Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (7)
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Жарков, Сергей Михайлович$<.>)
Общее количество найденных документов : 232
Показаны документы с 1 по 20
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ivanova O. S., Edelman I. S., Sokolov A. Е., Svetlitsky E. S., Zharkov S. M., Sukhachev A. L., Lin Ch. R., Chen Yu. Zh.
Заглавие : Adsorption of organic dyes by Fe3O4@C, Fe3O4@C@C, and Fe3O4@SiO2 magnetic nanoparticles
Место публикации : Bull. Russ. Acad. Sci. Phys. - 2023. - Vol. 87, Is. 3. - P.338-342. - ISSN 10628738 (ISSN), DOI 10.3103/S1062873822701192. - ISSN 19349432 (eISSN)
Примечания : Cited References: 17. - This research was funded partly by the Ministry of Science and Higher Education of the Russian Federation, project FWES-2021-0035. Ch. R. Lin and Yu. Zh. Chen thank the National Science and Technology Council of Taiwan for the financial support, MOST no. 110-2112-M-153-005- and no. 108-2923-M-153-001-MY3
Аннотация: Fe3O4@C, Fe3O4@C@C, and Fe3O4@SiO2 core–shell nanoparticles are synthesized via thermal decomposition and coprecipitation. Samples are characterized via X-ray spectroscopy, transmission electron microscopy, and magnetometry. It is shown that the magnetic core of all nanoparticles is nanocrystalline and has crystal parameters corresponding to only one phase of Fe3O4, covered with a uniform shell of amorphous carbon or silicon oxide around 8 nm thick. Special attention is given to adsorption properties of the nanoparticles with respect to four dyes: Methylene blue, Congo Red, Eosin Y, and Rhodamine C. The high selectivity of Fe3O4@C nanoparticles to various dyes is revealed.
Смотреть статью,
Читать в сети ИФ
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ivanova O. S., Lin, Chun-Rong, Edelman I. S., Svetlitsky E. S., Sokolov A. Е., Zharkov S. M., Sukhachev A. L., Vorobyev S. A., Petrov D. A., Lin, En-Szu
Заглавие : Adsorption properties and catalytic activity of Fe3O4-Ag nanostructures
Колич.характеристики :12 с
Место публикации : Appl. Surf. Sci. - 2024. - Vol. 665. - Ст.160236. - ISSN 01694332 (ISSN), DOI 10.1016/j.apsusc.2024.160236. - ISSN 18735584 (eISSN)
Примечания : Cited References: 48. - The work is supported by the Russian Science Foundation (project no. 23-22-10025, https://rscf.ru/project/ 23-22-10025/) and by the Krasnoyarsk Regional Fund of Science and Technology Support. The electron microscopy and EDS investigations were conducted in the SFU Joint Scientific Center. Magnetic investigations were carried out in the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS"
Аннотация: The morphology and magnetic properties as well as adsorption capacity and catalytic activity of Fe3O4-Ag nanoparticles synthesized by the solvothermal method were studied in dependence on the duration of the thermolysis process (3, 6, and 8 h). X-ray diffraction, transmission electron microscopy, and energy-dispersive spectroscopy measurements showed that the morphology of nanoparticles changed strongly as the duration of thermolysis increased. At 6 and 8 h duration, Fe3O4 nanocrystals grow and assemble into porous spherical globules with an Ag core (samples 2 and 3). These samples demonstrate high magnetization value and very low coercivity. The adsorption capacity of nanoparticles was studied with respect to two organic dyes: cationic methylene blue (MB) and anionic Congo red (CR). The particles showed preferential adsorption of the cationic dye. High catalytic activity towards four dyes: MB, methyl orange (MO), CR, and Rhodamine C (RhC) at the presence of NaBH4 is the remarkable property of these samples. The rate constant of the catalytic reaction was 1.4 min−1. Simultaneous exposure of CR and MO dyes to nanoparticles and NaBH4 caused their irreversible 100 % degradation while in the case of MB and RhC, a transition to their leuco form occurred.
Смотреть статью
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Ranjan, Rajeev, Kirillova, Maria A., Esimbekova, Elena N., Zharkov S. M., Kratasyuk, Valentina A.
Заглавие : Agglomeration behavior of lipid-capped gold nanoparticles
Коллективы : Russian Foundation for Basic Research [16-34-60100]; [0356-2017-0017]
Место публикации : J. Nanopart. Res. - 2018. - Vol. 20, Is. 4. - Ст.107. - ISSN 1388-0764, DOI 10.1007/s11051-018-4215-5. - ISSN 1572-896X(eISSN)
Примечания : Cited References:35. - The research was supported by the Russian Foundation for Basic Research [project no. 16-34-60100] and the state budget allocated to the fundamental research (project no. 0356-2017-0017). The authors thank Prof. Tatiana Volova, Prof. Evgenia Slyusareva, and Ms. Nina Slyusarenko of the Siberian Federal University for their assistance in the zeta potential and zeta-average analysis.
