Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=visualization<.>)
Общее количество найденных документов : 9
Показаны документы с 1 по 9
1.


    Волошин, Александр Сергеевич.
    Использование компьютерных технологий для визуализации волновых процессов в различных электромагнитных системах / А. С. Волошин, А. П. Константинов, В. С. Панько // Изв. вузов. Физика. - 2013. - T. 56, № 10/3. - С. 136-138. - Работа выполнена при финансовой поддержке Министерства образования и науки РФ, Госконтракт № 14.513.11.0010, и ФЦП «Научные и научно-педагогические кадры инновационной России 2009−2013».
   Перевод заглавия: An application of the computer technologies for electromagnetic wave processes visualization in the different electromagnetic systems
Кл.слова (ненормированные):
электромагнитные волны -- волновые процессы -- визуализация -- visualization -- visual demonstration -- electromagnetic wave processes
Аннотация: Описаны современные технологии для визуализации известных электромагнитных волновых процессов в радиотехнических системах. Показано, что наглядная демонстрация физических явлений, происходящих в различных волновых структурах, позволяет существенно улучшить качество преподавания специальных радиотехнических дисциплин.
The modern technologies for the visualization of well-known electromagnetic wave processes in radio engineering systems are described. It is shown that visual demonstration of physical phenomena taking place in different wave structures allows considerably to improve the quality of the teaching of special radio engineering disciplines.

Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Константинов, А. П.; Панько, В. С.; Voloshin A. S.
}
Найти похожие
2.


   
    Chemical visualization of asphaltenes aggregation processes studied in situ with ATR-FTIR spectroscopic imaging and NMR imaging / A. A. Gabrienko [et al.] // J. Phys. Chem. C. - 2015. - Vol. 119, Is. 5. - P. 2646-2660, DOI 10.1021/jp511891f. - Cited References:78. - This research was performed under the UNIHEAT project. The authors wish to acknowledge the Skolkovo Foundation and BP for financial support. The authors thank BP for providing samples of crude oil . - ISSN 1932-7447
РУБ Chemistry, Physical + Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
MEXICAN CRUDE OILS
   X-RAY-DIFFRACTION

   INFRARED-SPECTROSCOPY

   PETROLEUM ASPHALTENES

   MOLECULAR-DYNAMICS

   VARIABLE SELECTION

   ORGANIC-SOLVENTS

   LIGHT-SCATTERING

   N-HEPTANE

   NEAR-IR

Аннотация: Crude oil phase behavior and asphaltene precipitation have been studied by two complementary chemical imaging methods for the first time. ATR-FTIR spectroscopic imaging approach has revealed the chemical composition of agglomerated and precipitated asphaltenes upon dilution with a flocculant. Asphaltenes, containing oxygen and nitrogen heteroatomic functional groups, have been detected to be least stable. Aromatic abundant asphaltenes have been observed to have relatively high solubility in crude oil/heptane blends. NMR imaging approach, capable of imaging in the bulk of crude oil samples, has demonstrated that n-heptane causes aggregation which can lead to the stable suspension or to the sedimentation followed by the formation of deposits, depending on flocculant concentration. These processes have been monitored for small and large amounts of heptane added to crude oil. The data obtained by ATR-FTIR spectroscopic imaging and NMR imaging have been correlated to propose a possible link between the chemical structure of asphaltenes and a mechanism of the formation of deposits.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England.
Russian Acad Sci, Siberian Branch, Boreskov Inst Catalysis, Novosibirsk 630090, Russia.
Russian Acad Sci, Siberian Branch, Inst Chem & Chem Technol, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
UNICAT Ltd, Novosibirsk 630090, Russia.
BP Prod North Amer Inc, Refining & Logist Technol, Naperville, IL 60563 USA.
Novosibirsk State Univ, Novosibirsk 630090, Russia.

