Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (10)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Заблуда, Владимир Николаевич$<.>)
Общее количество найденных документов : 134
Показаны документы с 1 по 20
 1-20    21-40   41-60   61-80   81-100   101-120      
1.


   
    11C-radiolabeled aptamer for imaging of tumors and metastases using positron emission tomography-computed tomography / A. V. Ozerskaya, T. N. Zamay, O. S. Kolovskaya [et al.] // Mol. Ther. Nucl. Acids. - 2021. - Vol. 26. - P. 1159-1172, DOI 10.1016/j.omtn.2021.10.020. - Cited References: 44 . - ISSN 2162-2531
Кл.слова (ненормированные):
11C radiolabeling -- radiopharmaceuticals -- PET/CT -- in vivo imaging -- DNA aptamers -- Ehrlich ascites carcinoma -- metastasis
Аннотация: Identification of primary tumors and metastasis sites is an essential step in cancer diagnostics and the following treatment. Positron emission tomography-computed tomography (PET/CT) is one of the most reliable methods for scanning the whole organism for malignancies. In this work, we synthesized an 11C-labeled oligonucleotide primer and hybridized it to an anti-cancer DNA aptamer. The 11C-aptamer was applied for in vivo imaging of Ehrlich ascites carcinoma and its metastases in mice using PET/CT. The imaging experiments with the 11C-aptamer determined very small primary and secondary tumors of 3 mm2 and less. We also compared 11C imaging with the standard radiotracer, 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG), and found better selectivity of the 11C-aptamer to metastatic lesions in the metabolically active organs than 18F-FDG. 11C radionuclide with an ultra-short (20.38 min) half-life is considered safest for PET/CT imaging and does not cause false-positive results in heart imaging. Its combination with aptamers gives us high-specificity and high-contrast imaging of cancer cells and can be applied for PET/CT-guided drug delivery in cancer therapies.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Federal Siberian Research Clinical Centre Under the Federal Medical Biological Agency, Krasnoyarsk, Russian Federation
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russian Federation
Federal Research Center Krasnoyarsk Science- Center SB RAS, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Krasnoyarsk, Russian Federation
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
Krasnoyarsk Regional Pathology-Anatomic Bureau, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ozerskaya, A. V.; Zamay, T. N.; Kolovskaya, O. S.; Tokarev, N. A.; Belugin, K. V.; Chanchikova, N. G.; Badmaev, O. N.; Zamay, G. S.; Shchugoreva, I. A.; Moryachkov, R. V.; Морячков, Роман Владимирович; Zabluda, V. N.; Заблуда, Владимир Николаевич; Khorzhevskii, V. A.; Shepelevich, N.; Gappoev, S. V.; Karlova, E. A.; Saveleva, A. S.; Volzhentsev, A. A.; Blagodatova, A. N.; Lukyanenko, K. A.; Veprintsev, D. V.; Smolyarova, T. E.; Смолярова, Татьяна Евгеньевна; Tomilin, F. N.; Томилин, Феликс Николаевич; Zamay, S. S.; Silnikov, V. N.; Berezovski, M. V.; Kichkailo, A. S.
}
Найти похожие
2.


   
    Aptamer modified Au/Ni/Au nanodiscs for magnetomechanical cell surgery / A. Е. Sokolov, A. V. Lukyanenko, V. N. Zabluda [et al.] // V International Baltic Conference on Magnetism. IBCM : Book of abstracts. - 2023. - P. 12. - Cited References: 3

Материалы конференции,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS
Krasnoyarsk State Medical University
Federal Research Center KSC SB RAS

Доп.точки доступа:
Sokolov, A. Е.; Соколов, Алексей Эдуардович; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Zabluda, V. N.; Заблуда, Владимир Николаевич; Borus, A. A.; Борус, Андрей Андреевич; Zamay, G. S.; Замай, Галина Сергеевна; Zamay, T. N.; Luzan, N.; Zamay, S. S.; International Baltic Conference on Magnetism(5 ; 2023 ; Aug. 20-24 ; Svetlogorsk, Russia); Балтийский федеральный университет им. И. Канта
}
Найти похожие
3.