Предметные рубрики: COLORIMETRIC SENSOR ARRAY
OPTICAL-PROPERTIES
AGGREGATION
CANCER
Ключевые слова (''Своб.индексиров.''): gold nanoparticles--ionic interference--agglomeration--stabilization--lipid capping--nanobiotechnology applications
Аннотация: The current investigation deciphers aggregation pattern of gold nanoparticles (AuNPs) and lipid-treated AuNPs when subjected to aqueous sodium chloride solution with increasing ionic strengths (100–400 nM). AuNPs were synthesized using 0.29 mM chloroauric acid and by varying the concentrations of trisodium citrate (AuNP1 1.55 mM, AuNP2 3.1 mM) and silver nitrate (AuNP3 5.3 μM, AuNP4 10.6 μM) with characteristic LSPR peaks in the range of 525–533 nm. TEM analysis revealed AuNPs to be predominantly faceted nanocrystals with the average size of AuNP1 to be 35 ± 5 nm, AuNP2 15 ± 5 nm, AuNP3 30 ± 5 nm, and AuNP4 30 ± 5 nm and the zeta-average for AuNPs were calculated to be 31.23, 63.80, 26.08, and 28 nm respectively. Induced aggregation was observed within 10 s in all synthesized AuNPs while lipid-treated AuNP2 (AuNP2-L) was found to withstand ionic interferences at all concentration levels. However, lipid-treated AuNPs synthesized using silver nitrate and 1.55 mM trisodium citrate (AuNP3, AuNP4) showed much lower stability. The zeta potential values of lipid-treated AuNPs (AuNP1-L-1x/200, − 17.93 ± 1.02 mV; AuNP2-L-1x/200, − 21.63 ± 0.70; AuNP3-L-1x/200, − 14.54 ± 0.90; AuNP3-L-1x/200 − 13.77 ± 0.83) justified these observations. To summarize, AuNP1 and AuNP2 treated with lipid mixture 1 equals or above 1x/200 or 1x/1000 respectively showed strong resistance against ionic interferences (up to 400 mM NaCl). Use of lipid mixture 1 for obtaining highly stable AuNPs also provided functional arms of various lengths which can be used for covalent coupling.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lin C. -R., Ivanova O. S., Petrov D. A., Sokolov A. Е., Chen Y. -Z., Gerasimova M. A., Zharkov S. M., Tseng Y. -T., Shestakov N. P., Edelman I. S.
Заглавие : Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles for dye adsorption
Место публикации : Nanomaterials. - 2021. - Vol. 11, Is. 9. - Ст.2371. - ISSN 20794991 (ISSN), DOI 10.3390/nano11092371
Примечания : Cited References: 35. - The authors are thankful for the financial support the Russian Foundation for Basic Research, Grant № 19-52-52002, Ministry of Science and Technology of Taiwan, Grants MOST № 108-2923-M-153-001-MY3 and № 109-2112-M-153-003-, the Russian Foundation for Basic Research with Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, the research project number 19-42-240005: “Features of the electronic structure, magnetic properties and optical excitations in nanocrystals of the multifunctional magnetic chalcogenides Fe3S4 and FeSe”. We thank also the SFU Joint Scientific Center supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation, where the Transmission Electron Microscopy studies were carried out
Аннотация: Fe3O4@SiO2 core-shell nanoparticles (NPs) were synthesized with the co-precipitation method and functionalized with NH2 amino-groups. The nanoparticles were characterized by X-ray, FT-IR spectroscopy, transmission electron microscopy, selected area electron diffraction, and vibrating sample magnetometry. The magnetic core of all the nanoparticles was shown to be nanocrystalline with the crystal parameters corresponding only to the Fe3O4 phase covered with a homogeneous amorphous silica (SiO2) shell of about 6 nm in thickness. The FT-IR spectra confirmed the appearance of chemical bonds at amino functionalization. The magnetic measurements revealed unusually high saturation magnetization of the initial Fe3O4 nanoparticles, which was presumably associated with the deviations in the Fe ion distribution between the tetrahedral and octahedral positions in the nanocrystals as compared to the bulk stoichiometric magnetite. The fluorescent spectrum of eosin Y-doped NPs dispersed in water solution was obtained and a red shift and line broadening (in comparison with the dye molecules being free in water) were revealed and explained. Most attention was paid to the adsorption properties of the nanoparticles with respect to three dyes: methylene blue, Congo red, and eosin Y. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for all three dyes. The equilibrium data were more compatible with the Langmuir isotherm and the maximum adsorption capacity was reached for Congo red.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Platunov M. S., Varnakov S. N., Zharkov S. M., Bondarenko G. V., Weschke E., Schierle E., Ovchinnikov S. G.
