Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и брошюр библиотеки ИФ СО РАН (4)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Hubbard<.>)
Общее количество найденных документов : 154
Показаны документы с 1 по 10
 1-10    11-20   21-30   31-40   41-50   51-60      
1.


    Gavrichkov, V. A.
    A simple metal-insulator criterion for the doped Mott-Hubbard materials / V. A. Gavrichkov // Solid State Commun. - 2015. - Vol. 208. - P. 11-14, DOI 10.1016/j.ssc.2015.02.014. - Cited References:19. - We acknowledge with pleasure discussions with Igor S. Sandalov during the course of this work. This work was supported by RFBR Grant nos. 13-02-01395, 14-02-00186, and Nsh-28862014.2. . - ISSN 0038. - ISSN 1879-2766. -
РУБ Physics, Condensed Matter
Рубрики:
COOPER PAIRS
   Bi2Sr2CaCu2O8+DELTA

Кл.слова (ненормированные):
Doped Mott-Hubbard materials -- Metal-insulator transition -- First removal -- electron states
Аннотация: A simple metal-insulator criterion for doped Mott-Hubbard materials has been derived, Its readings are closely related to the orbital and spin nature of the ground states of the unit cell. The available criterion readings (metal or insulator) in the paramagnetic phase reveal the possibility of the insulator state of doped materials with the forbidden first removal electron states. According to its physical meaning, the result is similar to the Wilson's criterion in itinerant electron systems. The application of the criterion to high-T-c cuprates is discussed. (C) 2015 Elsevier Ltd. All rights reserved.

Смотреть статью,
Scopus,
WOS,
Читать в сети ИФ

Доп.точки доступа:
Гавричков, Владимир Александрович; RFBR [13-02-01395, 14-02-00186, Nsh-28862014.2]
}
Найти похожие
2.


    Gavrichkov, V. A.
    A simple metal-insulator criterion for the doped Mott-Hubbard materials / V. A. Gavrichkov // School and Workshop on Strongly Correlated Electronic Systems - Novel Materials and Novel Theories. - 2015

Материалы конференции

Доп.точки доступа:
School and Workshop on Strongly Correlated Electronic Systems - Novel Materials and Novel Theories(2015 ; jul. ; 10-21 ; Triest, Italy); International Centre for Theoretical Physics(Abdus Salam)
}
Найти похожие
3.


    GORYACHEV, E. G.
    A VARIATIONAL APPROACH TO THE 3-BODY PROBLEM IN THE HUBBARD-MODEL - EXACT RESULT / E. G. GORYACHEV // Phys. Lett. A. - 1992. - Vol. 166, Is. 2. - P. 148-152, DOI 10.1016/0375-9601(92)90551-V. - Cited References: 7 . - ISSN 0375-9601
РУБ Physics, Multidisciplinary

Аннотация: A well-defined method for linearizing the many-body equation of motion in statistical mechanics is proposed. The one-particle retarded Green function for the special case of a single reversed spin in an otherwise fully aligned band is obtained. We prove that the results for the Green function coincide independently of the initial (unperturbed) state we have started with, that is, the band energy limit E(k) = SIGMA(h)b(h)e(ikh) or the two-level atomic limit (E0, E0 + U). This strong result is valid for any parameters of the Hamiltonian and electron concentration of [F\n up\F]. In the nontrivial limited case (U=infinity) the obtained Green function coincides with the exact result of Igarashi, Ruckenstein and Schmitt-Rink based on the solution of the Faddeev equations.

WOS
}
Найти похожие
4.


    Kagan, M. Y.
    Anomalous resistivity and superconductivity in the two-band Hubbard model with one narrow band (Review) / M. Y. Kagan, V. V. Valkov // Low Temp. Phys. - 2011. - Vol. 37, Is. 1. - P. 69-82 ; Физика низких температур, DOI 10.1063/1.3552118. - Cited References: 62. - We thank A.S. Alexandrov, A.F. Andreev, M.A. Baranov, Yu. Bichkov, A.V. Chubukov, D.V. Efremov, A.S. Hewson, K.A. Kikoin, F.V. Kusmartsev, P. Nozieres, T.M. Rice, A.O. Sboychakov, P. Thalmeer, C.M. Varma, D. Vollhardt, P. Woelfle, A. Yaresko and, especially, P. Fulde, Yu. Kagan, K.I. Kugel, and N.V. Prokof'ev for many simulating discussions on this subject and acknowledge the financial support of RFBR grants # 08-02-00224 and 08-02-00212. M.Yu.K. is also grateful to the Leverhulme trust for a grant to visit Loughborough University, where this work was completed. . - ISSN 1063-777X
РУБ Physics, Applied
Рубрики:
FERMI-LIQUID BEHAVIOR
   MAGNETIC-ALLOYS