   
    Aptamer-conjugated superparamagnetic ferroarabinogalactan nanoparticles for targeted magnetodynamic therapy of cancer / O. S. Kolovskaya, T. N. Zamay, G. S. Zamay [et al.] // Cancers. - 2020. - Vol. 12, Is. 1. - Ст. 216, DOI 10.3390/cancers12010216. - Cited References: 46. - This research was funded by the Ministry of Science and Higher Education of the Russian Federation; project 0287-2019-0007 . - ISSN 2072-6694
Кл.слова (ненормированные):
aptamers -- arabinogalactan -- superparamagnetic ferroarabinogalactans -- drug delivery -- magnetodynamic therapy -- magnetically induced cell disruption -- magnetic resonance imaging
Аннотация: Nanotechnologies involving physical methods of tumor destruction using functional oligonucleotides are promising for targeted cancer therapy. Our study presents magnetodynamic therapy for selective elimination of tumor cells in vivo using DNA aptamer-functionalized magnetic nanoparticles exposed to a low frequency alternating magnetic field. We developed an enhanced targeting approach of cancer cells with aptamers and arabinogalactan. Aptamers to fibronectin (AS-14) and heat shock cognate 71 kDa protein (AS-42) facilitated the delivery of the nanoparticles to Ehrlich carcinoma cells, and arabinogalactan (AG) promoted internalization through asialoglycoprotein receptors. Specific delivery of the aptamer-modified FeAG nanoparticles to the tumor site was confirmed by magnetic resonance imaging (MRI). After the following treatment with a low frequency alternating magnetic field, AS-FeAG caused cancer cell death in vitro and tumor reduction in vivo. Histological analyses showed mechanical disruption of tumor tissues, total necrosis, cell lysis, and disruption of the extracellular matrix. The enhanced targeted magnetic theranostics with the aptamer conjugated superparamagnetic ferroarabinogalactans opens up a new venue for making biocompatible contrasting agents for MRI imaging and performing non-invasive anti-cancer therapies with a deep penetrated magnetic field.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, 660036 Krasnoyarsk, Russia
Laboratory for Biomolecular and Medical Technologies, Faculty of Medicine, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecki, 660022 Krasnoyarsk, Russia
Irkutsk Institute of Chemistry named after A.E. Favorsky, the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
L.V. Kirensky Institute of Physics SB RAS—The Branch of Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
Laboratory of Advanced Materials and Technology, Tomsk State University, 634050 Tomsk, Russia
Institute of Chemistry and Chemical Technology SB RAS—The Branch of Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia
Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
School of Non-Ferrous Metals and Materials Science, Siberian Federal University, 660041 Krasnoyarsk, Russia
Faculty of Physics, Department of Magnetism, Lomonosov Moscow State University, 119991 Moscow, Russia
School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Доп.точки доступа:
Kolovskaya, O. S.; Коловская, О. С.; Zamay, T. N.; Замай, Т. Н.; Zamay, G. S.; Замай, Галина Сергеевна; Babkin, V. A.; Medvedeva, E. N.; Neverova, N. A.; Kirichenko, A. K.; Zamay, S. S.; Замай, С. С.; Lapin, I. N.; Morozov, E. V.; Морозов, Евгений Владимирович; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Narodov, A. A.; Fedorov, D. G.; Tomilin, F. N.; Томилин, Феликс Николаевич; Zabluda, V. N.; Заблуда, Владимир Николаевич; Alekhina, Yu.; Lukyanenko, K. A.; Glazyrin, Yu. E.; Svetlichnyi, V. A.; Berezovski, M. V.; Kichkailo, A. S.
}
Найти похожие
4.


   
    Aptamer-functionalized magnetic nanodevices for tumor cell microsurgery / A. E. Sokolov // Moscow Int. Symp. on Magnet. (MISM-2017) : 1-7 July 2017 : book of abstracts. - 2017. - Ст. 3PO-K-24. - P. 555. - Cited References: 2. - Support Grant of the President of the Russian Federation NSh-7559.2016.2

Материалы конференции,
Читать в сети ИФ

Доп.точки доступа:
Sokolov, A. Е.; Соколов, Алексей Эдуардович; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Ivanova, O. S.; Иванова, Оксана Станиславовна; Zabluda, V. N.; Заблуда, Владимир Николаевич; Kuzmichenko, N.; Zamay, S. S.; Замай С. С.; Zamay, T. S.; Замай Т. С.; Kolovskaya, O. S.; Коловская О. С.; Zamay, G. S.; Замай Г. С.; Svetlichny, V. A.; Moscow International Symposium on Magnetism(7 ; 2017 ; Jul. ; Moscow); Московский государственный университет им. М.В. Ломоносова; Российский фонд фундаментальных исследований
}
Найти похожие
5.


   
    Aptamer-mediated targeted hyperthermia caused by gold nanoparticles / A. Dubynina [et al.] // 11th Annual Meet. of the Oligonucleotide Therapeutics Soc. (OTS). - 2015. - P. 127
   Перевод заглавия: Аптамер-опосредованная целевая гипертермия наночастицами золота


Доп.точки доступа:
Dubynina, A. V.; Дубынина А. В.; Semina, P. N.; Семина, Полина Николаевна; Sokolov, A. E.; Соколов, Алексей Эдуардович; Zabluda, V. N.; Заблуда, Владимир Николаевич; Aleksandrovskii, A. S.; Александровский, Александр Сергеевич; Karacharov, A.; Zamay, G. S.; Замай, Галина Сергеевна; Kolovskaya, O. S.; Ivanchenko, T.; Govorina, Y.; Zamay, A. S.; Замай, Анна Сергеевна; Zamay, T. S.; Замай Т. С.; Annual Meeting of the Oligonucleotide Therapeutics Society(11 ; 2015 ; Sept. ; 22-24 ; Leinden, the Netherlands)
}
Найти похожие
6.