Заглавие : Analysis of the structure and magnetic properties of an interface in multilayered (Fe/Si) N nanostructures with the surface-sensitive XMCD method
Коллективы : Russian Foundation for Basic Research [13-02-01265a, 14-02-31051mol-a]; Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools [NSh- 2886.2014.2]; Presidium of the Russian Academy of Sciences [24.34]; Ministry of Education and Science of the Russian Federation [02.G25.31.0043]
Место публикации : JETP Letters. - 2014. - Vol. 99, Is. 12. - P.706-711. - ISSN 0021-3640, DOI 10.1134/S002136401412011X. - ISSN 1090-6487
Примечания : Cited References: 26. - We are grateful to S.V. Komogortsev for stimulating discussions and to the management of BESSY II, Helmholtz-Zentrum Berlin, for the opportunity of performing experiments at the UE46-PGM1 beamline. This work was supported by the Russian Foundation for Basic Research (project nos. 13-02-01265a and 14-02-31051mol-a), by the Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (project no. NSh- 2886.2014.2), by the Presidium of the Russian Academy of Sciences (program no. 24.34), and by the Ministry of Education and Science of the Russian Federation (state contract no. 02.G25.31.0043 and state task for research at Siberian Federal University in 2014).
Предметные рубрики: RAY CIRCULAR-DICHROISM
YIELD
SPECTRA
Fe
Аннотация: The structural and magnetic properties of (Fe/Si) N nanostructures obtained by successive deposition on the SiO2/Si(100) surface at a temperature of the substrate of 300 K have been studied. The thicknesses of all Fe and Si layers have been determined by transmission electron microscopy measurements. The magnetic properties have been studied by the X-ray magnetic circular dichroism (XMCD) method near the Fe L 3, 2 absorption edges. The orbital (m l ) and spin (m S ) contributions to the total magnetic moment of iron have been separated. The thicknesses of magnetic and nonmagnetic iron silicide on the Si/Fe and Fe/Si interfaces have been determined with the surface sensitivity of the XMCD method and the model of the interface between the nonmagnetic and weakened magnetic phases.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Pankrats A. I., Zharkov S. M., Zeer G. M., Gudim I. A.
Заглавие : Antiferromagnetic resonance and magnetic anisotropy in PrxY1−xFe3(BO3)4 crystals in the region of the magnetic structure transformation “easy axis – easy plane”
Место публикации : J. Alloys Compd. - 2022. - Vol. 909. - Ст.164821. - ISSN 09258388 (ISSN), DOI 10.1016/j.jallcom.2022.164821
Примечания : Cited References: 37. - The authors acknowledge the assistance of R. Mironov in some resonance measurements. The SEM and EDS investigations were conducted in the SFU Joint Scientific Center supported by the State assignment (#FSRZ-2020–0011) of the Ministry of Science and Higher Education of the Russian Federation
Аннотация: The spin dynamics, magnetic structures and magnetic anisotropy of single crystals PrxY1−xFe3(BO3)4 have been studied using antiferromagnetic resonance (AFMR) in a wide range of frequencies, magnetic fields, and temperatures. The frequency-field dependences of AFMR for the crystals with x = 0.25 and 0.45 are characteristic of antiferromagnets with the easy plane (EP) anisotropy. The crystals with x = 0.75 and 1.0 exhibit frequency-field dependences that are typical for antiferromagnets with the easy axis (EA) anisotropy. In these crystals, a significant decrease in the effective anisotropy fields of praseodymium upon the transition to the spin-flop state has been found. It is shown that this is the main reason for the large lability intervals, within which the regions of coexistence of the collinear and spin-flop states overlap. In the crystal with x = 0.67, the magnetic field applied along the trigonal axis of the crystal leads to the spin reorientation transition from the EA to the EP state. A magnetic phase diagram of the states on the plane "magnetic field - temperature" is built. In this crystal, the effective anisotropy field of praseodymium also decreases upon the transition to the field-induced EP state. Diamagnetic dilution of the praseodymium subsystem leads to the contribution of this subsystem to the total anisotropy field depending almost linearly on the praseodymium concentration.
Смотреть статью,
Scopus,
Читать в сети ИФ
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Khaydarov R., Gapurova O., Abdukhakimov M., Sadikov I., Garipov I., Krishnamurthy P. T., Zharkov S. M., Zeer G. M., Abolentseva P. A., Prudnikova S. V., Evgrafova S. Y.