   HEAVY

   DENSITY

   SYSTEMS

   STATE

   UPT3

   MECHANISM

   PARTICLE

   VALENCE

Аннотация: We search for marginal Fermi-liquid behavior in the two-band Hubbard model with one narrow band. We consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. We analyze the influence of electron-polaron effects and other mechanisms for mass-enhancement (related to the momentum dependence of the self-energies) on the effective mass and scattering times of light and heavy components in the clean case (electron-electron scattering and no impurities). We find a tendency towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case with a large mismatch between the densities of heavy and light bands in the strong coupling limit. We also find that for low temperatures and equal densities, the resistivity in a homogeneous state R(T) proportional to T-2 behaves as a Fermi-liquid in both 3D and 2D. For temperatures greater than the effective bandwidth for heavy electrons T W-h*, the coherence of the heavy component breaks down completely. The heavy particles move diffusively in the surrounding light particles. At the same time, light particles scatter on heavy particles as if on immobile (static) impurities. Under these conditions, the heavy component is marginal, while the light component is not. The resistivity approaches saturation for T W-h* in the 3D case. In 2D the resistivity has a maximum and a localization tail owing to weak-localization corrections of the Altshuler-Aronov type. This behavior of resistivity in 3D could be relevant for some uranium-based heavy-fermion compounds such as UNi2Al3 and in 2D, for some other mixed-valence compounds, possibly including layered manganites. We also consider briefly the superconductive (SC) instability in this model. The leading instability tends to p-wave pairing and is governed by an enhanced Kohn-Luttinger mechanism for SC at low electron densities. The critical temperature corresponds to the pairing of heavy electrons via polarization of the light electrons in 2D. (C) 2011 American Institute of Physics. [doi:10.1063/1.3552118]

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
[Kagan, M. Yu.] Russian Acad Sci, PL Kapitza Phys Problems Inst, Moscow 119334, Russia
[Valkov, V. V.] Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
ИФ СО РАН
P.L.Kapitza Institute for Physical Problems of the Russian Academy of Sciences, 2 Kosygin St., Moscow 119334, Russian Federation
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation

Доп.точки доступа:
Valkov, V. V.; Вальков, Валерий Владимирович

}
Найти похожие
5.


   
    Anomalous resistivity and the electron-polaron effect in the two- band Hubbard model with one narrow band / Kagan M.Yu., Val'kov V.V. // arXiv. - 2011. - Ст. 1111.3135


Доп.точки доступа:
Kagan, M.Yu.; Val'kov, V. V.; Вальков, Валерий Владимирович
}
Найти похожие
6.


    Kagan, M. Y.
    Anomalous resistivity and the electron-polaron effect in the two-band hubbard model with one narrow band / M. Y. Kagan, V. V. Val'kov // J. Supercond. Nov. Magn. - 2012. - Vol. 25, Is. 5. - P. 1379-1382, DOI 10.1007/s10948-012-1523-3. - Cited References: 28. - We are grateful to P. Fulde, Yu. Kagan, K. I. Kugel, N.V. Prokof'ev, P. Nozieres, and C. M. Varma for the numerous stimulating discussions. We acknowledge financial support of the RFBR Grant No. 11-02-00741. . - ISSN 1557-1939
РУБ Physics, Applied + Physics, Condensed Matter
Рубрики:
FERMI GAS
   SUPERCONDUCTIVITY

   SUPERFLUIDITY

   TEMPERATURE

   REPULSION

   SYSTEMS

Кл.слова (ненормированные):
Electron-polaron effect -- Two-band Hubbard model -- Marginality -- Anomalous resistivity
Аннотация: We search for anomalous normal and superconductive behavior in the two-band Hubbard model with one narrow band. We analyze the influence of the electron–polaron effect and the Altshuler–Aronov effect on effective mass enhancement and scattering times of heavy and light components in the clean case. We find anomalous behavior of resistivity at high temperatures T>W∗hT > W_{h}^{*} both in 3D and 2D situations. The SC instability in the model is governed by an enhanced Kohn–Luttinger effect for p-wave pairing of heavy electrons via polarization of light electrons.