   
    Aptamer-targeted plasmonic photothermal therapy of cancer / O. S. Kolovskaya [et al.] // Mol. Ther. Nucl. Acids. - 2017. - Vol. 9. - P. 12-21, DOI 10.1016/j.omtn.2017.08.007. - Cited References: 8. - We thank Mr. Yousef Risha for improving the use of English in the manuscript and Mr. George Y. Vorogeikin, Mr. Yuri I. Vorogeikin, and “OKB ART” for the infrared imaging. This research is supported by Ministry of Education and Science Federal Target Program #14.607.21.0104 (RFMEFI60714X0104). . - ISSN 2162-2131
Аннотация: Novel nanoscale bioconjugates combining unique plasmonic photothermal properties of gold nanoparticles (AuNPs) with targeted delivery using cell-specific DNA aptamers have a tremendous potential for medical diagnostics and therapy of many cell-based diseases. In this study, we demonstrate the high anti-cancer activity of aptamer-conjugated, 37-nm spherical gold nanoparticles toward Ehrlich carcinoma in tumor-bearing mice after photothermal treatment. The synthetic anti-tumor aptamers bring the nanoparticles precisely to the desired cells and selectively eliminate cancer cells after the subsequent laser treatment. To prove tumor eradication, we used positron emission tomography (PET) utilizing radioactive glucose and computer tomography, followed by histological analysis of cancer tissue. Three injections of aptamer-conjugated AuNPs and 5 min of laser irradiations are enough to make the tumor undetectable by PET. Histological analysis proves PET results and shows lower damage of healthy tissue in addition to a higher treatment efficiency and selectivity of the gold nanoparticles functionalized with aptamers in comparison to control experiments using free unconjugated nanoparticles.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetskii, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
The Federal State-Financed Institution “Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency”, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
University of Ottawa, Department of Chemistry and Biomolecular Sciences, Ottawa, ON, Canada

Доп.точки доступа:
Kolovskaya, O. S.; Коловская, О. С.; Zamay, T. N.; Замай, Т. Н.; Belyanina, I. V.; Karlova, E. A.; Garanzha, I. V.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Kirichenko, A. K.; Dubinina, A. V.; Дубинина, А. В.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Zamay, G. S.; Замай, Г. С.; Glazyrin, Y. E.; Глазырин, Ю. Е.; Zamay, S. S.; Замай, С. С.; Ivanchenko, T. I.; Chanchikova, N. G.; Tokarev, N. A.; Shepelevich, N. V.; Ozerskaya, A.V.; Bardin, E.; Belugin, K.; Belkin, S. A.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Gargaun, A.; Berezovski, M. V.; Kichkailo, A.S.; Кичкайло, Анна Сергеевна
}
Найти похожие
7.


   
    Biofunctionaized magnetic nanodiscs applied in medicine / A. Е. Sokolov, A. V. Lukyanenko, R. V. Moryachkov [et al.] // 1st International Conference APRICOT 2023 : book of abstracts. - 2023. - P. 47-48. - Cited References: 4. - Красноярский рег. фонд науки, № 2022060108781

Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, FRC KSC SB RAS
Krasnoyarsk State Medical University
Federal Research Center KSC SB RAS
JSC «NPP «Radiosviaz»

Доп.точки доступа:
Sokolov, A. Е.; Соколов, Алексей Эдуардович; Lukyanenko, A. V.; Лукьяненко, Анна Витальевна; Moryachkov, R. V.; Морячков, Роман Владимирович; Zabluda, V. N.; Заблуда, Владимир Николаевич; Borus, A. A.; Борус, Андрей Андреевич; Zamay, T.; Замай, Татьяна; Luzan, N. A.; Galeev, R. G.; Masyugin, A. N.; Zelenov, F. V.; Zamay, S. S.; Замай С. С.; "Magnetic nanomaterials in biomedicine: synthesis and functionalization", International conference(1 ; 2023 ; March 1-4 ; Yeravan, Armenia)
}
Найти похожие
8.


   
    Conformational changes in DNA aptamers upon binding to Pb ions / R. V. Moryachkov, A. N. Berlina, P. V. Artyushenko [et al.] // The Fifth Asian School-Conference on Physics and Technology of Nanostructured Materials : Proceedings. - VLadivostok : Dalnauka Publishing, 2020. - Ст. VII.31.01p. - P. 193. - The reported study was funded by RFBR, project number 19-32-90266. . - ISBN 978-5-8044-1698-1

Материалы конференции,
Читать в сети ИФ

Доп.точки доступа:
Moryachkov, R. V.; Морячков, Роман Владимирович; Berlina, A. N.; Artyushenko, P. V.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Peters, G. S.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Asian School-Conference on Physics and Technology of Nanostructured Materials(5 ; 2020 ; 30 Jul - 3 Aug ; Vladivostok); Азиатская школа-конференция по физике и технологии наноструктурированных материалов(5 ; 2013 ; 30 июля - 3 авг. ; Владивосток)
}
Найти похожие
9.