Доп.точки доступа:
Gabrienko, A. A.; Morozov, E. V.; Морозов, Евгений Владимирович; Subramani, V.; Martyanov, O. N.; Kazarian, S. G.; Skolkovo Foundation; BP
}
Найти похожие
3.


   
    In-situ studies of crude oil stability and direct visualization of asphaltenes aggregation processes via some spectroscopy techniques / E. V. Morozov [et al.] // Abstr. Pap. Am. Chem. Soc. - 2014. - Vol. 248. - P. 531-ENFL. - Cited References:0 . - ISSN 0065-7727
РУБ Chemistry, Multidisciplinary


WOS,
Смотреть статью
Доп.точки доступа:
Morozov, E. V.; Морозов, Евгений Владимирович; Trukhan, S. N.; Трухан С. Н.; Larichev, Y. V.; Subramani, V.; Gabrienko, A. A.; Kazarian, S. G.; Martyanov, O. N.; National Meeting of the American-Chemical-Society (ACS)(San Francisco, CA)(248 ; Aug. 10-14, 2014)
}
Найти похожие
4.


   
    The first visualization of magnetic domain structure in iron garnet film by confocal raman microscopy / L. Agafonov [et al.] // VI Euro-Asian Symposium "Trends in MAGnetism" (EASTMAG-2016) : abstracts / ed.: O. A. Maksimova, R. D. Ivantsov. - Krasnoyarsk : KIP RAS SB, 2016. - Ст. O6.2. - P. 302. - References: 4 . - ISBN 978-5-904603-06-9
Кл.слова (ненормированные):
Raman spectroscopy -- iron garnet -- magnetooptics -- magnetic domain structure


Доп.точки доступа:
Agafonov, L.; Zelenovskiy, P.; Зеленовский Павел; Pamyatnykh, L.; Kuzmenko, A. M.; Кузьменко А. М.; Abakumov, P.; Абакумов П.; Vtyurin, A. N.; Втюрин, Александр Николаевич; Krylov, A. S.; Крылов, Александр Сергеевич; Euro-Asian Symposium "Trends in MAGnetism"(6 ; 2016 ; Aug. ; 15-19 ; Krasnoyarsk); "Trends in MAGnetism", Euro-Asian Symposium(6 ; 2016 ; Aug. ; 15-19 ; Krasnoyarsk); Институт физики им. Л.В. Киренского Сибирского отделения РАН

Нет сведений об экземплярах }
Найти похожие
5.


   
    Magnetic ground state of the Ising-like antiferromagnet DyScO3 / L. S. Wu [et al.] // Phys. Rev. B. - 2017. - Vol. 96, Is. 14. - Ст. 144407, DOI 10.1103/PhysRevB.96.144407. - Cited References:37. - We thank J. M. Sheng and Q. Zhang for the help with the neutron data refinement. We would like to thank A. Christianson, I. Zaliznyak, M. Mourigal, Z. T. Wang, and C. Batista for useful discussions. The research at the Spallation Neutron Source (ORNL) is supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). Research supported in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. This work was partly supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Science and Engineering Division. . - ISSN 2469-9950. - ISSN 2469-9969
РУБ Physics, Condensed Matter
Рубрики:
THIN-FILMS
   FERROELECTRICITY

   VISUALIZATION

   EXCITATIONS

Аннотация: We report on the low-temperature magnetic properties of the DyScO3 perovskite, which were characterized by means of single crystal and powder neutron scattering, and by magnetization measurements. Below TN = 3.15 K, Dy3+ moments form an antiferromagnetic structure with an easy axis of magnetization lying in the ab plane. The magnetic moments are inclined at an angle of ∼ +/- 28 degrees to the b axis. We show that the ground-state Kramers doublet of Dy3+ is made up of primarily |+/- 15/2 ⟩ eigenvectors and well separated by a crystal field from the first excited state at E1 = 24.9 meV. This leads to an extreme Ising single-ion anisotropy, M⊥/M∥∼ 0.05. The transverse magnetic fluctuations, which are proportional to M⊥2/M∥2, are suppressed, and only moment fluctuations along the local Ising direction are allowed. We also found that the Dy-Dy dipolar interactions along the crystallographic c axis are two to four times larger than in-plane interactions.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany.
Tech Univ Dresden, Inst Festkorper & Mat Phys, D-01069 Dresden, Germany.
Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
Fed Res Ctr SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN 37831 USA.
Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA.
Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.

