Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (16)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=CS<.>)
Общее количество найденных документов : 103
Показаны документы с 1 по 20
1.


   
    Unveiling temperature-induced structural phase transition and luminescence in Mn2+-doped Cs2NaBiCl6 double perovskite / S. Banerjee, S. Saikia, M. S. Molokeev, A. Nag // Chem. Mater. - 2024. - Vol. 36, Is. 9. - P. 4750-4757, DOI 10.1021/acs.chemmater.4c00514. - Cited References: 49. - Authors acknowledge Dr. Arup Rath’s lab NCL Pune and SAIF-IIT Bombay for diffuse reflectance spectroscopy and ICP-AES measurements, respectively. A.N. acknowledges Science & Engineering Research Board, India, for Swarnajayanti Fellowship (SB/SJF/2020-21/02), and BRICS grant (e-27558) of the Department of Science and Technology, India. Authors acknowledge the Department of Science and Technology India (FIST program, SR/FST/CS-II/2019/105) for temperature-dependent powder XRD and EPR data. S.B. is grateful to IISER Pune for a research fellowship. S.S. acknowledges Prime Minister’s Research Fellowship (PMRF), Ministry of Education, India. M.M. acknowledges the Russian Science Foundation, grant 24-43-00006 . - ISSN 0897-4756. - ISSN 1520-5002
   Перевод заглавия: Обнаружение температурно-индуцированного структурного фазового перехода и люминесценции в двойном перовските Cs2NaBiCl6, легированном Mn2+
Аннотация: Halide double perovskites like Cs2NaBiCl6 are good host materials for luminescent dopants like Mn2+. The nature of photoluminescence (PL) depends on the local structure around the dopant ion, and doping may sometimes influence the global structure of the host. Here, we unveil the correlation between the temperature-induced (global) structural phase transition of Mn2+-doped Cs2NaBiCl6 with the local structure and PL of the Mn2+ dopant. X-ray diffraction analysis shows Mn2+-doped Cs2NaBiCl6 is in a cubic (Fm3m) phase between 300 and 110 K, below which the phase changes to tetragonal (I4/mmm), which persists at least until 15 K. The small (∼1%) doping amount does not alter the phase transition behavior of Cs2NaBiCl6. Importantly, the phase transition does not influence the Mn2+ d-electron PL. The PL peak energy, intensity, spectral width, and lifetime do not show any signature of the phase transition between 300–6 K. The hyperfine splitting in temperature-dependent electron paramagnetic spectra of Mn2+ ions also remain unchanged across the phase transition. These results suggest that the global structural phase transition of the host does not influence the local structure and emission property of the dopant Mn2+ ion. This structure–property insight might be explored for other transition-metal- and lanthanide-doped halide double perovskites as well. The stability of dopant emission regardless of the structural phase transition bodes well for their potential applications in phosphor-converted light emitting diodes.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
Institute of Engineering Physics and Radioelectronic, Siberian Federal University, Krasnoyarsk, 660041 Russia

Доп.точки доступа:
Banerjee, S.; Saikia, S.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Nag, A.
}
Найти похожие
2.


   
    Negative thermal expansion in the polymorphic modification of double sulfate β-AEu(SO4)2 (A–Rb+, Cs+) / Yu. G. Denisenko, M. S. Molokeev, X. Jiang [et al.] // Inorg. Chem. - 2023. - Vol. 62, Is. 31. - P. 12423-12433, DOI 10.1021/acs.inorgchem.3c01624. - Cited References: 71. - The work was partly carried out within the framework of the Strategic Academic Leadership Program ″Priority-2030″ for the Siberian Federal University, Tyumen State University, Kazan Federal University and the state assignment of Kirensky Institute of Physics. The calculations were performed in part using facilities of JSCC supercomputer center of RAS . - ISSN 0020-1669. - ISSN 1520-510X
   Перевод заглавия: Отрицательное термическое расширение при полиморфной модификации двойного сульфата бета-AEu(SO4)2 (A–Rb+, Cs+)
Аннотация: New polymorphic modifications of double sulfates β-AEu(SO4)2 (A–Rb+, Cs+) were obtained by the hydrothermal method, the structure of which differs significantly from the monoclinic modifications obtained earlier by solid-state methods. According to single-crystal diffraction data, it was found that the compounds crystallize in the orthorhombic system, space group Pnna, with parameters β-RbEu(SO4)2: a = 9.4667(4) Å, b = 13.0786(5) Å, c = 5.3760(2) Å, V = 665.61(5) Å3; β-CsEu(SO4)2: a = 9.5278(5) Å, b = 13.8385(7) Å, c = 5.3783(3) Å, V = 709.13(7) Å3. The asymmetric part of the unit cell contains one-half Rb+/Cs+ ion, one-half Eu3+ ion, both in special sites, and one SO42– ion. Both compounds exhibit nonlinear negative thermal expansion. According to the X-ray structural analysis and theoretical calculations, the polarizing effect of the alkali metal ion has a decisive influence on the demonstration of this phenomenon. Experimental indirect band gaps of β-Rb and β-Cs are 4.05 and 4.11 eV, respectively, while the direct band gaps are 4.48 and 4.54 eV, respectively. The best agreement with theoretical calculations is obtained using the ABINIT package employing PAW pseudopotentials with hybrid PBE0 functional, while norm-conserving pseudopotentials used in the frame of CASTEP code and LCAO approach in the Crystal package gave worse agreement. The properties of alkali ions also significantly affect the luminescent properties of the compounds, which leads to a strong temperature dependence of the intensity of the 5D0 → 7F4 transition in β-CsEu(SO4)2 in contrast to much weaker dependence of this kind in β-RbEu(SO4)2.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 17, Gießen 35392, Germany
Regional Center ″New Generation″, Physics and Mathematics School of the Tyumen Region, Tyumen 625051, Russia
Department of Science and Innovation, Tyumen State University, Tyumen 625003, Russia
Laboratory of Crystal Physics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
Department of Engineering Physics and Radioelectronic, Siberian Federal University, Krasnoyarsk 660041, Russia
Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
School of Engineering and Construction, Siberian Federal University, Krasnoyarsk 660041, Russia
Solid State Spectroscopy Department, Ioffe Institute, St. Petersburg 194021, Russia
Chemistry Institute, Kazan Federal University, Kazan 420008, Russia
Department of Inorganic and Physical Chemistry, Tyumen State University, Tyumen 625003, Russia
Laboratory of the Chemistry of Rare Earth Compounds, Institute of Solid State Chemistry, UB RAS, Yekaterinburg 620137, Russia
Center for Materials Research (LaMa), Justus-Liebig-University of Giessen, Gießen 35392, Germany

Доп.точки доступа:
Denisenko, Yu. G.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Jiang, X.; Sedykh, A. E.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Roginskii, E. M.; Zhernakov, M. A.; Heuler, D.; Seuffert, M.; Lin, Zh.; Andreev, O. V.; Muller-Buschbaum, K.
}
Найти похожие
3.