   
    Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells / A. S. Kichkailo, A. A. Narodov, M. A. Komarova [et al.] // Mol. Ther. - Nucleic Acids. - 2023. - Vol. 32. - P. 267-288, DOI 10.1016/j.omtn.2023.03.015. - Cited References: 69. - The authors are grateful to all the patients and hospital staff participating in this research. We acknowledge the assistance of the AptamerLab LCC (www.aptamerlab.com) and personally Mr. Vasily Mezko for the aptamer 3D structure optimization and financial and technical support. The authors thank Mr. Alexey Kichkailo, Dr. Arkady B. Kogan, and Dr. Rinat G. Galeev for their general support. Mrs. Valentina L. Grigoreva, and Irina V. Gildebrand for the help with histological staining. Technical and instrumental support was provided by the Multiple-Access Center at Tomsk State University; the Krasnoyarsk Inter-District Ambulance Hospital, named after N.S. Karpovich; John L. Holmes Mass Spectrometry Facility at the University of Ottawa; Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency; Shared Core Facilities of Molecular and Cell Technologies at Krasnoyarsk State Medical University and Krasnoyarsk Regional Centre for Collective Use at the Federal Research Centre “KSC SB RAS”. The confocal fluorescence microscopy research was carried out with the equipment of the Tomsk Regional Core Shared Research Facilities Center of the National Research Tomsk State University. The Center was supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2021-693 (no. 13.RFC.21.0012). Acute toxicity studies were performed in a laboratory certified for preclinical studies, Laboratory of Biological Testing, Institute of Bioorganic Chemistry named after academics M.M. Shemyakin and Y.A. Ovchinnikov Russian Academy of Sciences. The authors are grateful to the Joint Super Computer Center of the Russian Academy of Sciences for providing supercomputers for computer simulations. Development of the glioma tumor model in immunosuppressed mice was supported by the Russian Science Foundation grant No. 22-64-00041 (M.A.D.), https://rscf.ru/en/project/22-64-00041/. Synthesis of 11C-aptamer and PET/CT visualization was funded by the Federal Medical Biological Agency; project 122041800132-2 (A.V.O.). Aptamer selection and their clinical applications were funded by the Ministry of Healthcare of the Russian Federation; project АААА-Б19-219090690032-5 (T.N.Z.). The Ministry of Science and Higher Education of the Russian Federation project FWES-2022-0005 (A.S.K.) supported aptamer characterization, molecular modelling, and in vivo experiments. Mass spectrometry analyses, DNA sequencing, and synthesis were supported by NSERC Discovery Grant (M.V.B.). We acknowledge the European Synchrotron Radiation Facility for SAXS experiments and thank Dr. Bart Van Laer for assistance in using a beamline BM29. SAXS measurements were supported by RFBR № 18-32-00478 for young scientists (R.V.M.). The synchrotron SEC-SAXS data for Gli-55 aptamer were also collected at beamline P12 operated by EMBL Hamburg at the PETRA III storage ring (DESY, Hamburg, Germany) . - ISSN 2162-2531
Аннотация: Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
Krasnoyarsk Inter-District Ambulance Hospital named after N.S. Karpovich, 17 Kurchatova, Krasnoyarsk 660062, Russia
Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
Department of Molecular Electronics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, Krasnoyarsk 660036, Russia
National Research Center Kurchatov Institute, 1 Akademika Kurchatova, Moscow 123182, Russia
Laboratory of Advanced Materials and Technology, Siberian Physical-Technical Institute of Tomsk State University, 36 Lenina, Tomsk 634050, Russia
Krasnoyarsk Regional Pathology-Anatomic Bureau, 3d Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie gory, Moscow 119991, Russia
Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, South Korea
Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland
A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” RAS, 59 Leninsky pr., Moscow, 119333, Russia
Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency, Krasnoyarsk, Russia
Krasnoyarsk Regional Clinical Cancer Center, 16 1-ya Smolenskaya, Krasnoyarsk 660133, Russia
Institute of Chemistry and Chemical Technology SB RAS – The Branch of Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N6N5, Canada
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 8 Lavrentyev Avenue, 630090 Novosibirsk, Russia

Доп.точки доступа:
Kichkailo, A. S.; Narodov, A. A.; Komarova, M. A.; Zamay, T. N.; Zamay, G. S.; Kolovskaya, O. S.; Erakhtin, E. E.; Glazyrin, Y. E.; Veprintsev, D. V.; Moryachkov, R. V.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Shchugoreva, I.; Artyushenko, P.; Mironov, V. A.; Morozov, D. I.; Gorbushin, A. V.; Khorzhevskii, V. A.; Koshmanova, A. A.; Nikolaeva, E. D.; Grinev, I. P.; Voronkovskii, I. I.; Grek, D. S.; Belugin, K. V.; Volzhentsev, A. A.; Badmaev, O. N.; Luzan, N.; Lukyanenko, K. A.; Peters, G.; Lapin, I. N.; Лапин, И. Н.; Kirichenko, A. K.; Konarev, P. V.; Morozov, E. V; Mironov, G. G.; Gargaun, A.; Muharemagic, D.; Zamay, S. S.; Kochkina, E. V.; Dymova, M. A.; Smolyarova, T. E.; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Modestov, A. A.; Tokarev, N. A.; Shepelevich, N.; Ozerskaya, A. V.; Chanchikova, N. G.; Krat, A. V.; Zukov, R. A.; Bakhtina, V. I.; Shnyakin, P. G.; Shesternya, P. A.; Svetlichnyi, V. A.; Petrova, M. M.; Artyukhov, I. P.; Tomilin, F. N.; Томилин, Феликс Николаевич; Berezovski, Maxim V.
}
Найти похожие
10.


   
    Effect of nickel on the magnetic state of dysprosium in Dy1-xNix-Ni bilayer films / I. S. Edelman [et al.] // Phys. Solid State. - 2003. - Vol. 45, Is. 8. - P. 1493-1499, DOI 10.1134/1.1602886. - Cited References: 21. - This work was supported by the Russian Foundation for Basic Research, project nos. 00-02-16098 and 02-02-06734 . - ISSN 1063-7834
РУБ Physics, Condensed Matter
Рубрики:
OPTICAL-PROPERTIES
   DY

   MULTILAYERS

Аннотация: This paper reports on the results of investigations into the temperature and spectral dependences of the magnetic circular dichroism in Dy1-xNix-Ni bilayer films prepared through thermal sputter deposition of components under ultrahigh vacuum. The distribution of the components over the layer thickness is examined by Auger spectroscopy. The nickel content x in Dy1-xNix layers varies from 0.005 to 0.06. It is shown that, in the temperature range 80-300 K, the contribution made to the magnetic circular dichroism by a Dy1-xNix layer in a bilayer film with a nickel content higher than the threshold value is approximately equal to the magnetic circular dichroism observed in an isolated Dy1-xNix film at temperatures below the temperature of the phase transition to a ferromagnetic state (similar to100 K). This phenomenon is explained by magnetic ordering in theDy(1-x)Ni(x) layer of the bilayer film due to the combined effect of two factors, namely, the incorporation of nickel into a dysprosium layer and the presence of a continuous nickel sublayer in the film. (C) 2003 MAIK "Nauka/Interperiodica".