Доп.точки доступа:
Wu, L. S.; Nikitin, S. E.; Frontzek, M.; Kolesnikov, A. I.; Ehlers, G.; Lumsden, M. D.; Shaykhutdinov, K. A.; Шайхутдинов, Кирилл Александрович; Guo, E. -J.; Savici, A. T.; Gai, Z.; Sefat, A. S.; Podlesnyak, A.; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Science and Engineering Division
}
Найти похожие
6.


   
    Low-temperature spin dynamics in the TmFeO3 orthoferrite with a non-Kramers ion / S. A. Skorobogatov, S. E. Nikitin, K. A. Shaykhutdinov [et al.] // Phys. Rev. B. - 2020. - Vol. 101, Is. 1. - Ст. 014432, DOI 10.1103/PhysRevB.101.014432. - Cited References: 41. - We thank A. Sukhanov for stimulating discussions and D. Abernathy for support with data acquisition. This research used resources at the High Flux Isotope Reactor and Spallation Neutron Source, a DOE Office of Science User Facility operated by Oak Ridge National Laboratory. S.E.N. acknowledges support from the International Max Planck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM). Laue x-ray diffraction measurements were conducted at the Center for Nanophase Materials Sciences (CNMS) (CNMS2019-R18) at Oak Ridge National Laboratory (ORNL), which is a DOE Office of Science User Facility . - ISSN 2469-9950. - ISSN 2469-9969
РУБ Materials Science, Multidisciplinary + Physics, Applied + Physics, Condensed Matter
Рубрики:
NEUTRON-SCATTERING
   REORIENTATION

   VISUALIZATION

   EXCITATIONS

   SOFTWARE

Аннотация: We investigate the magnetic dynamics of the orthorhombic perovskite TmFeO3 at low temperatures, below the spin reorientation transition at TSR≈80 K, by means of time-of-flight neutron spectroscopy. We find that the magnetic excitation spectrum combines two emergent collective modes associated with different magnetic sublattices. The Fe subsystem orders below TN∼632 K into a canted antiferromagnetic structure and exhibits sharp, high-energy magnon excitations. We describe them using linear spin-wave theory, and reveal a pronounced anisotropy between in- and out-of-plane exchange interactions, which was mainly neglected in previous reports on the spin dynamics in orthoferrites. At lower energies, we find two crystalline electrical field (CEF) excitations of Tm3+ ions at energies of ∼2 and 5 meV. In contrast to the sister compound YbFeO3, where the Yb3+ ions form quasi-one-dimensional chains along the c axis, the Tm excitations show dispersion along both directions in the (0KL) scattering plane. Analysis of the neutron scattering polarization factor reveals a longitudinal polarization of the 2 meV excitation. To evaluate the effect of the CEF on the Tm3+ ions, we perform point-charge model calculations, and their results quantitatively capture the main features of Tm single-ion physics, such as energies, intensities, and polarization of the CEF transitions, and the type of magnetic anisotropy.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Engn Phys & Radioelect, Dept Solid State Phys & Nanotechnol, Krasnoyarsk 660041, Russia.
Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany.
Tech Univ Dresden, Inst Festkorper & Mat Phys, D-01069 Dresden, Germany.
Oak Ridge Natl Lab, Neutron Technol Div, POB 2009, Oak Ridge, TN 37831 USA.
Oak Ridge Natl Lab, Neutron Scattering Div, POB 2009, Oak Ridge, TN 37831 USA.
Paul Scherrer Inst, Lab Multiscale Mat Expt, CH-5232 Villigen, Switzerland.