Заглавие : Antimicrobial properties of nanofiltration membranes modified with silver nanoparticles
Коллективы : SFU Joint Scientific Center; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0011]
Место публикации : Emerg. Mater. - 2022. - Vol. 5, Is. 5. - P.1477-1483. - ISSN 2522-5731, DOI 10.1007/s42247-021-00330-2. - ISSN 2522-574X(eISSN)
Примечания : Cited References: 31. - The SEM and TEM analysis was carried out in the SFU Joint Scientific Center under the support of the Ministry of Science and Higher Education of the Russian Federation (#FSRZ-2020-0011)
Аннотация: The growth of bacteria and fungi on a nanofiltration (NF) membrane is known to reduce its permeability and lifetime and increase overall energy use. Over the last decade, application of silver nanoparticles (AgNPs) has shown to present a strong potential in preventing biofouling of NF membrane processes. The paper deals with a novel facile method developed to in situ incorporate nanosilver stabilized with the polyhexamethylene biguanide hydrochloride (PHMB) onto the commercial NF membrane surface. The scanning electron microscopy (SEM) investigations confirmed a uniform distribution of AgNPs on the surface of NF membrane although AgNPs tend to agglomerate into nano-sized colloidal clusters. Our results showed that AgNPs had little impact on the performance of the NF membrane, including salt rejection and water permeation properties. To evaluate the antibacterial properties of nanocomposite membranes, a "time-kill" analysis, a microbiological technique for measuring the change in a population of microorganisms under the impact of a specific sample, has been used against representatives of Gram-positive and Gram-negative bacteria. Inductively coupled mass spectrometry (ICP-MS) was used to study kinetics of Ag release from modified NF membrane. Leaching rates of Ag were low that will possibly result in long-established antimicrobial and antifungal properties. The present research offers a potential for its further use as a new type of modified NF membrane mitigating biofouling.
Смотреть статью,
Scopus,
WOS
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Baker, Syed, Prudnikova, Svetlana V., Shumilova, Anna A., Perianova, Olga V., Zharkov S. M., Kuzmin A.
Заглавие : Bio-functionalization of phytogenic Ag and ZnO nanobactericides onto cellulose films for bactericidal activity against multiple drug resistant pathogens
Место публикации : J. Microbiol. Methods. - 2019. - Vol. 159. - P.42-50. - ISSN 0167-7012, DOI 10.1016/j.mimet.2019.02.009. - ISSN 1872-8359(eISSN)
Примечания : Cited References: 59
Предметные рубрики: SILVER NANOPARTICLES
ANTIMICROBIAL ACTIVITY
SIZE
COMPOSITES
MEMBRANE
Аннотация: The present study describes the synthesis of silver and zinc oxide nanobactericides from the phytogenic source Bupleurum aureum The synthesized nanobactericides were characterized and evaluated for bio-functionalization onto bacterial cellulose membrane which was synthesized by Komagataeibactencylinus B-12068 culture strain. The synthesis of nanobacterides were initially confirmed using UV-Visible spectroscopy which indicated localized surface resonance (LSPR) peaks at 415 nm for silver nanobactericides and 280 nm for zinc nanobactericides. The nature of the capping agent for synthesized nanobactericides was predicted using FTIR which confirmed the presence of functional moieties. XRD analysis revealed their crystalline nature while morphological characteristics were studied using TEM which confirmed the polydispersity of nanobactericides with the average size in the range of 20-25 nm. The nanobactericides were tested for their antimicrobial activity against seven multi-drug resistant pathogens which were clinically isolated from patients suffering from a myriad of microbial infections. The tested pathogens had antimicrobial resistance to ten different antibiotics and have been reported to be the major cause of nosocomial infections. The nanobactericides displayed significant activity against the test pathogens. Silver nanobactericides showed the highest activity against Escherichia coli strain 55 with a 24 mm zone of inhibition while zinc oxide nanobactericides displayed the highest activity against methicillinresistant Staphylococcus aureus (MRSA) with a 20 mm inhibition zone. The bio- functionalized cellulose films (BCF) were characterized using SEM along with physicochemical analysis. The BCF's were evaluated for anti-bacterial activity against test pathogens which resulted in marked antimicrobial potential against multi-drug resistant bacteria and therefore has the potential to be utilized as an efficient alternative to counter drug resistant pathogens.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Baker, Syed, Volova, Tatiana, Prudnikova, Svetlana V., Shumilova, Anna A., Perianova, Olga, V, Zharkov S. M., Kuzmin A. R., Kondratenka, Olga, Kiryukhin, Bogdan, Shidlovskiy, Ivan P., Potkina, Zoya K., Khohlova, Olga Y., Lobova, Tatiana I.
Заглавие : Bio-hybridization of nanobactericides with cellulose films for effective treatment against members of ESKAPE multi-drug-resistant pathogens
Коллективы : Ministry of Education and Science of the Russian Federation under the scheme of 5-100: Russian Academic Excellence Project
Место публикации : Appl. Nanosci. - 2018. - Vol. 8, Is. 5. - P.1101-1110. - ISSN 2190-5509, DOI 10.1007/s13204-018-0717-9. - ISSN 2190-5517(eISSN)
Примечания : Cited References: 51. - Authors are thankful for Ministry of Education and Science of the Russian Federation for providing funding under the scheme of 5-100: Russian Academic Excellence Project. Authors are grateful for facilities provided by Siberian Federal University to carry out the present study.