WOS,
Scopus,
РИНЦ,
Смотреть статью,
Читать в сети ИФ

Публикация на русском языке Влияние Ni на магнитное состояние Dy в двухслойных пленках Dy[1-x]Ni[x]-Ni [Текст] / И. С. Эдельман [и др.] // Физ. тверд. тела. - 2003. - Т. 45 Вып. 8. - С. 1423-1428

Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Div, Krasnoyarsk 660036, Russia
Russian Acad Sci, Inst Semicond Phys, Siberian Div, Novosibirsk 630090, Russia
ИФ СО РАН
Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 13, Novosibirsk 630090, Russian Federation

Доп.точки доступа:
Edelman, I. S.; Эдельман, Ирина Самсоновна; Markov, V. V.; Марков, Владимир Витальевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Khudyakov, A. E.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Kesler, V. G.; Bondarenko, G. V.; Бондаренко, Геннадий Васильевич
}
Найти похожие
11.


   
    Faraday-effect in MBE-grown magnetic multilayered Fe/Cu films / S. G. Ovchinnikov [и др.] // Fiz. Tverd. Tela. - 1993. - Vol. 35, Is. 3. - P. 602-605. - Cited References: 9 . - ISSN 0367-3294
РУБ Physics, Condensed Matter
Рубрики:
KERR ROTATION
   ENHANCEMENT


WOS

Доп.точки доступа:
Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Kononov, V. P.; Кононов, Владимир Павлович; Popel, V. M.; Попёл, Виктор Михайлович; Khudyakov, A. E.; Худяков, Алексей Евгеньевич; Vasilyeva, E. P.; Васильева Е. П.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Edelman, I. S.; Эдельман, Ирина Самсоновна; Staroverova, I. V.; Староверова, Ирина Валерьевна; Blekher, B. E.; Parshin, A. S.; Паршин, Анатолий Сергеевич
}
Найти похожие
12.


   
    Four steps for revealing and adjusting the 3D structure of aptamers in solution by small-angle X-ray scattering and computer simulation / F. N. Tomilin [et al.] // Anal. Bioanal. Chem. - 2019. - Vol. 411, Is. 25. - P. 6723-6732, DOI 10.1007/s00216-019-02045-0. - Cited References: 51. - Authors are grateful to Ana Gargaun for English grammar correction. This work was funded in parts by the Ministry of Science and Higher Education of the Russian Federation; project 0287-2019-0007 the Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (project no. SP-938.2015.5) and the grant of KSAI “Krasnoyarsk Regional Fund of Supporting Scientific and Technological Activities” for M.P., the internship “The study of the stacking of the secondary structure of DNA aptamers to thrombin” for R.M. . - ISSN 1618-2642
Кл.слова (ненормированные):
Aptamer -- Thrombin -- Three-dimensional structure -- Small-angle X-ray scattering -- Molecular modeling
Аннотация: Nucleic acid (NA) aptamers bind to their targets with high affinity and selectivity. The three-dimensional (3D) structures of aptamers play a major role in these non-covalent interactions. Here, we use a four-step approach to determine a true 3D structure of aptamers in solution using small-angle X-ray scattering (SAXS) and molecular structure restoration (MSR). The approach consists of (i) acquiring SAXS experimental data of an aptamer in solution, (ii) building a spatial distribution of the molecule’s electron density using SAXS results, (iii) constructing a 3D model of the aptamer from its nucleotide primary sequence and secondary structure, and (iv) comparing and refining the modeled 3D structures with the experimental SAXS model. In the proof-of-principle we analyzed the 3D structure of RE31 aptamer to thrombin in a native free state at different temperatures and validated it by circular dichroism (CD). The resulting 3D structure of RE31 has the most energetically favorable conformation and the same elements such as a B-form duplex, non-complementary region, and two G-quartets which were previously reported by X-ray diffraction (XRD) from a single crystal. More broadly, this study demonstrates the complementary approach for constructing and adjusting the 3D structures of aptamers, DNAzymes, and ribozymes in solution, and could supply new opportunities for developing functional nucleic acids. [Figure not available: see fulltext.]. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch Russian Academy of Sciences, 50/38 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation
Federal Research Center “Krasnoyarsk Science Center” Siberian Branch of the Russian Academy of Sciences, 50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
NRC Kurchatov Institute, 1, Academic Kurchatov Square, Moscow, 123182, Russian Federation
A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, Moscow, 119992, Russian Federation
Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk, 660022, Russian Federation
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N6N5, Canada

Доп.точки доступа:
Tomilin, F. N.; Томилин, Феликс Николаевич; Moryachkov, R.; Морячков, Роман Владимирович; Shchugoreva, I.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Peters, G.; Platunov, M. S.; Платунов, Михаил Сергеевич; Spiridonova, V.; Melnichuk, A.; Atrokhova, A.; Zamay, S. S.; Замай, С. С.; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Zamay, G. S.; Замай, Галина Сергеевна; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Zamay, T. N.; Замай, Т. Н.; Berezovski, M. V.; Kichkailo, A. S.
}
Найти похожие
13.