   
    A novel Mn4+-activated fluoride red phosphor Cs30(Nb2O2F9)9(OH)3·H2O:Mn4+ with good waterproof stability for WLEDs / Y. Chen, F. Liu, Z. Zhang [et al.] // J. Mater. Chem. C. - 2022. - Vol. 10, Is. 18. - P. 7049-7057, DOI 10.1039/d2tc00132b. - Cited References: 56. - This work was financially supported by grants from the National Natural Science Foundation of China (NSFC) (No. 51802359), the Joint Funds of NSFC and Yunnan Province (No. U1702254), and Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010556) . - ISSN 2050-7534
   Перевод заглавия: Новый Mn4+-активированный фторидный красный люминофор Cs30(Nb2O2F9)9(OH)3ћH2O:Mn4+ с хорошей водонепроницаемостью для WLED
Кл.слова (ненормированные):
Crystal structure -- Fluorine compounds -- Gallium alloys -- III-V semiconductors -- Indium alloys -- Light emission -- Light emitting diodes -- Optical properties -- Phosphors -- Precipitation (chemical) -- Waterproofing
Аннотация: Red-light-emitting materials, as pivotal components of warm white light-emitting diodes (WLEDs), have drawn increasing public focus. Among these, Mn4+-doped red light-emitting fluorides have drawn considerable attention when combined with an InGaN chip; however, they suffer from poor water stability under humid conditions. In this work, a novel fluoride red phosphor, Cs30(Nb2O2F9)9(OH)3·H2O:xMn4+ (CNOFM), with good water resistance was synthesized for the first time using a facile co-precipitation method at ambient temperature. Experiments were implemented for the precise analysis of its crystal structure, optical properties, micro-morphology, thermal behavior, and waterproof properties. 6.66% Mn4+-doped CNOFM maintained a stable crystal structure and possessed strong PL intensity located at 633 nm with high color purity of 96%. CNOFM showed better thermal and waterproof stability compared with the commercial K2SiF6:Mn4+ red phosphor. Without any surface modifications, the PL intensity remained at about 83% of the initial value after immersion in water for 60 min, and the mechanism was investigated. Finally, a warm WLED with a CRI of 92.3 and CCT of 3271 K was fabricated using the CNOFM red phosphor.

Смотреть статью,
Scopus
Держатели документа:
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, School of Chemistry/School of Marine Sciences, 510275/Zhuhai, Guangzhou, 519082, China
Laboratory of Crystal Physics, Federal Research Center KSC SB RAS, Kirensky Institute of Physics, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation
Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou, 510650, China

Доп.точки доступа:
Chen, Y.; Liu, F.; Zhang, Z.; Hong, J.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Bobrikov, I. A.; Shi, J.; Zhou, J.; Wu, M.
}
Найти похожие
4.


   
    High moisture resistance of an efficient Mn4+-activated red phosphor Cs2NbOF5:Mn4+ for WLEDs / J. Zhou, Y. Chen, C. Jiang [et al.] // Chem. Eng. J. - 2021. - Vol. 405. - Ст. 126678, DOI 10.1016/j.cej.2020.126678. - Cited References: 43. - This work was financially supported by grants from the National Natural Science Foundation of China (No. 51802359, 21801254, 51902354) and its Joint Funds of Yunnan and Guangdong Province (No. U1702254 and No. U1801253), Special Fund of Guangdong Province Project for Applied Science and Technology Research and Development (No. 2017B090917001), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010556), the Fundamental Research Funds for the Central Universities (No. 19lgpy123), and China Postdoctoral Science Foundation (No. 2019M663230). M. G. Brik thanks the supports from the National Recruitment Program of High-end Foreign Experts (No. GDT20185200479 and GDW20145200225), the Programme for the Foreign Experts (No. W2017011) and Wenfeng High-end Talents Project (No. W2016-01) offered by Chongqing University of Posts and Telecommunications (CQUPT) , Estonian Research Council grant PUT PRG111, and European Regional Development Fund (TK141) . - ISSN 1385-8947
   Перевод заглавия: Высокая влагостойкость эффективного Mn4+ -активированного красного люминофора Cs2NbOF5: Mn4+ для ламп белых светодиодов
Кл.слова (ненормированные):
Light-emitting diodes -- Moisture resistance -- Mn4+ -- Self-protection -- Photoluminescence
Аннотация: Mn4+-activated fluoride red phosphors, the most important red phosphors for warm white light emitting diodes (LEDs), usually suffer from inherent poor moisture resistance which is a major obstacle to their long-lasting outdoor applications in a high humidity environment. Surface modification of phosphors by coating with either organic or inorganic shells is an effective way to improve waterproof stability. However, the coating procedure usually has a negative impact on the luminous efficacy due to the increased passivation shell thickness. In this work, Mn4+-activated oxyfluoroniobate (Cs2NbOF5), a highly efficient phosphor with internal quantum efficiency of ca. 82%, has been successfully synthesized and it is interesting to note that Cs2NbOF5:Mn4+ can exhibit remarkably improved waterproof stability even without surface coating compared to well-accepted commercial fluoride red-emitting phosphor, K2SiF6:Mn4+. The results obtained indicate that Nb5+ ions inside red phosphor play a crucial role in improving the water-resistant performance of Mn4+, which provides a new concept for overcoming the downside of their waterproof in humid conditions and maintaining the luminescence efficiency. In the final phase white LEDs with a high luminous efficacy of 174 lm/W (higher than commercial fluoride red phosphors), low correlated color temperature (3164 K) and high color rendering index (Ra = 90 and R9 = 85) have been fabricated using Cs2NbOF5:Mn4+.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
School of Marine Sciences/School of Chemistry, Sun Yat-Sen University, Zhuhai 519082, Guangzhou, 510275, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, 50411, Estonia
Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, Czestochowa, PL-42200, Poland
Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation
Guangdong Institute of Semiconductor Industrial Technology, Guangzhou, 510650, China

Доп.точки доступа:
Zhou, J.; Chen, Y.; Jiang, C.; Milicevic, B.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Brik, M. G.; Bobrikov, I. A.; Yan, J.; Li, J.; Wu, M.
}
Найти похожие
5.