Предметные рубрики: SILVER NANOPARTICLES
BACTERIAL CELLULOSE
ANTIBIOTIC-RESISTANCE
Ключевые слова (''Своб.индексиров.''): eskape--bio-hybridization--silver nanobactericides--phytogenic--bactericidal activity
Аннотация: The rapid expansion of drug-resistant pathogens has created huge global impact and development of novel antimicrobial leads is one of the top priority studies in the current scenario. The present study aims to develop bio-hybridized nanocellulose films which comprise of phytogenic silver nanobactericides. The nanobactericides were synthesized by treating 1 mM silver nitrate with aqueous extract of Chamerion angustifolium which reduced the metal salt to produce polydispersed nanobactericides which were tested against the members of ESKAPE drug-resistant communities. The synthesized silver nanobactericides were subjected to characterization with UV–visible spectra which displayed maximum absorbance at 408 nm. The bio-molecular interaction of phyto-constituents to mediate synthesis and stabilization of nanobactericides was studied with Fourier-transform infrared spectroscopy (FTIR) which depicted functional groups associated with nanobactericides. The crystalline nature was studied with X-ray diffraction (XRD) which showed Bragg’s intensities at 2θ angle which denoted (111), (200), (220), and (311) planes. The morphological characteristics of silver nanobactericides were defined with transmission electron Microscopy (TEM) image which displayed polydispersity of silver nanobactericides with size ranging from 2 to 40 nm. The synthesized nanobactericides showed a significant activity against MRSA strain with 21 mm zone of inhibition. The minimal inhibitory concentration of silver nanobactericides to inhibit the growth of test pathogens was also determined which ranged between 0.625 and 1.25 μg/ml. The silver nanobactericides were bio-hybridized onto nanocellulose films produced by Komagataeibacter xylinus B-12068 culture strain. The films were dried to determine the mechanical properties which showed increased in Young’s modulus and tensile strength in comparison with control bacterial cellulose films. Overall, the results obtained in the present investigation are promising enough to report bactericidal activity of bio-hybridized nanobactericidal films against ESKAPE. These communities are reported to cause severe threats to all forms of lives irrespective to their habitats which can lead to huge economical crisis.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lin, Chun-Rong, Ivanova O. S., Edelman I. S., Knyazev Yu. V., Zharkov S. M., Petrov D. A., Sokolov A. Е., Svetlitsky E. S., Velikanov D. A., Solovyov, Leonid A., Chen, Ying-Zhen, Tseng, Yaw-Teng
Заглавие : Carbon double coated Fe3O4@C@C nanoparticles: Morphology features, magnetic properties, dye adsorption
Коллективы : Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-52-52002]; Ministry of Science and Technology of TaiwanMinistry of Science and Technology, Taiwan [108-2923-M-153-001-MY3, 109-2112-M-153-003]; Joint Scientific Center of the Siberian Federal University [FSRZ-2020-0011]; Ministry of Science and Higher Education of the Russian Federation
Место публикации : Nanomaterials. - 2022. - Vol. 12, Is. 3. - Ст.376. - ISSN 2079-4991(eISSN), DOI 10.3390/nano12030376
Примечания : Cited References: 44. - The work was supported financially by the Russian Foundation for Basic Research, Grant No. 19-52-52002 and Ministry of Science and Technology of Taiwan, Grants MOST No. 108-2923-M-153-001-MY3 and No. 109-2112-M-153-003-. The support was obtained also from the Joint Scientific Center of the Siberian Federal University supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation, where the Transmission Electron Microscopy studies were carried out
Предметные рубрики: SOLID-PHASE EXTRACTION
FE3O4 NANOPARTICLES
PROFILE REFINEMENT
Аннотация: This work is devoted to the study of magnetic Fe3O4 nanoparticles doubly coated with carbon. First, Fe3O4@C nanoparticles were synthesized by thermal decomposition. Then these synthesized nanoparticles, 20–30 nm in size were processed in a solution of glucose at 200 °C during 12 h, which led to an unexpected phenomenon – the nanoparticles self-assembled into large conglomerates of a regular shape of about 300 nm in size. The morphology and features of the magnetic properties of the obtained hybrid nanoparticles were characterized by transmission electron microscopy, differential thermo-gravimetric analysis, vibrating sample magnetometer, magnetic circular dichroism and Mössbauer spectroscopy. It was shown that the magnetic core of Fe3O4@C nanoparticles was nano-crystalline, corresponding to the Fe3O4 phase. The Fe3O4@C@C nanoparticles presumably contain Fe3O4 phase (80%) with admixture of maghemite (20%), the thickness of the carbon shell in the first case was of about 2–4 nm. The formation of very large nanoparticle conglomerates with a linear size up to 300 nm and of the same regular shape is a remarkable peculiarity of the Fe3O4@C@C nanoparticles. Adsorption of organic dyes from water by the studied nanoparticles was also studied. The best candidates for the removal of dyes were Fe3O4@C@C nanoparticles. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for cationic dye methylene blue (MB) and anionic dye Congo red (CR). The equilibrium data were more consistent with the Langmuir isotherm and were perfectly described by the Langmuir–Freundlich model.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
11.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Petrov D. A., Lin C. R., Ivantsov R. D., Ovchinnikov S. G., Zharkov S. M., Yurkin G. Yu., Velikanov D. A., Knyazev Yu. V., Molokeev M. S., Tseng Y. T., Lin E. S., Edelman I. S., Baskakov A. O., Starchikov S. S., Lyubutin I. S.