   
    Functional materials for magnetomechanical cell surgery / A. Е. Sokolov, O. S. Ivanova, E. S. Svetlitsky [et al.] // International conference "Functional materials" : book of abstracts / ed. V. N. Berzhansky ; org. com. S. G. Ovchinnikov [et al.]. - Simferopol, 2021. - P. 314. - Библиогр.: 3 назв. - The research was carried out with a grant from the Russian Science Foundation № 21-12-00226, https://rscf.ru/project/21-12-00226/

Материалы конференции,
Читать в сети ИФ

Доп.точки доступа:
Berzhansky, V. N. \ed.\; Бержанский, Владимир Наумович; Ovchinnikov, S. G. \org. com.\; Овчинников, Сергей Геннадьевич; Sokolov, A. Е.; Соколов, Алексей Эдуардович; Ivanova, O. S.; Иванова, Оксана Станиславовна; Svetlitsky, E. S.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Borus, A. A.; Борус, Андрей Андреевич; Lin, C.-R.; "Functional materials", International conference(2021 ; Oct. 4-8 ; Alushta, Russia); Крымский федеральный университет имени В.И. Вернадского
}
Найти похожие
14.


   
    Giant red shift of the absorption spectra due to nonstoichiometry in GdCoO3–δ / S. G. Ovchinnikov [и др.] // Письма в Журн. эксперим. и теор. физ. - 2016. - Т. 103, Вып. 3-4. - С. 177-183, DOI 10.7868/S0370274X16030048. - Библиогр.: 41. - The authors acknowledge financial support by the President of Russia Grant # NSh-2886.2014.2, Presidium of Russian Academy of Sciences Program 34, RFBR Grants # 16-02-00507, 16-02-00273, 16-02-00098, 14-02-00186, BMBF 05K12GU2 project. . - ISSN 0370-274X
Аннотация: The GdCoO3–δ perovskite is a semiconductor with the energy gap Eg ≈ 0.5 eV from electrical transport measurements. It reveals unusual optical absorption spectra without transparency window expected for semiconductors. Instead we have measured the narrow transmittance peak at the photon energy ε0 = 0.087 eV. To reconcile the transport and optical data we have studied the effect of oxygen vacancies on the electronic structure of the GdCoO3–δ. We have found that oxygen vacancies result in the in-gap states inside the charge-transfer energy gap of the GdCoO3. It is a multielectron effect due to strong electron correlations forming the electronic structure of the GdCoO3–δ. These in-gap states decrease the transparency window and result in a narrow absorption minimum. The predicted temperature dependence of the absorption spectra has been confirmed by our measurements.
Редкоземельный кобальтит GdCoO3 со структурой перовскита является полупроводником с шириной запрещенной зоны Eg ≈ 0.5 eV по данным измерения электрических транспортных свойств. Он проявляет необычные спектры оптического поглощения без окна прозрачности, ожидаемого для полупроводников. Вместо этого мы обнаружили узкий пик пропускания. Для того чтобы согласовать данные электропроводности и оптического поглощения, исследовано влияние кислородных вакансий на электронную структуру GdCoO3-δ. В рамках авторского метода LDA+GTB для расчета электронной структуры сильно коррелированных систем рассчитана зонную структуру соединения GdCoO3-δ при наличии кислородной нестехиометрии. Обнаружено, что наличие кислородных вакансий приводит к формированию внутрищелевых состояний внутри запрещенной зоны и уменьшению окна прозрачности GdCoO3.

Смотреть статью,
РИНЦ,
Читать в сети ИФ

"Переводная" версия Giant red shift of the absorption spectra due to nonstoichiometry in GdCoO3–δ [Текст] / S. G. Ovchinnikov [et al.] // JETP Letters. - 2016. - Vol. 103 Is. 3.- P.161-166

Держатели документа:
Russian Acad Sci, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Siberian State Technol Univ, Krasnoyarsk 660049, Russia.

Доп.точки доступа:
Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Orlov, Yu. S.; Орлов, Юрий Сергеевич; Kuzubov, A. A.; Кузубов, Александр Александрович; Dudnikov, V. A.; Дудников, Вячеслав Анатольевич; Sokolov, A. E.; Соколов, Алексей Эдуардович; Zabluda, V. N.; Заблуда, Владимир Николаевич; Naumov, S. B.; Shestakov, N. P.; Шестаков, Николай Петрович; Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools [NSh-2886.2014.2]; Presidium of Russian Academy of Sciences [34]; Russian Foundation for Basic Research [16-02-00507, 16-02-00273, 16-02-00098, 14-02-00186]; Internationale Buro, Bundesministerium fur Bildung und Forschung (BMBF) [05K12GU2]
}
Найти похожие
15.