   
    Alloying Cs+ into Rb2ZrCl6:Te4+ toward highly efficient and stable perovskite variants / J. Zhou, X. M. Rong, M. S. Molokeev [et al.] // Mat. Chem. Front. - 2021. - Vol. 5, Is. 13. - P. 4997-5003, DOI 10.1039/d1qm00302j. - Cited References: 37. - This work is supported by Beijing Natural Science Foundation (No. 2214068), the National Natural Science Foundation of China (No. 61705003), and the Beijing Technology and Business University Research Team Construction Project (No. PXM2019_014213_000007 and PXM2020_014213_000017) . - ISSN 2052-1537
   Перевод заглавия: Легирование Cs+ в Rb2ZrCl6:Te4 + для получения высокоэффективного и стабильного перовскита
РУБ Chemistry, Multidisciplinary + Materials Science, Multidisciplinary
Рубрики:
TELLER
   PHOTOLUMINESCENCE

   TELLURIUM(IV)

   COMPLEXES

   PHOSPHORS

Аннотация: Doping or alloying in perovskites and perovskite variants provides a promising way for modulating the electronic and photoluminescence properties and the structural stability. In this work, a series of yellow-emitting Rb2−xCsxZrCl6:Te4+ solid solution phosphors were prepared by a hydrothermal method, and their broad emission is assigned to the triplet 3P1–1S0 self-trapped excitons (STEs). Upon increasing the alloying ion Cs+, the yellow emission can be greatly enhanced by a stronger Jahn–Teller distortion. Moreover, Cs2ZrCl6:Te4+ shows a high photoluminescence quantum yield (PLQY), and impressive thermal and anti-water stability. This doping–alloying strategy presents a new direction towards designing lead-free, high-performance and stable perovskite derivatives.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Beijng Technol & Business Univ, Dept Phys, Beijing 100048, Peoples R China.
Shenzhen Univ, Guangdong Res Ctr Interfacial Engn Funct Mat, Shenzhen Engn Lab Adv Technol Ceram, Shenzhen Key Lab Special Funct Mat,Coll Mat Sci &, Shenzhen 518060, Peoples R China.
SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.

Доп.точки доступа:
Zhou, Jun; Rong, Ximing; Molokeev, M. S.; Молокеев, Максим Сергеевич; Wang, Yulong; Yun, Xiangyan; Xu, Denghui; Li, Xiong; Beijing Natural Science FoundationBeijing Natural Science Foundation [2214068]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61705003]; Beijing Technology and Business University Research Team Construction Project [PXM2019_014213_000007, PXM2020_014213_000017]
}
Найти похожие
6.


    Liu, Ying.
    Lattice doping of lanthanide ions in Cs2AgInCl6 nanocrystals enabling tunable photoluminescence / Y. Liu, M. S. Molokeev, Zh. Xia // Energy Mater. Adv. - 2021. - Vol. 2021. - Ст. 2585274, DOI 10.34133/2021/2585274. - Cited References: 42. - This work was supported by the National Natural Science Foundation of China (grant numbers 51961145101 and 51972118), the Fundamental Research Funds for the Central Universities (grant number FRFTP-18-002C1), the Guangzhou Science & Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (grant number 2017BT01X137). This work was also funded by RFBR according to the research project no. 19-52-80003 . - ISSN 2692-7640
   Перевод заглавия: Решеточное легирование ионами лантаноидов в нанокристаллах Cs2AgInCl6, обеспечивающее перестраиваемую фотолюминесценцию
Аннотация: Lead-free halide double perovskite Cs2AgInCl6 has become the research hotspot in the optoelectronic fields. It is a challenge to utilize the lattice doping by different lanthanide ions with rich and unique photoluminescence (PL) emissions for emerging photonic applications. Here, we successfully incorporated Dy3+, Sm3+, and Tb3+ ions into Cs2AgInCl6 nanocrystals (NCs) by the hot-injection method, bringing diverse PL emissions of yellowish, orange, and green light in Cs2AgInCl6:Ln3+ (Ln3+ = Dy3+, Sm3+, Tb3+). Moreover, benefiting from the energy transfer process, Sm3+ and Tb3+ ion-codoped Cs2AgInCl6 NCs achieved tunable emission from green to yellow orange and a fluorescent pattern from the as-prepared NC-hexane inks by spray coating was made to show its potential application in fluorescent signs and anticounterfeiting technology. This work indicates that lanthanide ions could endow Cs2AgInCl6 NCs the unique and tunable PL properties and stimulate the development of lead-free halide perovskite materials for new optoelectronic applications.

Смотреть статью,
Читать в сети ИФ
Держатели документа:
The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology, Beijing, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RASs, Russia
Department of Engineering Physics and Radioelectronics, Siberian Federal University, Russia
Department of Physics, Far Eastern State Transport University, Russia
The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, China

Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Xia, Zhiguo
}
Найти похожие
7.


   
    Incorporating rare-earth terbium(III) Ions into Cs2AgInCl6:Bi nanocrystals toward tunable photoluminescence / Y. Liu, X. M. Rong, M. Z. Li [et al.] // Angew. Chem. - Int. Edit. - 2020. - Vol. 59, Is. 28. - P. 11634-11640, DOI 10.1002/anie.202004562. - Cited References: 43. - This work is supported by the National Natural Science Foundation of China (51961145101, 51972118 and 51722202), Fundamental Research Funds for the Central Universities (FRFTP-18-002C1), Guangdong Provincial Science & Technology Project (2018A050506004) and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). This work is also funded by RFBR according to the research project No. 19-52-80003. . - ISSN 1433-7851. - ISSN 1521-3773
   Перевод заглавия: Включение редкоземельного тербия (III) в нанокристаллы Cs2AgInCl6: Bi для перестраиваемой фотолюминесценции
РУБ Chemistry, Multidisciplinary
Рубрики:
HALIDE DOUBLE PEROVSKITE
   LEAD-FREE

   LANTHANIDE

   STABILITY

   EMISSION

Кл.слова (ненормированные):
doping -- energy transfer -- perovskite nanocrystals -- photoluminescence -- terbium
Аннотация: The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare‐earth ions doping and intrinsic emission of lead‐free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first‐principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D4→7F6‐3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi‐doped Cs2Ag(In1−x Tbx )Cl6 NCs could be continuously tuned from green to orange, through the efficient energy‐transfer channel from self‐trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead‐free perovskite NCs and to expand their luminescence applications.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Univ Sci & Technol Beijing, Beijing Municipal Key Lab New Energy Mat & Techno, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
Shenzhen Univ, Shenzhen Key Lab Special Funct Mat, Shenzhen Engn Lab Adv Technol Ceram, Guangdong Res Ctr Interfacial Engn Funct Mat,Coll, Shenzhen 518060, Peoples R China.
Fed Res Ctr KSC SB RASs, Lab Crystal Phys, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Engn Phys & Radioelect, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangdong Prov Key Lab Fiber Laser Mat & Appl Tec, Sch Mat Sci & Technol, Guangzhou 510641, Peoples R China.

Доп.точки доступа:
Liu, Ying; Rong, Ximing; Li, Mingze; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zhao, Jing; Xia, Zhiguo
}
Найти похожие
8.