Смотреть статью,
Scopus,
WoS,
Читать в сети ИФ
Держатели документа:
[Kagan, M. Y.] PL Kapitza Inst Phys Problems, Moscow 119334, Russia
[Val'kov, V. V.] Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
P.L. Kapitza Institute for Physical Problems, Kosygina st. 2, 119334 Moscow, Russian Federation
Kirenskii Institute of Physics, Akademgorodok 50, Building 38, 660036 Krasnoyarsk, Russian Federation

Доп.точки доступа:
Val'kov, V. V.; Вальков, Валерий Владимирович; Каган, Максим Юрьевич
}
Найти похожие
7.


   
    Anomalous Resistivity and the Origin of Heavy Mass in the Two-Band Hubbard Model with One Narrow Band / M. Yu. Kagan, V. V. Val'kov // J. Exp. Theor. Phys. - 2011. - Vol. 113, Is. 1. - P156-171, DOI 10.1134/S1063776111060021. - Cited Reference Count: 87. - RFBRRussian Foundation for Basic Research (RFBR) [08-02-00224, 08-02-00212]; Leverhulme trustLeverhulme Trust; CNRSCentre National de la Recherche Scientifique (CNRS)European Commission [236694], We are grateful to A. S. Alexandrov, A. F. Andreev, A. F. Barabanov, M. A. Baranov, Yu. Bychkov, A. V. Chubukov, D. V. Efremov, P. Fulde, A. S. Hewson, Yu. Kagan, K. A. Kikoin, K. I. Kugel, F. V. Kusmartsev, M. Mezard, Yu. E. Lozovik, P. Nozieres, N. V. Prokof'ev, A. L. Rakhmanov, T. M. Rice, A. O. Sboychakov, G. V. Shlyapnikov, P. Thalmeyer, C. M. Varma, D. Vollhardt, P. Woelfle, and A. Yaresko for the numerous simulating discussions on this subject and acknowledge financial support of the RFBR grants nos. 08-02-00224, 08-02-00212. M. Yu. K. is also grateful to Loughborough University (UK) and LPTMS (Orsay, France) for the hospitality during the final stage of this work and acknowledges financial support from the Leverhulme trust and CNRS (contract no. 236694). . - JUL. - ISSN 1063-7761. - ISSN 1090-6509
Рубрики:
Physics, Multidisciplinary
Аннотация: We search for marginal Fermi-liquid behavior [1] in the two-band Hubbard model with one narrow band. We consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. We analyze the influence of electron polaron effect [2] and other mechanisms of mass enhancement (related to momentum dependence of the self-energies) on the effective mass and scattering times of light and heavy components in the clean case (electron-electron scattering and no impurities). We find the tendency towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case for a large mismatch between the densities of heavy and light bands in the strong-coupling limit. We also observe that for low temperatures and equal densities, the homogeneous state resistivity R(T) similar to T-2 behaves in a Fermi-liquid fashion in both 3D and 2D cases. For temperatures higher than the effective bandwidth for heavy electrons T W-h*, the coherent behavior of the heavy component is totally destroyed. The heavy particles move diffusively in the surrounding of light particles. At the same time, the light particles scatter on the heavy ones as if on immobile (static) impurities. In this regime, the heavy component is marginal, while the light one is not. The resistivity saturates for T W-h* in the 3D case. In 2D, the resistivity has a maximum and a localization tail due to weak-localization corrections of the Altshuler-Aronov type [3]. Such behavior of resistivity could be relevant for some uranium-based heavy-fermion compounds like UNi2Al3 in 3D and for some other mixed-valence compounds possibly including layered manganites in 2D. We also briefly consider the superconductive (SC) instability in the model. The leading instability is towards the p-wave pairing and is governed by the enhanced Kohn-Luttinger [4] mechanism of SC at low electron density. The critical temperature corresponds to the pairing of heavy electrons via polarization of the light ones in 2D.