   
    Giant red shift of the absorption spectra due to nonstoichiometry in GdCoO3–δ / S. G. Ovchinnikov [et al.] // JETP Letters. - 2016. - Vol. 103, Is. 3. - P. 161-166, DOI 10.1134/S0021364016030115. - Cited References:40. - This work was supported by the Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (project no. NSh-2886.2014.2), by the Presidium of Russian Academy of Sciences (Program 34), by the Russian Foundation for Basic Research (project nos. 16-02-00507, 16-02-00273, 16-02-00098, and 14-02-00186), and by Internationale Buro, Bundesministerium fur Bildung und Forschung (BMBF, grant no. 05K12GU2). . - ISSN 0021-3640. - ISSN 1090-6487
РУБ Physics, Multidisciplinary
Рубрики:
TRANSITION-METAL COMPOUNDS
   TOTAL-ENERGY CALCULATIONS

   AUGMENTED-WAVE METHOD

   ELECTRONIC-STRUCTURE

   MAGNETIC-PROPERTIES

   SPIN TRANSITION

   BAND-GAPS

   BASIS-SET

   LaCoO3

   OXIDES

Аннотация: The GdCoO3–δ perovskite is a semiconductor with the energy gap Eg ≈ 0.5 eV from electrical transport measurements. It reveals unusual optical absorption spectra without transparency window expected for semiconductors. Instead we have measured the narrow transmittance peak at the photon energy ε0 = 0.087 eV. To reconcile the transport and optical data we have studied the effect of oxygen vacancies on the electronic structure of the GdCoO3–δ. We have found that oxygen vacancies result in the in-gap states inside the charge-transfer energy gap of the GdCoO3. It is a multielectron effect due to strong electron correlations forming the electronic structure of the GdCoO3–δ. These in-gap states decrease the transparency window and result in a narrow absorption minimum. The predicted temperature dependence of the absorption spectra has been confirmed by our measurements.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Публикация "на русском языке" Giant red shift of the absorption spectra due to nonstoichiometry in GdCoO3–δ [Текст] / S. G. Ovchinnikov [и др.] // Письма в Журн. эксперим. и теор. физ. : Наука, 2016. - Т. 103 Вып. 3-4. - С. 177-183

Держатели документа:
Russian Acad Sci, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Siberian State Technol Univ, Krasnoyarsk 660049, Russia.

Доп.точки доступа:
Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Orlov, Yu. S.; Орлов, Юрий Сергеевич; Kuzubov, A. A.; Кузубов, Александр Александрович; Dudnikov, V. A.; Дудников, Вячеслав Анатольевич; Sokolov, A. E.; Соколов, Алексей Эдуардович; Zabluda, V. N.; Заблуда, Владимир Николаевич; Naumov, S. B.; Shestakov, N. P.; Шестаков, Николай Петрович; Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools [NSh-2886.2014.2]; Presidium of Russian Academy of Sciences [34]; Russian Foundation for Basic Research [16-02-00507, 16-02-00273, 16-02-00098, 14-02-00186]; Internationale Buro, Bundesministerium fur Bildung und Forschung (BMBF) [05K12GU2]
}
Найти похожие
16.


   
    Identification of local magnetic contributions in a Co2FeBO5 single crystal by XMCD spectroscopy / M. S. Platunov [et al.] // JETP Letters. - 2013. - Vol. 96, Is. 10. - P. 650-654DOI 10.1134/S0021364012220109
Аннотация: The temperature dependences of the X-ray absorption spectra (XAS) and of the spectra of X-ray magnetic circular dichroism (XMCD) are measured near the L 3,2 absorption edges of Co and Fe in ludwigite Co2FeBO5 single crystals. The antiparallel orientation of the magnetic moments of cobalt and iron is demonstrated. The coercive fields related to cobalt and iron ions are determined. The orbital (m l ) and (m s ) spin contributions to the total magnetic moments of cobalt and iron ions are identified. The ratios and relative directions of ml and ms are found.

Смотреть статью,
WOS,
Читать в сети ИФ

Публикация на русском языке Разделение локальных магнитных вкладов в монокристалле Co2FeBO5 посредством XMCD-спектроскопии // Письма в "Журнал экспериментальной и теоретической физики". - 2012. - Т. 96, Вып. 10. - С. 723-727

Держатели документа:
Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia
Siberian Fed Univ, Krasnoyarsk 660041, Russia
Siberian State Aerosp Univ, Krasnoyarsk 660014, Russia
Helmholtz Zentrum, BESSY 2, D-12489 Berlin, Germany
Natl Acad Sci Ukraine, Donetsk Inst Phys & Engn, UA-83114 Donetsk, Ukraine

Доп.точки доступа:
Platunov, M. S.; Платунов, Михаил Сергеевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Kazak, N. V.; Казак, Наталья Валерьевна; Ivanova, N. B.; Иванова, Наталья Борисовна; Zabluda, V. N.; Заблуда, Владимир Николаевич; Weschke, E.; Весчке И.; Schierle, И.E.; Счайле; Lamonova, K. V.; Ламонова К.В.
}
Найти похожие
17.


   
    In situ investigations of magneto-optical properties of thin Fe layers / S. A. Lyashchenko [et al.] // Tech. Phys. - 2013. - Vol. 58, Is. 10. - P. 1529-1532, DOI 10.1134/S1063784213100162 . - ISSN 1063-7842
Аннотация: A thin polycrystalline Fe film on a single-crystal Si substrate with natural SiO2 oxide is obtained by thermal evaporation in ultrahigh vacuum. The magneto-optical properties of the resultant structure are investigated in situ by the methods of spectral ellipsometry. The values of the coercive force for the Fe film are obtained, and the magnetization reversal loop and the energy dependence of the equatorial Kerr effect are constructed. The effectiveness of magnetoellipsometry for in situ analysis of the geometrical and magnetooptical properties of thin ferromagnetic layers is demonstrated. В© 2013 Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS,
Читать в сети ИФ