   
    Tunable photoluminescence in Sb3+-doped zero-dimensional hybrid metal halides with intrinsic and extrinsic self-trapped excitons / J. Zhou, M. Z. Li, M. S. Molokeev [et al.] // J. Mater. Chem. C. - 2020. - Vol. 8, Is. 15. - P. 5058-5063, DOI 10.1039/d0tc00391c. - Cited References: 33. - This work is supported by the National Natural Science Foundation of China (No. 51722202, 51961145101, 51972118, 21576002 and 61705003), Fundamental Research Funds for the Central Universities (D2190980), the Guangdong Provincial Science & Technology Project (2018A050506004), and Beijing Technology and Business University Research Team Construction Project (No. PXM2019_014213_000007). This work was also funded by RFBR according to the Research Project No. 19-52-80003. . - ISSN 2050-7526. - ISSN 2050-7534
   Перевод заглавия: Перестраиваемая фотолюминесценция в нульмерных гибридных металлогалогенидах, легированных Sb3 +, с внутренними и внешними автолокализованными экситонами
РУБ Materials Science, Multidisciplinary + Physics, Applied
Рубрики:
WHITE-LIGHT EMISSION
   LUMINESCENCE

   PEROVSKITES

   CS2NASCCL6

   CS2NAYCL6

Аннотация: Dopants in luminescent metal halides provide an alternative way for photoluminescence tuning towards versatile optical applications. Here we report a trivalent antimony (Sb3+)-doped single crystalline 0D metal halide with the composition of (C9NH20)9[Pb3Cl11](ZnCl4)2:Sb3+. This compound possessed the coexistence of two emission centers including intrinsic and extrinsic self-trapped excitons (STEs), which are ascribed to [Pb3Cl11]5− clusters and triplet STEs formed by the 3P1–1S0 transition of Sb3+. By regulating the Sb3+ concentration, the emission can be tuned from green to yellow and finally to orange, which would help to develop optically pumped white light-emitting diodes (WLEDs) with different photometric characteristics. Moreover, this dopant-induced extrinsic STE approach presents a new direction towards tuning the luminescence properties of 0D metal halides, and may find application in environmentally-friendly, high-performance metal halide light emitters.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Beijing Technol & Business Univ, Sch Sci, Beijing 100048, Peoples R China.
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing Municipal Key Lab New Energy Mat & Techno, Beijing 100083, Peoples R China.
RAS, SB, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510641, Peoples R China.
South China Univ Technol, Inst Opt Commun Mat, Guangzhou 510641, Peoples R China.

Доп.точки доступа:
Zhou, Jun; Li, Mingze; Molokeev, M. S.; Молокеев, Максим Сергеевич; Sun, Jiayue; Xu, Denghui; Xia, Zhiguo
}
Найти похожие
9.


   
    Incorporating rare-earth terbium(III) ions into Cs2AgInCl6:Bi nanocrystals toward tunable photoluminescence / Y. Liu, X. M. Rong, M. Z. Li [et al.] // Angew. Chem. - 2020. - Vol. 132, Is. 28. - P. 11731-11737, DOI 10.1002/ange.202004562. - Cited References: 43 . - ISSN 1521-3757
РУБ Chemistry, Multidisciplinary
Рубрики:
HALIDE DOUBLE PEROVSKITE
   LEAD-FREE

   LANTHANIDE

   STABILITY

   EMISSION

Кл.слова (ненормированные):
doping -- energy transfer -- perovskite nanocrystals -- photoluminescence -- terbium
Аннотация: The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare‐earth ions doping and intrinsic emission of lead‐free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first‐principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D4→7F6‐3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi‐doped Cs2Ag(In1−xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy‐transfer channel from self‐trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead‐free perovskite NCs and to expand their luminescence applications.

Смотреть статью,
WOS,
Читать в сети ИФ
Держатели документа:
Univ Sci, Sch Materials Sciences, Beijing Municipal Key Lab New Energy Materials, Technology Beijing,Technologies,Engn, Beijing, P. R. China.
Shenzhen Univ, Coll Materials Sci, Guangdong Res Ctr Interfacial Engn Functional Mat, Shenzhen Key Lab Special Functional Materials, Shenzhen, P. R. China.
Kirensky Inst Phys, Fed Res Ctr KSC SB RASs, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Engn Phys, Radioelectronics, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
S China Univ Technology, Sch Materials Sci, State Key Lab Luminescent Materials, Guangdong Prov Key Lab Fiber Laser Materials, Guangzhou, P. R. China.

Доп.точки доступа:
Liu, Ying; Rong, Ximing; Li, Mingze; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zhao, Jing; Xia, Zhiguo
}
Найти похожие
10.


    Su, Binbin.
    Mn2+-Based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying / B. B. Su, M. S. Molokeev, Z. G. Xia // J. Mater. Chem. C. - 2019. - Vol. 7, Is. 36. - P. 11220-11226, DOI 10.1039/c9tc04127c. - Cited References: 24. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51722202, 51972118 and 51572023), Natural Science Foundations of Beijing (2172036) and the Guangdong Provincial Science & Technology Project (no. 2018A050506004). . - ISSN 2050-7526. - ISSN 2050-7534
   Перевод заглавия: Узкополосный зеленый люминофор Cs3MnBr5 на основе Mn2+ и оптимизация рабочих характеристик путем легирования Zn2+
РУБ Materials Science, Multidisciplinary + Physics, Applied
Рубрики:
THERMAL-STABILITY
   BACKLIGHT

   EMISSION

Аннотация: To discover new narrow-band green-emitting phosphors is a challenge for backlighting light-emitting diodes (LEDs) used in liquid crystal displays (LCDs). The synthesis and optical properties of Cs3MnBr5 are demonstrated herein. The intrinsic Mn2+ luminescence without concentration quenching leads to intense green emission at 520 nm with narrow full width at half maximum of 42 nm and high photoluminescence quantum yield (PLQY) of 49% under the excitation at 460 nm. When a small amount of Zn2+ is introduced into Cs3MnBr5, the luminescence intensity decreases slightly. However, the thermal stability of Cs3MnBr5 is improved from 82% to 87% with the intensity values at 423 K compared to that at 298 K. The white LED device fabricated using Cs3Mn0.96Zn0.04Br5 (green) and K2SiF6:Mn4+ (red) phosphors with a blue LED chip exhibit a high luminous efficiency (107.76 lm W-1) and wide color gamut (101% National Television System Committee standard (NTSC) in Commission Internationale de L'Eclairage (CIE) 1931 color space), demonstrating its potential application in wide color gamut LCD backlights.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510641, Guangdong, Peoples R China.
South China Univ Technol, Inst Opt Commun Mat, Guangzhou 510641, Guangdong, Peoples R China.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.

Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Xia, Zhiguo
}
Найти похожие
11.