Заглавие : Characterization of the iron oxide phases formed during the synthesis of core-shell FexOy@C nanoparticles modified with Ag
Место публикации : Nanotechnology. - 2020. - Vol. 31, Is. 39. - Ст.395703. - ISSN 13616528 (ISSN), DOI 10.1088/1361-6528/ab9af2
Примечания : Cited References: 46. - The reported study was funded by Joint Research Project of Russian Foundation for Basic Research № 19-52-52002 and Ministry of Science and Technology, Taiwan MOST № 108-2923-M-153-001-MY3 and № 106-2112-M-153-001-MY3. The samples of series 1 were studied with the support of the Ministry of Science and Higher Education of the Russian Federation within the State assignment FSRC «Crystallography and Photonics» RAS. The electron microscopy investigations were conducted in the SFU Joint Scientific Center supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation
Аннотация: Core–shell FexOy@C nanoparticles (NPs) modified with Ag were studied with x-ray diffraction, transmission electron microscopy, energy dispersive elemental mapping, Mössbauer spectroscopy, static magnetic measurements, and optical magnetic circular dichroism (MCD). FexOy@C NPs synthesized by the pyrolysis process of the mixture of Fe(NO3)3 centerdot 9H2O with oleylamine and oleic acid were added to a heated mixture of oleylamine and AgNO3 in different concentrations. The final product was a mixture of iron oxide crystalline NPs in an amorphous carbon shell and Ag crystalline NPs. The iron oxide NPs were presented by two magnetic phases with extremely close crystal structures: Fe3O4 and γ-Fe2O3. Ag is shown to form crystalline NPs located very close to the iron oxide NPs. An assumption is made about the formation of hybrid FexOy@C-Ag NPs. Correlations were obtained between the Ag concentration in the fabricated samples, their magnetic properties and the MCD spectrum shape. Introducing Ag led to a approximately linear decrease of the NPs saturation magnetization depending upon the Ag concentration, it also resulted into the MCD spectrum shift to the lower light wave energies. MCD was also studied for the Fe3O4@C NPs synthesized earlier with the same one-step process using different heat treatment temperatures, and MCD spectra were compared for two series of NPs. A possible contribution of the surface plasmon excitation in Ag NPs to the MCD spectrum of the FexOy@C-Ag NPs is discussed.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
12.

Вид документа : Статья из сборника (однотомник)
Шифр издания :
Автор(ы) : Lin C. R., Chen C. C., Li O., Hsu, Hua-Shu, Ivantsov R. D., Zharkov S. M., Edelman I. S., Velikanov D. A., Ovchinnikov S. G.
Заглавие : Chemically synthesized Cu1-xFexCr2Se4 nanoparticles. Morphology and magnetic properties
Коллективы : International Conference on Magnetism
Место публикации : 20th Int. Conf. on Magnetism (ICM-2015): book of abstracts. - 2015. - Ст.TU.F-P88
Материалы конференции
Найти похожие
13.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zharkov S. M., Zhigalov V. S., Kveglis L. I., Lisitsa Y. V., Renskaya K. V., Frolov G. I.
Заглавие : Cluster structure and superlattices in Co and Fe films
Место публикации : JETP Letters. - 1997. - Vol. 65, Is. 12. - P.915-918. - ISSN 0021-3640, DOI 10.1134/1.567449
Примечания : Cited References: 9
Аннотация: The process of dendritic crystallization of Co and Fe films is investigated. Electron-diffraction methods show that fractal growth of dendrites in Co and Fe films proceeds by multiple twinning of the elements of a nanostructure consisting of different clusters with close-packing. The formation of superstructures is explained by a shell model of a cluster structure forming nanocrystallites. (C) 1997 American Institute of Physics.
WOS,
Scopus
Найти похожие
14.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Vorobyev S., Likhatski M., Romanchenko A., Maksimov N., Zharkov S. M., Krylov A. S., Mikhlin Y.
Заглавие : Colloidal and deposited products of the interaction of tetrachloroauric acid with hydrogen selenide and hydrogen sulfide in aqueous solutions
Место публикации : Minerals. - 2018. - Vol. 8, Is. 11. - Ст.492. - ISSN 2075163X (ISSN), DOI 10.3390/min8110492
Примечания : Cited References: 63. - This research was funded by the Siberian Branch of the Russian Academy of sciences, Program of Interdisciplinary Studies, grant number 64 (project 303).
