote sensing algorithms of soil moisture, not only for hydrological and climatic model applications, but also on a single field scale for individual farms in precision farming systems used. In this paper, the potential of soil moisture remote sensing using polarimetric Sentinel-1B backscattering observations was studied. As a test site, the fallow agricultural field with bare soil near the Minino village (56.0865°N, 92.6772°E), Krasnoyarsk region, the Russian Federation, was chosen. The relationship between the cross-polarized ratio, reflectivity, and the soil surface roughness established Oh used as a basis for developing the algorithm of soil moisture retrieval with neural networks (NNs) computational model. Two NNs is used as a universal regression technique to establish the relationship between scattering anisotropy, entropy and backscattering coefficients measured by the Sentinel-1B on the one hand and reflectivity on the other. Finally, the soil moisture was found from the soil reflectivity in solving the inverse problem using the Mironov dielectric model. During the field campaign from 21 May to 25 August 2020, it was shown that the proposed approach allows us to predict soil moisture values in the layer thickness of 0.00–0.05 m with the root-mean-square error and determination coefficient not worse than 3% and 0.726, respectively. The validity of the proposed approach needs additional verification on a wider dataset using soils of different textures, a wide range of variations in soil surface roughness, and moisture.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Russian Acad Sci, Lab Radiophys Earth Remote Sensing, Kirensky Inst Phys, Fed Res Ctr KSC,Siberian Branch, Krasnoyarsk 630090, Russia.
Russian State Agr Univ, Dept Appl Informat, Moscow Timiryazev Agr Acad, Moscow 127550, Russia.

Доп.точки доступа:
Zeyliger, Anatoly; Музалевский, Константин Викторович; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-29-05261 mk]; Ministry of Science and Higher Education of the Russian Federation [0287-2021-0034]
}
Найти похожие
3.


   
    Biodegradation of microbial plastic poly(3-hydroxybutyrate) in soil ecosystems at different latitudes / S. V. Prudnikova, E. G. Kiselev, A. V. Demidenko [et al.] // Giant. - 2024. - Vol. 18. - Ст. 100288, DOI 10.1016/j.giant.2024.100288. - Cited References: 96. - The study was funded by State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project No. FWES-2021-0025) . - ISSN 2666-5425
Кл.слова (ненормированные):
Poly(3-hydroxybutyrate) -- Degradability -- Red soil -- Chernozem -- Climatic conditions -- Soil microorganisms
Аннотация: The features of the degradation of the "green" plastic poly(3-hydroxybutyrate) [P(3HB)] in the soil of various geographical regions were studied: in red ferralitic soil under tropical conditions (Kerala, India) and in chernozem soil under conditions of a sharply continental climate (Eastern Siberia, Russia). Significant differences in the chemical composition, temperature, and humidity of the studied soils were revealed. The number of bacteria and mycelial fungi in the Siberian chernozem was higher than in the red soil of India, from 2-3 to 10 or more times. The degradation of P(3HB) films in the chernozem occurred faster than in the red soil, which was drier, with a low content of humus and minerals, and fewer microorganisms than the chernozem. The half-life of polymer samples in Siberia and India was 64.8 and 126.4 days, respectively. During degradation, a decrease in the molecular weight and an increase in the degree of crystallinity of polymer samples were revealed, which indicates a more active biodegradation of the amorphous phase of the polymer by soil microorganisms. The primary degraders of the polymer have been isolated and identified, and it has been shown that the complexes of degrading bacteria and fungi in different types of soils did not have common species. Despite the presence of species with pronounced depolymerase activity, the rate of film degradation in red ferralitic soils was slowed down by unfavorable environmental conditions. The obtained results confirm the importance of studying the process of PHA degradation in natural conditions.

Смотреть статью
Держатели документа:
Siberian Federal University, 79 Svobodny pr, Krasnoyarsk 660041, Russia
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50 Akademgorodok, Krasnoyarsk 660036, Russia
L.V. Kirensky Institute of Physics, 50/12 Akademgorodok, Krasnoyarsk 660036, Russia
International and Interuniversity Centre for Nano Science and Nano Technology, Mahatma Gandhi University, Kottayam 686560, India

Доп.точки доступа:
Prudnikova, S. V.; Kiselev, E. G.; Demidenko, A. V.; Nemtsev, I. V.; Немцев, Иван Васильевич; Shishatskaya, E. I.; Thomas, S.; Volova, T. G.
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)