Доп.точки доступа:
Skorobogatov, S. A.; Скоробогатов, Станислав Алексеевич; Nikitin, S. E.; Shaykhutdinov, K. A.; Шайхутдинов, Кирилл Александрович; Balaev, A. D.; Балаев, Александр Дмитриевич; Terentjev, K. Yu.; Терентьев, Константин Юрьевич; Ehlers, G.; Sala, G.; Pomjakushina, E., V; Conder, K.; Podlesnyak, A.; International Max Planck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM)
}
Найти похожие
7.


   
    Visualization of compensating currents in type-II/1 superconductor via high field cooling / J. Valsecchi, J. S. White, M. Bartkowiak [et al.] // Appl. Phys. Lett. - 2020. - Vol. 116, Is. 19. - Ст. 192602, DOI 10.1063/5.0004438. - Cited References: 38. - This work was partially funded by the Swiss National Science Foundation under Project No. 162582 and the Korean-Swiss Science and Technology Programme under Project No. EG-KR-11-92017. We gratefully acknowledge C. Carminati, M. D. Siegwart, M. Raventos, S. Samothrakitis, F. M. Piegsa, E. Lehmann, and C. Ruegg for fruitful discussions. We also thank M. Zolliker, S. Fischer, P. Schurter, S. Stamm, U. Filges, P. Hautle, J. Hovind, and M. Schild for technical support. . - ISSN 0003-6951. - ISSN 1077-3118
   Перевод заглавия: Визуализация компенсирующих токов в сверхпроводнике II/1 рода при охлаждении в сильных полях
РУБ Physics, Applied
Рубрики:
DOMAINS
Аннотация: The morphology of vortex lattice domains in bulk type-II/1 superconductors is of central interest for many areas such as fundamental condensed matter physics, engineering science, and the optimization of materials for high transport current superconductivity applications. Here, we present a comprehensive experimental study of a single crystal niobium in the intermediate mixed state and Shubnikov phase with two complementary neutron techniques: high resolution polarized neutron imaging and small-angle neutron scattering. In this way, we were able to identify and visualize the occurrence of compensating currents, the flux line closure, and the freezing of the vortex spacing during the process of field cooling and high field cooling. With the combination of complementary neutron techniques, it was possible to add insights into the quest for the understanding of the flux pinning and nucleation of vortices in type-II/1 superconductors during the process of field cooling and high field cooling.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland.
Univ Geneva, CH-1205 Geneva, Switzerland.
Paul Scherrer Inst, Lab Neutron & Muon Instrumentat, CH-5232 Villigen, Switzerland.
Univ Appl Sci, Beuth Hsch Tech Berlin, D-14109 Berlin, Germany.
Pusan Natl Univ, Sch Mech Engn, Busan 46241, South Korea.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Valsecchi, Jacopo; White, Jonathan S.; Bartkowiak, M.; Treimer, Wolfgang; Kim, Youngju; Lee, Seung Wook; Gokhfeld, D. M.; Гохфельд, Денис Михайлович; Harti, Ralph P.; Morgano, Manuel; Strobl, Markus; Grunzweig, C.; Swiss National Science FoundationSwiss National Science Foundation (SNSF) [162582]; Korean-Swiss Science and Technology Programme [EG-KR-11-92017]
}
Найти похожие
8.