Ключевые слова (''Своб.индексиров.''): gold selenide--gold sulfoselenide--colloids--nanoparticles--nucleation--liquid intermediates--deposition
Аннотация: The reactions of aqueous gold complexes with H2Se and H2S are important for transportation and deposition of gold in nature and for synthesis of AuSe-based nanomaterials but are scantily understood. Here, we explored species formed at different proportions of HAuCl4, H2Se and H2S at room temperature using in situ UV-vis spectroscopy, dynamic light scattering (DLS), zeta-potential measurement and ex situ Transmission electron microscopy (TEM), electron diffraction, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Metal gold colloids arose at the molar ratios H2Se(H2S)/HAuCl4 less than 2. At higher ratios, pre-nucleation “dense liquid” species having the hydrodynamic diameter of 20–40 nm, zeta potential −40 mV to −50 mV, and the indirect band gap less than 1 eV derived from the UV-vis spectra grow into submicrometer droplets over several hours, followed by fractional nucleation in the interior and coagulation of disordered gold chalcogenide. XPS found only one Au+ site (Au 4f7/2 at 85.4 eV) in deposited AuSe, surface layers of which partially decomposed yielding Au0 nanoparticles capped with elemental selenium. The liquid species became less dense, the gap approached 2 eV, and gold chalcogenide destabilized towards the decomposition with increasing H2S content. Therefore, the reactions proceed via the non-classical mechanism involving “dense droplets” of supersaturated solution and produce AuSe1−xSx/Au nanocomposites.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
15.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Vorobyev S. A., Saikova S. V., Novikova S. A., Fetisova O. Y., Zharkov S. M., Krylov A. S., Likhatski M. N., Mikhlin Y. L.
Заглавие : Colloidal and immobilized nanoparticles of lead xanthates
Место публикации : ACS Omega. - 2019. - Vol. 4, Is. 7. - P.11472-11480. - ISSN 24701343 (ISSN), DOI 10.1021/acsomega.9b00841
Примечания : Cited References: 56. - This research was supported by Russian Science Foundation, project 18-17-00135.
Аннотация: Although nanoparticles of heavy metal xanthates and their hydrosols can play important roles in froth flotation, environmental issues, analytics, and manufacturing of metal sulfide nanocomposites, they have received little attention. We studied colloidal solutions and immobilized particles prepared via interaction of aqueous lead nitrate with alkyl xanthates applying UV−vis absorption spectroscopy, dynamic light scattering, zeta potential measurement, thermogravimetry analysis, Fourier transform infrared spectroscopy, Raman scattering, X-ray photoelectron spectroscopy, atomic force microscopy, and transmission electron microscopy. The hydrodynamic diameter of colloidal particles of Pb(SSCOR)2 decreased from 500 to 50 nm with an increase in the alkyl radical length and the initial xanthate to lead ratio (X/Pb); the zeta potential magnitude varied similarly, although it remained negative. The effect of pH in the range of 4.5−11 was minor, but the colloids produced using excess of Pb2+ in alkaline media were close to PbX and decomposed much easier than PbX2. The uptake of lead xanthates on supports was generally low because of negative charges of the colloids; however, 50−100 nm thick PbX2 films were deposited on PbS and SiO2 from the media of X/Pb 2 and pH 9 because of preadsorption of Pb2+, while nanorods formed on highly oriented pyrolytic graphite.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
16.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Orlov Yu. S., Sokolov A. Е., Dudnikov V. A., Shulga K. V., Volochaev M. N., Zharkov S. M., Shestakov N. P., Vysotin M. A., Ovchinnikov S. G.
Заглавие : Contribution of the multiplicity fluctuation in the temperature dependence of phonon spectra of rare-earth cobaltites
Место публикации : Molecules. - 2020. - Vol. 25, Is. 18. - Ст.4316. - ISSN 14203049 (ISSN), DOI 10.3390/molecules25184316
Примечания : Cited References: 34. - This work was supported by the Russian Science Foundation grant 18-02-00022. The scanning electron microscopy investigations were conducted in the SFU Joint Scientific Center, supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation. The other research was carried out at the Krasnoyarsk Regional Center of Research Equipment of the Federal Research Center “Krasnoyarsk Science Center SB RAS”
Аннотация: We have studied, both experimentally and theoretically, the unusual temperature dependence of the phonon spectra in NdCoO3, SmCoO3 and GdCoO3, where the Co3+ ion is in the low-spin (LS) ground state, and at the finite temperature, the high-spin (HS) term has a nonzero concentration nHS due to multiplicity fluctuations. We measured the absorption spectra in polycrystalline and nanostructured samples in the temperature range 3–550 K and found a quite strong breathing mode softening that cannot be explained by standard lattice anharmonicity. We showed that the anharmonicity in the electron–phonon interaction is responsible for this red shift proportional to the nHS concentration.