WOS
Держатели документа:
Kapitza Inst Phys Problems, Moscow 119334, Russia;
Kirenskii Inst Phys, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kagan, M. Yu.; Val'kov, V. V.; Вальков, Валерий Владимирович
}
Найти похожие
8.


    Kagan, M. Y.
    Anomalous superconductivity and superfluidity in repulsive fermion systems / M. Y. Kagan, V. A. Mitskan, M. M. Korovushkin // Phys. Usp. - 2015. - Vol. 58, Is. 8. - P. 733-761, DOI 10.3367/UFNe.0185.201508a.0785. - Cited References: 369. - We are grateful to M A Baranov, A V Chubukov, D V Efremov, M V Feigel'man, V V Kabanov, K I Kugel', M S Marienko, N M Plakida, N V Prokorev, A Ya Tzalenchuk, and V V Val'kov for the fruitful discussions and constant attention to our work. The work was supported by the Russian Foundation for Basic Research (project nos. 14-02-00058 and 14-02-31237). M Yu K thanks the Program of Basic Research of the National Research University Higher School of Economics for support. The work of MM K was supported by grant of the President of the Russian Federation (SP-1361.2015.1) and the Dinasty Foundation . - ISSN 1063-7869
РУБ Physics, Multidisciplinary
Рубрики:
HEXAGONAL BORON-NITRIDE
   SCANNING-TUNNELING-MICROSCOPY

   2-DIMENSIONAL HUBBARD-MODEL

   HIGH-TC SUPERCONDUCTIVITY

   ELECTRON-ENERGY SPECTRUM

   P-WAVE SUPERCONDUCTIVITY

   DOUBLE-LAYER GRAPHENE

   2D KONDO-LATTICE

   GROUND-STATE

   TRANSITION-TEMPERATURE

Кл.слова (ненормированные):
anomalous superconductivity -- Kohn-Luttinger mechanism -- superfluidity -- repulsive Fermi gas -- Hubbard and t-Jmodel -- Shubin Vonsovsky model -- graphene monolayer -- graphene bilayer
Аннотация: We discuss the mechanisms of unconventional superconductivity and superfluidity in 3D and 2D fermionic systems with purely repulsive interaction at low densities. We construct phase diagrams of these systems and find the areas of the superconducting state in free space, as well as on the lattice in the framework of the Fermi-gas model with hard-core repulsion, the Hubbard model, the Shubin-Vonsovsky model, and the t-J model. We demonstrate that the critical superconducting temperature can be greatly increased in the spin-polarized case or in a two-band situation already at low densities. The proposed theory is based on the Kohn-Luttinger mechanism or its generalizations and explains or predicts anomalous p-, d-, and f-wave pairing in various materials, such as high-temperature superconductors, the idealized monolayer and bilayer of doped graphene, heavy-fermion systems, layered organic superconductors, superfluid 3He, spin-polarized 3He mixtures in 4He, ultracold quantum gases in magnetic traps, and optical lattices.

Смотреть статью,
Scopus,
WOS

Публикация на русском языке Каган, Максим Юрьевич. Аномальная сверхпроводимость и сверхтекучесть в фермионных системах с отталкиванием [Текст] / М. Ю. Каган, В. А. Мицкан, М. М. Коровушкин // Успехи физ. наук : ред. журн. "Успехи физ. наук", 2015. - Т. 185 № 8. - С. 785-815

Держатели документа:
Kapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, Russian Federation
National Research University, Higher School of Economics, ul. Myasnitskaya 20, Moscow, Russian Federation
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, str. 38, Krasnoyarsk, Russian Federation
Reshetnev Siberian State Aerospace University, prosp. Gazety Krasnoyarskii rabochii 31, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Mitskan, V. A.; Мицкан, Виталий Александрович; Korovushkin, M. M.; Коровушкин, Максим Михайлович
}
Найти похожие
9.