   
    Two-site Cr3+ occupation in the MgTa2O6:Cr3+ phosphor toward broad-band near-infrared emission for vessel visualization / G. C. Liu, M. S. Molokeev, B. F. Lei, Z. G. Xia // J. Mater. Chem. C. - 2020. - Vol. 8, Is. 27. - P. 9322-9328, DOI 10.1039/d0tc01951h. - Cited References: 52. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51972118, 51961145101 and 51722202), Fundamental Research Funds for the Central Universities (D2190980), the Guangzhou Science & Technology Project (202007020005), the Guangdong Provincial Science & Technology Project (No. 2018A050506004), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project No. 19-52-80003. . - ISSN 2050-7526. - ISSN 2050-7534
   Перевод заглавия: Заселение Cr3+ двух кристаллографических позиций в люминофоре MgTa2O6:Cr3+ для широкополосного ближнего инфракрасного излучения используемого для визуализации сосудов
РУБ Materials Science, Multidisciplinary + Physics, Applied
Рубрики:
LIGHT-SOURCES
   PHOSPHOR

   LUMINESCENCE

   PHOTOLUMINESCENCE

Аннотация: Near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) have great potential in photonic, optoelectronic and biological applications, while the discovery of a broad-band NIR phosphor still remains a challenge. Here, we report a novel Cr3+-activated MgTa2O6 phosphor with an asymmetrical emission band ranging from 700 to 1150 nm and a large full width at half maximum (FWHM) of 140 nm upon 460 nm blue light excitation. The broad spectrum is assigned to the overlap of two bands centered at 910 and 834 nm, which originate from the spin-allowed transition of 4T2 → 4A2 for different Cr3+ ions located in the two six-coordinated crystallographic sites of Mg2+ and Ta5+, respectively. The distribution of blood vessels and bones in human palm and wrist is observed with the assistance of a commercial NIR camera and a fabricated pc-LED, which demonstrates that the MgTa2O6:Cr3+ phosphor is promising in biological applications.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
South China Univ Technol, Sch Mat Sci & Technol, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Fiber Laser Mat & Appl Tec, Guangzhou 510640, Peoples R China.
Fed Res Ctr KSC SB RAS, Lab Crystal Phys, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
South China Agr Univ, Coll Mat & Energy, Guangdong Prov Engn Technol Res Ctr Opt Agr, Guangzhou 510642, Peoples R China.

Доп.точки доступа:
Liu, Gaochao; Molokeev, M. S.; Молокеев, Максим Сергеевич; Lei, Bingfu; Xia, Zhiguo
}
Найти похожие
9.