   
    Lead-Free Perovskite Derivative Cs2SnCl6−xBrx Single Crystals for Narrowband Photodetectors / J. Zhou [et al.] // Adv. Opt. Mater. - 2019. - Vol. 7, Is. 10. - Ст. 1900139, DOI 10.1002/adom.201900139. - Cited References: 26. - J.Z., J.J.L., X.M.R. contributed equally to this work. The present work was supported by the National Natural Science Foundation of China (Grants 51722202, 91622125, 51572023, and 11774239), Natural Science Foundations of Beijing (2172036), and National Key R&D Program of China (grant no. 2016YFB0700700). . - ISSN 2195-1071
   Перевод заглавия: Бессвинцовые монокристаллы производного перовскита Cs2SnCl6-xBrx для узкополосных фотоприемников
Кл.слова (ненормированные):
band structure -- Cs2SnBr6 -- Cs2SnCl6 -- lead-free perovskite derivatives -- narrowband photodetection
Аннотация: Lead-free and stable Sn halide perovskites demonstrate tremendous potential in the field of optoelectronic devices. Here, the structure and optical properties of the “defect” perovskites Cs2SnCl6−xBrx are reported, as well as their use as photodetector materials. Millimeter‐sized Cs2SnCl6−xBrx single crystals are grown by the hydrothermal method, with the body color continuously changing from transparent to yellow and finally to dark red. Narrowband single‐crystal photodetectors using Cs2SnCl6−xBrx crystals are presented, which show a high detectivity of ≈2.71 × 1010 Jones, with narrowband photodetection (full‐width at half‐maximum ≈45 nm) and high ion diffusion barriers. Moreover, the response spectra are continuously tuned from near violet to orange depending on the variation of the bandgap of the single crystals by changing the halide compositions. The strong surface charge recombination of the excess carriers near the crystal surfaces produced by short wavelength light elucidates the narrowband photodetection behavior. This work provides a new paradigm in the design of lead‐free, stable, and high‐performance perovskite derivatives for optoelectronics applications.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, 680021, Russian Federation
State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou, 510641, China

Доп.точки доступа:
Zhou, J.; Luo, J.; Rong, X.; Wei, P.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Huang, Y.; Zhao, J.; Liu, Q.; Zhang, X.; Tang, J.; Xia, Z.
}
Найти похожие
12.


   
    Synthesis, structure and properties of K2(1-x)Rb2xAl2B2O7 and Cs1.39Tl0.61Al2B2O7 borates as the basis for preparing new oxide materials / V. G. Grossman [et al.] // Lett. Mater. - 2019. - Vol. 9, Is. 1. - P. 86-90 ; Письма о материалах, DOI 10.22226/2410-3535-2019-1-86-90. - Cited References:22. - The research was carried out within the state assignment of FASO of Russia (Theme No 0339-2016-0007). . - ISSN 2218-5046. - ISSN 2410-3535
   Перевод заглавия: Синтез, структура и свойства боратов K2(1-x)Rb2xAl2B2O7 и Cs1.39Tl0.61Al2B2O7 как основа получения новых оксидных материалов
РУБ Materials Science, Multidisciplinary
Рубрики:
OPTICAL-PROPERTIES
   CRYSTAL-STRUCTURE

   K2Al2B2O7

   GROWTH

Кл.слова (ненормированные):
borate -- solid-phase synthesis -- optical properties -- борат -- твердофазный синтез -- оптические свойства
Аннотация: With the development of technology, the need for highly efficient functional materials is steadily increasing. Currently, borates attract the attention of researchers, as they are promising nonlinear materials. Potassium rubidium aluminum borate based on potassium aluminum borate (trigonal syngony, space group P321, Z = 3) was obtained by solid-phase synthesis. The individuality and purity of the borates were confirmed by X-ray diffraction. Analysis of differential scanning calorimetry and thermogravimetric method for K2(1‑x)Rb2xAl2B2O7 (x = 0.1– 0.8) was performed in the temperature range of 25–1075°С. Potassium rubidium borates decompose in the temperature range of 900 –1000°C. Differential scanning calorimetry, dielectric loss tangent, and second-harmonic generation data revealed phase transitions for K0.6Rb1.4Al2B2O7. A significant SHG effect was found at room temperature for K0.6Rb1.4Al2B2O7 (Q = 70). Then the SHG effect increases to Q = 85 at a temperature of 645°C and remains constant with a further increase in temperature. The new triple borate Cs1.39Tl0.61Al2B2O7 was synthesized by the solid-phase synthesis, and its crystallographic parameters were obtained by the Rietveld method. This borate crystallizes in the monoclinic space group P21 / c with the unit cell parameters: Z = 2, a = 6.6669(3) Å, b = 7.2991(3) Å , c = 9.3589(4) Å , β =116.6795(18)°, V = 406.94(3) Å 3. The structure can be considered to be built up from the nearly planar [Al2B2O10] rings, which are composed of two AlO4 tetrahedra and two BO3 triangles, connected, alternately to each other by corner-sharing.
С развитием технологии потребность в высокоэффективных функциональных материалах растет. В настоящее время бораты привлекают внимание исследователей, поскольку они являются перспективными нелинейными материалами. Твердофазным синтезом получены бораты K2(1-x)Rb2xAl2B2O7 (x = 0.1–0.8) на основе калий-алюминиевого бората (тригональная сингония, пространственная группа P321, Z = 3). Индивидуальность и чистота боратов подтверждена рентгеновской дифракцией. Анализ дифференциально-сканирующей калориметрией и термогравиметрическим методом для K2(1-x)Rb2xAl2B2O7 (x = 0.1–0.8) был проведен в интервале температур 25–1075 ºС. Калий-рубидиевые бораты разлагаются в интервале температур 900–1000 °C. Дифференциальной сканирующей калориметрией, диэлектрическими измерениями и методом генерации второй оптической гармоники выявлены фазовые переходы для K0.6Rb1.4Al2B2O7. Значительный ГВГ-эффект был обнаружен при комнатной температуре для K0.6Rb1.4Al2B2O7 (Q = 70). Эффект генерации второй гармоники возрастает до Q = 85 при температуре 645 °C и остается постоянным при дальнейшем увеличении температуры. Новый тройной борат Cs1.39Tl0.61Al2B2O7 был синтезирован методом твердофазного синтеза, а его кристаллографические параметры были получены с помощью метода Ритвельда. Этот борат кристаллизуется в моноклинной пространственной группе P21/c с параметрами элементарной ячейки: Z = 2, a = 6.6669 (3) Å, b = 7.2991 (3) Å, c = 9.3589 (4) Å, β = 116.6795 (18)º, V = 406.94 (3) Å3. Структуру можно представить в виде почти плоских колец [Al2B2O10], которые состоят из двух тетраэдров AlO4 и двух BO3 треугольников, соединенных попеременно друг с другом посредством вершин.

Смотреть статью,
РИНЦ,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
RAS, Baikal Inst Nat Management, Siberian Branch, 6 Sakhyanova St, Ulan Ude 670047, Russia.
Lomonosov Moscow State Univ, GSP 1,1-3 Leninskie Gory, Moscow 119991, Russia.
RAS, Siberian Branch, Kirensky Inst Phys, Fed Res Ctr KSC, 50-38 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 82 Svobodniy Av, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Grossman, V. G.; Гроссман В. Г.; Bazarov, B. G.; Базаров Б. Г.; Stefanovich, S. Y.; Стефанович С. Ю.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Bazarova, J. G.; Базарова Ж. Г.; [0339-2016-0007]

}
Найти похожие
13.