Публикация на русском языке Исследования магнитооптических свойств тонких слоев Fe in situ методами [Текст] / С. А. Лященко [и др.] // Журн. техн. физ. - 2013. - Т. 83 Вып. 10. - С. 139-142

Держатели документа:
Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia
Reshetnev Siberian State Aerosp Univ, Krasnoyarsk 660014, Russia
Russian Acad Sci, Siberian Branch, Rzhanov Inst Semicond Phys, Novosibirsk 630090, Russia
Novosibirsk State Univ, Novosibirsk 630090, Russia

Доп.точки доступа:
Lyashchenko, S. A.; Лященко, Сергей Александрович; Tarasov, I. A.; Тарасов, Иван Анатольевич; Varnakov, S. N.; Варнаков, Сергей Николаевич; Shevtsov, D. V.; Шевцов, Дмитрий Валентинович; Shvets, V. A.; Zabluda, V. N.; Заблуда, Владимир Николаевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Kosyrev, N. N.; Косырев, Николай Николаевич; Bondarenko, G. V.; Бондаренко, Геннадий Васильевич; Rykhlitskii, S. V.
}
Найти похожие
18.


   
    In situ magnetic spectroellipsometry / V. N. Zabluda [et al.] // Workshop "Trends in Nanomechanics and Nanoengineering" : book of abstracts / предс. сем. K. S. Aleksandrov ; зам. предс. сем.: G. S. Patrin, S. G. Ovchinnikov ; чл. лок. ком.: N. N. Kosyrev, A. S. Fedorov [et al]. - 2009. - P. 15

Материалы семинара

Доп.точки доступа:
Aleksandrov, K. S. \предс. сем.\; Александров, Кирилл Сергеевич; Patrin, G. S. \зам. предс. сем.\; Патрин, Геннадий Семёнович; Ovchinnikov, S. G. \зам. предс. сем.\; Овчинников, Сергей Геннадьевич; Kosyrev, N. N. \чл. лок. ком.\; Косырев, Николай Николаевич; Fedorov, A. S. \чл. лок. ком.\; Федоров, Александр Семенович; Zabluda, V. N.; Заблуда, Владимир Николаевич; Varnakov, S. N.; Варнаков, Сергей Николаевич; Efremov, A. V.; Kosyrev, N. N.; Rykhkitskii, S. V.; Рыхлицкий С.В.; Shvets, V. A.; Швец, Василий Александрович; Spesivtsev, E. V.; Khudyakov, A. E.; Shvetsov, D. V.; "Trends in Nanomechanics and Nanoengineering", workshop(2009 ; Aug. ; 24-28 ; Krasnoyarsk); Сибирский федеральный университет; Институт физики им. Л.В. Киренского Сибирского отделения РАН
}
Найти похожие
19.


    Kosyrev, N. N.
    In situ Mueller-matrix magneto-ellipsometry / N. N. Kosyrev, V. N. Zabluda, O. A. Maximova // Solid State Phenom. : Selected, peer reviewed papers. - 2016. - Vol. 245: Physics and Technology of Nanostructured Materials III. - P. 55-59, DOI 10.4028/www.scientific.net/SSP.245.55. - Cited References: 7 . - ISSN 1662-9779. - ISSN 9783-0383
   Перевод заглавия: In situ Мюллер-магнитоэллипсометрия
Кл.слова (ненормированные):
Ferromagnetic nanostructures -- Generalized magneto-optical ellipsometry -- Mueller matrix -- Polarized light
Аннотация: We develop the method for determining the Mueller matrix elements using standard photometric ellipsometer. Small ellipsometer design changes give an opportunity to completely determine all elements of the Mueller matrix. It is shown how the values of Mueller matrix elements can be obtained from the measurements at different azimuthal positions of optical units. © (2016) Trans Tech Publications, Switzerland.

Смотреть статью,
Scopus

Доп.точки доступа:
Galkin, N. G. \ed.\; Галкин, Николай Геннадьевич; Zabluda, V. N.; Заблуда, Владимир Николаевич; Maximova, O. A.; Максимова, Ольга Александровна; Косырев, Николай Николаевич; Asian School-Conference on Physics and Technology of Nanostructured Materials(3 ; 2015 ; Aug. ; 19-26 ; Vladivostok); Азиатская школа-конференция по физике и технологии наноструктурированных материалов(3 ; 2015 ; авг. ; 19-26 ; Владивосток)
}
Найти похожие
20.


    Kosyrev, N. N.
    In situ Mueller-matrix magneto-ellipsometry / N. N. Kosyrev, V. N. Zabluda, S. G. Ovchinnikov // Third Asian school-conference on physics and technology of nanostructured materials (ASCO-NANOMAT 2015) : proceedings. - Vladivostok : Dalnauka, 2015. - Ст. VII.25.01o . - ISBN 978-5-8044-1556-4
   Перевод заглавия: In situ Мюллер-магнитоэллипсометрия

Материалы конференции

Доп.точки доступа:
Zabluda, V. N.; Заблуда, Владимир Николаевич; Ovchinnikov, S. G.; Овчинников, Сергей Геннадьевич; Косырев, Николай Николаевич; Asian School-Conference on Physics and Technology of Nanostructured Materials(3 ; 2015 ; Aug. ; 19-26 ; Vladivostok); Азиатская школа-конференция по физике и технологии наноструктурированных материалов(3 ; 2015 ; авг. ; 19-26 ; Владивосток)
}
Найти похожие
 1-20    21-40   41-60   61-80   81-100   101-120      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)