   
    Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells / A. S. Kichkailo, A. A. Narodov, M. A. Komarova [et al.] // Mol. Ther. - Nucleic Acids. - 2023. - Vol. 32. - P. 267-288, DOI 10.1016/j.omtn.2023.03.015. - Cited References: 69. - The authors are grateful to all the patients and hospital staff participating in this research. We acknowledge the assistance of the AptamerLab LCC (www.aptamerlab.com) and personally Mr. Vasily Mezko for the aptamer 3D structure optimization and financial and technical support. The authors thank Mr. Alexey Kichkailo, Dr. Arkady B. Kogan, and Dr. Rinat G. Galeev for their general support. Mrs. Valentina L. Grigoreva, and Irina V. Gildebrand for the help with histological staining. Technical and instrumental support was provided by the Multiple-Access Center at Tomsk State University; the Krasnoyarsk Inter-District Ambulance Hospital, named after N.S. Karpovich; John L. Holmes Mass Spectrometry Facility at the University of Ottawa; Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency; Shared Core Facilities of Molecular and Cell Technologies at Krasnoyarsk State Medical University and Krasnoyarsk Regional Centre for Collective Use at the Federal Research Centre “KSC SB RAS”. The confocal fluorescence microscopy research was carried out with the equipment of the Tomsk Regional Core Shared Research Facilities Center of the National Research Tomsk State University. The Center was supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2021-693 (no. 13.RFC.21.0012). Acute toxicity studies were performed in a laboratory certified for preclinical studies, Laboratory of Biological Testing, Institute of Bioorganic Chemistry named after academics M.M. Shemyakin and Y.A. Ovchinnikov Russian Academy of Sciences. The authors are grateful to the Joint Super Computer Center of the Russian Academy of Sciences for providing supercomputers for computer simulations. Development of the glioma tumor model in immunosuppressed mice was supported by the Russian Science Foundation grant No. 22-64-00041 (M.A.D.), https://rscf.ru/en/project/22-64-00041/. Synthesis of 11C-aptamer and PET/CT visualization was funded by the Federal Medical Biological Agency; project 122041800132-2 (A.V.O.). Aptamer selection and their clinical applications were funded by the Ministry of Healthcare of the Russian Federation; project АААА-Б19-219090690032-5 (T.N.Z.). The Ministry of Science and Higher Education of the Russian Federation project FWES-2022-0005 (A.S.K.) supported aptamer characterization, molecular modelling, and in vivo experiments. Mass spectrometry analyses, DNA sequencing, and synthesis were supported by NSERC Discovery Grant (M.V.B.). We acknowledge the European Synchrotron Radiation Facility for SAXS experiments and thank Dr. Bart Van Laer for assistance in using a beamline BM29. SAXS measurements were supported by RFBR № 18-32-00478 for young scientists (R.V.M.). The synchrotron SEC-SAXS data for Gli-55 aptamer were also collected at beamline P12 operated by EMBL Hamburg at the PETRA III storage ring (DESY, Hamburg, Germany) . - ISSN 2162-2531
Аннотация: Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
Krasnoyarsk Inter-District Ambulance Hospital named after N.S. Karpovich, 17 Kurchatova, Krasnoyarsk 660062, Russia
Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
Department of Molecular Electronics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, Krasnoyarsk 660036, Russia
National Research Center Kurchatov Institute, 1 Akademika Kurchatova, Moscow 123182, Russia
Laboratory of Advanced Materials and Technology, Siberian Physical-Technical Institute of Tomsk State University, 36 Lenina, Tomsk 634050, Russia
Krasnoyarsk Regional Pathology-Anatomic Bureau, 3d Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie gory, Moscow 119991, Russia
Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, South Korea
Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland
A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” RAS, 59 Leninsky pr., Moscow, 119333, Russia
Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency, Krasnoyarsk, Russia
Krasnoyarsk Regional Clinical Cancer Center, 16 1-ya Smolenskaya, Krasnoyarsk 660133, Russia
Institute of Chemistry and Chemical Technology SB RAS – The Branch of Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N6N5, Canada
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 8 Lavrentyev Avenue, 630090 Novosibirsk, Russia

Доп.точки доступа:
Kichkailo, A. S.; Narodov, A. A.; Komarova, M. A.; Zamay, T. N.; Zamay, G. S.; Kolovskaya, O. S.; Erakhtin, E. E.; Glazyrin, Y. E.; Veprintsev, D. V.; Moryachkov, R. V.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Shchugoreva, I.; Artyushenko, P.; Mironov, V. A.; Morozov, D. I.; Gorbushin, A. V.; Khorzhevskii, V. A.; Koshmanova, A. A.; Nikolaeva, E. D.; Grinev, I. P.; Voronkovskii, I. I.; Grek, D. S.; Belugin, K. V.; Volzhentsev, A. A.; Badmaev, O. N.; Luzan, N.; Lukyanenko, K. A.; Peters, G.; Lapin, I. N.; Лапин, И. Н.; Kirichenko, A. K.; Konarev, P. V.; Morozov, E. V; Mironov, G. G.; Gargaun, A.; Muharemagic, D.; Zamay, S. S.; Kochkina, E. V.; Dymova, M. A.; Smolyarova, T. E.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Modestov, A. A.; Tokarev, N. A.; Shepelevich, N.; Ozerskaya, A. V.; Chanchikova, N. G.; Krat, A. V.; Zukov, R. A.; Bakhtina, V. I.; Shnyakin, P. G.; Shesternya, P. A.; Svetlichnyi, V. A.; Petrova, M. M.; Artyukhov, I. P.; Tomilin, F. N.; Томилин, Феликс Николаевич; Berezovski, Maxim V.
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)