   
    Manipulation of Bi3+/In3+ Transmutation and Mn2+-Doping Effect on the Structure and Optical Properties of Double Perovskite Cs2NaBi1-xInxCl6 / J. Zhou [et al.] // Adv. Opt. Mater. - 2019. - Vol. 7, Is. 8. - Ст. 1801435, DOI 10.1002/adom.201801435. - Cited References: 51. - J.Z. and X.M.R. contributed equally to this work. The present work was supported by the National Natural Science Foundation of China (Grant Nos. 51722202, 51572023, and 91622125) and Natural Science Foundations of Beijing (2172036). X.W.Z. acknowledges the support from National Key R&D Program of China (Grant No. 2016YFB0700700). . - ISSN 2195-1071
   Перевод заглавия: Влияние перестановок Bi3+/In3+ и Mn2+ -допирования на структуру и оптические свойства двойного перовскита Cs2NaBi1-xInxCl6
РУБ Materials Science, Multidisciplinary + Optics
Рубрики:
HALIDE DOUBLE PEROVSKITE
   LEAD-FREE

   ENERGY-TRANSFER

   NANOCRYSTALS

   BR

Кл.слова (ненормированные):
band gap engineering -- halide double perovskites -- Mn2+ doping
Аннотация: The halide double perovskite family represented by A2(B+,B3+)X6 can overcome the lead toxicity and enable generally large band gap engineering via B/B sites' transmutation or exotic dopants to fulfill the emerging applications in the optoelectronic fields. Herein, the design and the experimental synthesis of a new family of Mn2+‐doped Cs2NaBi1‐xInxCl6 crystals with an intense orange‐yellow emission band are reported, and the phase formation stability is discussed via a combined experimental–theoretical approach. Depending on the manipulation of Bi3+/In3+ combination, the band gap increases with In3+ content, and a subsequent evolution from indirect to direct band gap is verified. First‐principles calculations and parity analyses indicate a parity forbidden effect on Cs2NaInCl6, and a combination effect of absorption on Cs2NaBi1‐xInxCl6 from both Cs2NaBiCl6 and Cs2NaInCl6. The associated Mn2+‐doped photoluminescence depending on the Bi3+/In3+ substitution is also addressed from the variation of the different Mn–Cl environment and neighboring‐cation effect.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing Municipal Key Lab New Energy Mat & Techno, Beijing 100083, Peoples R China.
Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen Key Lab Flexible Memory Mat & Devices, Shenzhen 518060, Peoples R China.
Shenzhen Univ, Coll Optoelect Engn, Minist Educ & Guangdong Prov, Key Lab Optoelect Devices & Syst, Shenzhen 518060, Peoples R China.
KSC SB RAS, Fed Res Ctr, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Engn Phys & Radioelect, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
South China Univ Technol, State Key Lab Luminescent Mat, Guangzhou 510641, Guangdong, Peoples R China.
South China Univ Technol, Inst Opt Commun Mat, Guangzhou 510641, Guangdong, Peoples R China.

Доп.точки доступа:
Zhou, Jun; Rong, Ximing; Zhang, Peng; Molokeev, M. S.; Молокеев, Максим Сергеевич; Wei, Peijia; Liu, Quanlin; Zhang, Xiuwen; Xia, Zhiguo
}
Найти похожие
14.


   
    Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach / J. Zhou [et al.] // J. Mater. Chem. A. - 2018. - Vol. 6, Is. 5. - P. 2346-2352, DOI 10.1039/c7ta10062k. - Cited References:34. - The present work was supported by the National Natural Science Foundation of China (Grants 91622125, 51572023, 11774239 and 51722202), Natural Science Foundations of Beijing (2172036), and National Key R&D Program of China (Grant 2016YFB0700700). M. Molokeev acknowledges the support of the Russian Foundation for Basic Research (17-52-53031). . - ISSN 2050-7488. - ISSN 2050-7496
   Перевод заглавия: Изучение эффектов переноса на электронные и оптические свойства Cs2AgSbCl6 с помощью комбинированного вычислительно-экспериментального подхода
Рубрики:
PEROVSKITE SOLAR-CELLS
   SPECTROSCOPIC PROPERTIES

   LUMINESCENCE

Аннотация: The electronic and optical properties of perovskites are related to the local structures of the compounds and define their functional applications. Herein we have prepared a double perovskite Cs2AgSbCl6, which crystallized in the cubic structure with the space group Fm-3m and the material is found to have a varied band gap associated with different body colors. The anti-site defect model was established to investigate transposition influence on the optical and electronic properties of the double-perovskite Cs2AgSbCl6, and the proposed model clearly explained the as-observed variable body color. Cs2AgSbCl6 perovskite has a high decomposition temperature and is stable upon prolonged exposure to air and moisture, which emphasize its potential in the field of photovoltaic absorbers and optoelectronic applications.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing Municipal Key Lab New Energy Mat & Techno, Beijing 100083, Peoples R China.
Shenzhen Univ, Coll Elect Sci & Technol, Shenzhen 518060, Guangdong, Peoples R China.
Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.

Доп.точки доступа:
Zhou, Jun; Rong, Ximing; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zhang, Xiuwen; Xia, Zhiguo
}
Найти похожие
15.


   
    Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6 / J. Zhou [et al.] // J. Mater. Chem. A. - 2017. - Vol. 5, Is. 29. - P. 15031-15037, DOI 10.1039/c7ta04690a. - Cited References: 42. - The present work was supported by the National Natural Science Foundation of China (Grants 91622125 and 51572023), Natural Science Foundations of Beijing (2172036), and Fundamental Research Funds for the Central Universities (FRF-TP-16-002A3). XZ acknowledges the support from the National Key Research and Development Program of China Grant No. 2016YFB0700700. . - ISSN 2050-7488
   Перевод заглавия: Моделирование состава, оптический зазор и исследования стабильности безсвинцового галогенидного двойного перовскита Cs2AgInCl6
Кл.слова (ненормированные):
Crystal growth -- Design for testability -- Energy gap -- Optical properties -- Perovskite -- Perovskite solar cells -- Solar absorbers -- Solar cells -- Structural design -- Band gap engineering -- Direct-gap semiconductor -- Environmentally benign -- Hydrothermal crystal growth -- Hydrothermal reaction -- Optoelectronic applications -- Rock salt structures -- Solar cell absorbers -- Crystal structure
Аннотация: The discovery of lead-free double perovskites provides a feasible way of searching for air-stable and environmentally benign solar cell absorbers. Herein we report the design and hydrothermal crystal growth of double perovskite Cs2AgInCl6. The crystal structure, morphology related to the crystal growth habit, band structure, optical properties, and stability are investigated in detail. This perovskite crystallized in a cubic unit cell with the space group Fm3m and is composed of [AgCl6] and [InCl6] octahedra alternating in a ordered rock-salt structure, and the as-obtained crystal size is dependent on the hydrothermal reaction time. Cs2AgInCl6 is a direct gap semiconductor with a wide band gap of 3.23 eV obtained experimentally and 3.33 eV obtained by DFT calculation. This theoretically predicted and experimentally confirmed optical gap is a prototype of the band gaps that are direct and optically allowed except at the single high-symmetry k-point, which didn't raise interest before but have potential applications in future technologies. Cs2AgInCl6 material with excellent moisture, light and heat stability shows great potential for photovoltaic and other optoelectronic applications via further band gap engineering. © 2017 The Royal Society of Chemistry.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, Russian Federation
Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Guangdong, China
College of Optoelectronic Engineering, Shenzhen University, Guangdong, China

Доп.точки доступа:
Zhou, J.; Xia, Z.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zhang, X.; Peng, D.; Liu, Q.
}
Найти похожие
16.