    Ovchinnikov, S. G.
    Anomalous thermodynamics of the doped Mott-Hubbard insulators / S. G. Ovchinnikov, K. A. Sidorov, E. I. Shneyder // Phys. Solid State. - 2011. - Vol. 53, Is. 2. - P. 299-302, DOI 10.1134/S1063783411020247. - Cited References: 6. - This study was supported by the Russian Foundation for Basic Research (project no. 09-02-00127), the Branch of the Physical Sciences of the Russian Academy of Sciences (program nos. 2 and 3), grant no. MK-1683.2010.2, and by the Federal Target Program "Personnel" (project NK-589 P). . - ISSN 1063-7834
РУБ Physics, Condensed Matter
Рубрики:
T-J MODEL
   SPECTRUM

Аннотация: The concentration dependence of the entropy of doped Mott-Hubbard insulators has been considered within the t-J model. It has been shown that a change in the type and statistics of charge carriers as compared to the Fermi gas leads to a radical change in the entropy s, in particular, to the giant growth of the entropy upon doping. The quantity a,s/a,x a parts per thousand k (B) is approximately consistent with the experimental data for HTSC cuprates in the pseudogap phase.

WOS,
Scopus,
РИНЦ,
Смотреть статью,
Читать в сети ИФ

Публикация на русском языке Овчинников, Сергей Геннадьевич. Аномальная термодинамика допированных диэлектриков Мотта-Хаббарда [Текст] / С. Г. Овчинников, К. А. Сидоров, Е. И. Шнейдер // Физ. тверд. тела. - 2011. - Т. 53 Вып. 2. - С. 280-283

Держатели документа:
[Ovchinnikov, S. G.
Sidorov, K. A.
Shneyder, E. I.] Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
[Ovchinnikov, S. G.
Shneyder, E. I.] Reshetnev Siberian State Aerosp Univ, Krasnoyarsk 660014, Russia
[Ovchinnikov, S. G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
ИФ СО РАН
Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Reshetnev Siberian State Aerospace University, pr. im. Gazety Krasnoyarskii Rabochii 31, Krasnoyarsk 660014, Russian Federation
Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk 660041, Russian Federation

Доп.точки доступа:
Sidorov, K. A.; Shneyder, E. I.; Шнейдер, Елена Игоревна; Овчинников, Сергей Геннадьевич
}
Найти похожие
10.


   
    Are there two types of f-electrons in Pr-metal? / U. . Lundin [et al.] // Physica B. - 1999. - Vol. 259-61. - P. 231-232, DOI 10.1016/S0921-4526(98)00790-X. - Cited References: 1 . - ISSN 0921-4526
РУБ Physics, Condensed Matter
Рубрики:

Кл.слова (ненормированные):
band calculations -- Hubbard model -- f-electrons
Аннотация: We show that in order to properly describe the bonding properties of strongly correlated systems, here demonstrated for praseodymium metal, it is necessary to split the f-electron system into two parts. Using perturbation theory from the atomic limit we show that LDA-based calculations with f-electrons in the core can be considered as the limit of an infinite Hubbard U. Then, the correction to the total energy proportional to 1/U makes the upper f(2)-->f(3) intra-atomic transitions (IT) important. Mixing interaction and f-f-hopping delocalize these IT and some of them become populated. These IT give an additional contribution to the cohesive energy. This gain in energy is the reason for the separation of the f-electron system into localized (with reduced spectral weight) and delocalized ones. (C) 1999 Elsevier Science B.V. All rights reserved.

WOS,
Scopus,
Читать в сети ИФ
Держатели документа:
Univ Uppsala, Dept Phys, Condensed Matter Theory Grp, S-75121 Uppsala, Sweden
LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
ИФ СО РАН
Condensed Matter Theory Group, Department of Physics, University of Uppsala, P.O. Box 530, 751 21 Uppsala, Sweden
Kirensky Institute of Physics, 660036 Krasnoyarsk, Russian Federation

Доп.точки доступа:
Lundin, U.; Sandalov, I.; Eriksson, O.; Johansson, B.; International Conference on Strongly Correlated Electron Systems(1998 ; JUL 15-18 ; Paris, France)
}
Найти похожие
 1-10    11-20   21-30   31-40   41-50   51-60      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)