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
17.

Вид документа : Статья из сборника (однотомник)
Шифр издания :
Автор(ы) : Petrov D. A., Ivantsov R. D., Zharkov S. M., Yurkin G. Yu., Molokeev M. S., Knyazev Yu. V., Lin C.-R., Tseng Y.-T.
Заглавие : Core-shell iron oxide-carbon nanoparticles modified with Ag. synthesis, morphology, magnetic properties
Коллективы : Российская академия наук, Уральское отделение РАН, Институт физики металлов им. М. Н. Михеева Уральского отделения РАН, Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Российский фонд фундаментальных исследований, Euro-Asian Symposium "Trends in MAGnetism", "Trends in MAGnetism", Euro-Asian Symposium
Место публикации : Euro-asian symposium "Trends in magnetism" (EASTMAG-2019): Book of abstracts/ чл. конс. ком.: S. G. Ovchinnikov, N. V. Volkov [et al.] ; чл. прогр. ком. D. M. Dzebisashvili [et al.]. - 2019. - Vol. 2. - Ст.J.P18. - P.220-221. - ISBN 978-5-9500855-7-4 (Шифр В33/E12-125657784)
Примечания : Cited References: 2. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science to the research project No. 18-42-243021 and by Joint Research Project of Russian Foundation for Basic Research and Ministry of Science and Technology, Taiwan MOST No. 19-52-52002
Материалы симпозиума,
Читать в сети ИФ
Найти похожие
18.

Вид документа : Статья из сборника (однотомник)
Шифр издания :
Автор(ы) : Ivanova O. S., Edelman I. S., Svetlitsky E. S., Sokolov A. Е., Zharkov S. M., Petrov D. A., Sukhachev A. L., Toropova E. S., Chun-Rong Lin, Ying-Zhen Chen
Заглавие : Core-shell magnetite nanoparticles: morphology, magnetic properties, organic dyes adsorption
Коллективы : "Functional materials", International conference, Крымский федеральный университет имени В.И. Вернадского
Место публикации : Ovchinnikov S. G. International conference "Functional materials": book of abstracts/ ed. V. N. Berzhansky ; org. com. S. G. Ovchinnikov [et al.]. - Simferopol, 2023. - P.114
Примечания : Cited References: 1. - РФН № 23-22-10025
Материалы конференции,
Читать в сети ИФ
Найти похожие
19.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Moiseenko E. T., Zharkov S. M., Altunin R. R., Belousov O. V., Solovyov L. A., Yumashev V. V., Volochaev M. N., Zeer G. M.
Заглавие : Correction to: Peculiarities of intermetallic phase formation in the process of a solid state reaction in (Al/Cu)n multilayer thin films (vol 73, pg 580, 2021)
Место публикации : JOM. - 2021. - Vol. 73, Is. 6. - P.1988. - ISSN 1047-4838, DOI 10.1007/s11837-021-04633-x. - ISSN 1543-1851(eISSN)
Примечания : Cited References: 1
Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Найти похожие
20.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Dudnikov V. A., Orlov Yu. S., Solovyov L. A., Vereshchagin S. N., Ustyuzhanin Yu. N., Zharkov S. M., Zeer G. M., Borus A. A., Bondarev V. S., Ovchinnikov S. G.
Заглавие : Crystal structure and thermoelectric properties of mechanically activated LaCoO3
Место публикации : J. Taiwan Inst. Chem. Eng. - 2024. - Vol. 162. - Ст.105560. - ISSN 18761070 (ISSN), DOI 10.1016/j.jtice.2024.105560. - ISSN 18761089 (eISSN)
Примечания : Cited References: 88. - This study was supported by the Russian Science Foundation , project no. 24-22-00091
Аннотация: Background: Crystal structure of rare-earth LaCoO3 cobalt oxide subjected to high energy mechanical activation has been studied. In the temperature range of 300–800 K, the electrical conductivity and Seebeck coefficient were measured. Thermal conductivity was measured at 300–480 K. Methods: Comparative analysis of thermoelectric properties of the samples prepared by standard solid-state reaction and using high-energy mechanical activation was carried out. Findings: It was found that the experimental X-ray diffraction patterns are best described within the model that allows the coexistence of two domains in samples with the same crystal symmetry, but different lattice a and c parameters. The percentage ratio of these domains in the samples depends significantly on the size of the initial particles in the solid-state synthesis reaction and the annealing temperature. Mechanical activation and increase of synthesis temperature result in change of Seebeck coefficient sign and significant decrease of electrical resistivity. The Seebeck coefficient of non-activated samples takes positive values over the entire temperature range and decreases monotonically with increasing temperature, in contrast to mechanically activated samples exhibiting ambipolar behavior.
Смотреть статью,
WOS,
Читать в сети ИФ
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)