   
    Microwave sol-gel derived MMoO4 (M=Ba,Cs,Sr) nanoparticles doped with Er/Yb, Ho/Yb, Ho/Yb/Tm and their upconversion photoluminescence properties for biomedical applications / V. V. Atuchin [et al.] // The 10th International conference on multifunctional materials and application. - 2016. - Ст. 43-P. - P. 76

Материалы конференции,
Материалы конференции

Доп.точки доступа:
Atuchin, V. V.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Park, Hee Kook; Lee, Beom Hyun; Won, Dong Min; Oh, Won-Chun; Lim, Chang Sung; International Conference on Multifunctional Materials and Application (10 ; 2016 ; Dec. 1-3 ; Khon Kaen, Tailand)
}
Найти похожие
17.


   
    Crystal structure, spectroscopic and thermal properties of the coordination compounds M(1,3-diethyl-2-thiobarbiturate) M = Rb+, Cs+, Tl+ and NH4+ / M. S. Molokeev [et al.] // Polyhedron. - 2015. - Vol. 98. - P. 113-119, DOI 10.1016/j.poly.2015.05.048. - Cited References: 43. - The study was carried out within the public task of the Ministry of Education and Science of the Russian Federation for research engineering of the Siberian Federal University in 2015. V.V.A. is grateful to the Ministry of Education and Science of the Russian Federation for financial support of the investigation. . - ISSN 0277-5387
   Перевод заглавия: Кристаллическая структура, спектроскопические и тепловые свойства координационных соединений M(1,3-diethyl-2-thiobarbiturate) M = Rb+, Cs+, Tl+ and NH4+
РУБ Chemistry, Inorganic & Nuclear + Crystallography
Рубрики:
2-THIOBARBITURIC ACID
   THIOBARBITURIC ACID

   1,3-DIETHYL-2-THIOBARBITURIC ACID

   HYDROGEN-BOND

   COMPLEXES

   DIFFRACTION

   CHEMISTRY

   NETWORKS

   LIGAND

   SERIES

Кл.слова (ненормированные):
1,3-Diethyl-2-thiobarbituric acid -- Alkali ion thallium(I) and ammonium cations -- Coordination compounds -- Thermal analysis -- X-ray diffraction
Аннотация: Four new compounds of 1,3-diethyl-2-thiobarbituric acid (C8H11N2O2S, Hdetba) with Rb+, Cs+, Tl+ and NH4+ ions were prepared by Hdetba neutralization with the metal carbonates or ammonium hydroxide in aqueous solution. The colorless crystals have been investigated using X-ray diffraction techniques, differential scanning calorimetry, thermogravimetry and infrared spectroscopy. The coordination compounds of MDetba with M = Rb, Cs and Tl crystallize in the orthorhombic space group P212121, but compound NH4Detba crystallizes in the triclinic space group P1¯. The MDetba structures were compared at the molecular and supramolecular levels. The Detba- ion in the NH4+ compound forms conformer (A) with two diethyl groups on one side of the ion ring, whereas the Detba- ion in the Rb(I), Cs(I) and Tl(I) compounds forms conformer (B) with two diethyl groups on different sides of the ring. The results of IR spectroscopy and thermal analysis are consistent with the X-ray data. © 2015 Elsevier Ltd.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, bld. 38 Akademgorodok 50, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, 47 Serysheva Str., Khabarovsk, Russian Federation
Department of Chemistry, Siberian Federal University, 79 Svobodny Aven., Krasnoyarsk, Russian Federation
Institute of Chemistry and Chemical Technology, SB RAS, bld. 24 Akademgorodok 50, Krasnoyarsk, Russian Federation
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 13 Lavrentiev Aven., Novosibirsk, Russian Federation
Functional Electronics Laboratory, Tomsk State University, 36 Lenin Aven., Tomsk, Russian Federation
Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, Russian Federation

Доп.точки доступа:
Molokeev, M. S.; Молокеев, Максим Сергеевич; Golovnev, N. N.; Головнёв, Николай Николаевич; Vereshchagin, S. N.; Верещагин С. Н.; Atuchin, V. V.; Атучин, Виктор Валерьевич
}
Найти похожие
18.


   
    Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs2NaBi(MoO4)3 / A. A. Savina [et al.] // J. Solid State Chem. - 2015. - Vol. 225. - P. 53–58, DOI 10.1016/j.jssc.2014.11.023. - Cited References: 66. - The authors are grateful to Dr. K.M. Khal'baeva and Dr. Irina A. Gudkova for their assistance in preparing the compound and taking X-ray single-crystal diffraction data. This study is partly supported by the Russian Foundation for Basic Research (Grants 13-03-01020 and 14-03-00298). V.V.A., A.S.K. and A.S.O. gratefully acknowledge the Ministry of Education and Science of the Russian Federation for a partial financial support. . - ISSN 0022-4596. - ISSN 1095-726X
   Перевод заглавия: Синтез, структурные и спектроскопические свойства ацентричного тройного молибдата Cs2NaBi(MoO4)3
РУБ Chemistry, Inorganic & Nuclear + Chemistry, Physical
Рубрики:
CRYSTAL-STRUCTURE
   SINGLE-CRYSTALS

   VIBRATIONAL PROPERTIES

   RAMAN-SPECTROSCOPY

   HYDROTHERMAL SYNTHESIS

   DIELECTRIC-PROPERTIES

   SELECTIVE OXIDATION;

   BISMUTH MOLYBDATES

   IONIC-CONDUCTIVITY

   OPTICAL-PROPERTIES

Кл.слова (ненормированные):
Triple molybdate -- Sodium -- Cesium -- Bismuth -- Crystal structure -- Raman spectroscopy -- CRYSTAL-STRUCTURE -- SINGLE-CRYSTALS -- VIBRATIONAL PROPERTIES -- RAMAN-SPECTROSCOPY -- HYDROTHERMAL SYNTHESIS -- DIELECTRIC-PROPERTIES -- SELECTIVE OXIDATION; -- BISMUTH MOLYBDATES -- IONIC-CONDUCTIVITY -- OPTICAL-PROPERTIES
Аннотация: New ternary molybdate Cs2NaBi(MoO4)3 is synthesized in the system Na2MoO4–Cs2MoO4–Bi2(MoO4)3. The structure of Cs2NaBi(MoO4)3 of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å3, Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs2NaBi(MoO4)3 up to the melting point at 826 K. The compound shows an SHG signal, I2w/I2w(SiO2)=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ
Держатели документа:
SB RAS, Baikal Inst Nat Management, Lab Oxide Syst, Ulan Ude 670047, Russia.
Buryat State Univ, Dept Chem, Ulan Ude 670000, Russia.
SB RAS, Rzhanov Inst Semicond Phys, Lab Opt Mat & Struct, Novosibirsk 630090, Russia.
Tomsk State Univ, Funct Elect Lab, Tomsk 634050, Russia.
Novosibirsk State Univ, Lab Semicond & Dielect Mat, Novosibirsk 630090, Russia.
SB RAS, Nikolaev Inst Inorgan Chem, Lab Crystal Chem, Novosibirsk 630090, Russia.
Novosibirsk State Univ, Dept Nat Sci, Novosibirsk 630090, Russia.
SB RAS, Kirensky Inst Phys, Lab Mol Spectroscopy, Krasnoyarsk 660036, Russia.
SB RAS, Nikolaev Inst Inorgan Chem, Lab Epitaxial Layers, Novosibirsk 630090, Russia.
Novosibirsk State Univ, Lab Res Methods Composit & Struct Funct Mat, Novosibirsk 630090, Russia.
SB RAS, Kirensky Inst Phys, Lab Crystal Struct, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Photon & Laser Technol, Krasnoyarsk 660079, Russia.
SB RAS, Inst Automat & Elect, Lab Condenced Matter Spectroscopy, Novosibirsk 630090, Russia.

Доп.точки доступа:
Savina, A. A.; Atuchin, V. V.; Solodovnikov, S. F.; Solodovnikova, Z. A.; Krylov, A. S.; Крылов, Александр Сергеевич; Maximovsky, E. A.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич; Pugachev, A. M.; Khaikina, E. G.; Russian Foundation for Basic Research [4828.2012.2, 12-02-31205]; Federal Special Program "Scientific and scientific-pedagogical staff of innovative Russia" [8379]
}
Найти похожие
19.


   
    Структурные превращения и феноменологическое описание формирования фазовых состояний в эльпасолитах Cs2RbDyF6 и Rb2KB'F6 (B'=Ho, Dy, Tb) / И. Н. Сафонов [и др.] // Физ. тверд. тела. - 2015. - Т. 57, Вып. 3. - С. 480-486. - Библиогр.: 20 назв. - Работа выполнена в рамках государственного задания Министерства образования и науки РФ Сибирскому федеральному университету на выполнение НИР в 2014 г. (задание N 3.2534.2014/K)
Аннотация: По данным рентгеновского эксперимента c порошковым образцом определены структуры кубической и моноклинной фаз кристалла Rb2KHoF6 из ряда эльпасолитов Rb2KB'F6 (B'=Ho, Dy, Tb), испытывающего триггерный фазовый переход. С привлечением теоретико-группового анализа полного конденсата параметров порядка определены критические и некритические смещения атомов структуры Rb2KHoF6. Надежно установлено, что изменение симметрии при фазовом переходе в этом кристалле можно представить в виде Fm3m\xrightarrow[(varphi,varphi,psi)]11-9(Gamma+4) \oplus10-3(X+3)P121/n1. Проведено феноменологическое рассмотрение условий формирования фазовых состояний при фазовых переходах в эльпасолитах Cs2RbDyF6 и Rb2KB'F6 (B'=Ho, Dy, Tb). С учетом структурных данных на базе феноменологической теории установлено, что основным фактором, определяющим формирование фазовых состояний в этих и подобных кристаллах, является неустойчивость структуры эльпасолита относительно ротационных искажений двух типов. Показано, что важную роль в формировании последовательности структурных изменений в исследуемых кристаллах играет взаимодействие ротационных параметров порядка и смещений катиона из центра кубооктаэдрической полости.

Смотреть статью,
РИНЦ,
Читать в сети ИФ

Переводная версия Structural transformations and phenomenological description of the formation of phase states in elpasolites Cs2RbDyF6 and Rb2KB′F6 (B′ = Ho, Dy, Tb) [Текст] / I. N. Safonov [et al.] // Phys. Solid State : MAIK Nauka-Interperiodica / Springer, 2015. - Vol. 57 Is. 3.- P.491-498

Держатели документа:
Институт физики им. Л.В. Киренского СО РАН

Доп.точки доступа:
Сафонов, И. Н.; Мисюль, С. В.; Молокеев, Максим Сергеевич; Molokeev, M. S.; Ивлиев, М. П.
}
Найти похожие
20.


   
    Structural transformations and phenomenological description of the formation of phase states in elpasolites Cs2RbDyF6 and Rb2KB′F6 (B′ = Ho, Dy, Tb) / I. N. Safonov [et al.] // Phys. Solid State. - 2015. - Vol. 57, Is. 3. - P. 491-498, DOI 10.1134/S1063783415030282. - Cited References:20. - This study was supported by the Ministry of Education and Science of the Russian Federation within the framework of the State Task for the Russian Siberian Federal University for Implementation of Scientific Research Work in 2014 (assignment no. 3.2534.2014/K). . - ISSN 1063. - ISSN 1090-6460. -
РУБ Physics, Condensed Matter
Рубрики:
TRANSITIONS
   CRYSTALS

Аннотация: The structures of the cubic and monoclinic phases of an Rb2KHoF6 crystal from a series of elpasolites Rb2KB′F6 (B′ = Ho, Dy, Tb), which undergoes a trigger phase transition, have been investigated using X-ray powder diffraction. The critical and noncritical displacements of atoms in the Rb2KHoF6 structure have been determined from the group-theoretical analysis of the complete condensate of order parameters. It has been reliably established that a change in the symmetry due to the phase transition in this crystal can be represented in the form Fmˉ3m11−9(Γ+4)⊕10−3(X+3)(ϕ,ϕ,ψ)P121/n1Fm\bar 3m\frac{{11 - 9(\Gamma _4. + ) \oplus 10 - 3(X_3. + )}} {{(\phi ,\phi ,\psi )}}P12_1 /n1 . A phenomenological analysis of the conditions responsible for the formation of phase states upon the phase transitions in elpasolites Cs2RbDyF6 and Rb2KB′F6 (B′ = Ho, Dy, Tb) has been carried out. Taking into account the structural data and using the phenomenological theory, it has been found that the main factor determining the formation of phase states in these and related crystals is the instability of the elpasolite structure with respect to rotational distortions of two types. It has been shown that an important role in the formation of a sequence of structural transformations in these crystals is played by the interaction of rotational order parameters and displacements of the cation from the center of a cuboctahedral hole.

Смотреть статью,
WOS,
Scopus,
Читать в сети ИФ

Публикация на русском языке Структурные превращения и феноменологическое описание формирования фазовых состояний в эльпасолитах Cs2RbDyF6 и Rb2KB'F6 (B'=Ho, Dy, Tb) [Текст] / И. Н. Сафонов [и др.] // Физ. тверд. тела : Физико-технический институт им. А. Ф. Иоффе РАН, 2015. - Т. 57 Вып. 3. - С. 480-486

Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia.
Southern Fed Univ, Inst Phys Res, Rostov Na Donu 344090, Russia.

Доп.точки доступа:
Safonov, I. N.; Misyul', S. V.; Мисюль, Сергей Валентинович; Molokeev, M. S.; Молокеев, Максим Сергеевич; Ivliev, M. P.; Ministry of Education and Science of the Russian Federation [3.2534.2014/K]
}
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)